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The effect of non-linear wave interactions on the phase speed of Bragg-resonant
gravity waves is investigated with the goal of assessing the impact on velocity
estimates from HF radar systems.  It is argued that this effect, termed Stokes shift, is
a real portion of the phase speed measured by HF radar and that its magnitude is in
the range from 0.02 m/s to 0.20 m/s, depending on radar frequency and wind speed.
A formula for Stokes shift is presented and computations are made using both
equilibrium wave spectra and observed directional wave spectra from Monterey Bay.

1. INTRODUCTION

The basic mechanism that allows radiowave energy
backscattered from the ocean surface to be related to ocean
currents is the frequency shift that results when the surface
is moving relative to the receiver.  Anything that moves
the reflecting ocean surface will produce a Doppler shift
relative to the transmitted frequency equal to

∆ ∆ω = ′ = +2 2k c k c vr p r p p( ), (1)

where ′cp  is the phase speed of the reflector relative to the

receiver and kr  is the wavenumber of the transmitted radio
wave.  For the resonant Bragg peak, the observed phase
speed is a combination of the phase speed of the resonant
waves, c p , and any shift in that phase speed due to

currents or non-linear wave interactions, ∆v p .  The use of

High Frequency (HF) radio frequencies in the range from 3
MHz to 30 MHz for oceanographic measurements stems
from the fact that the resonant Bragg waves in this band
are deep water waves whose phase speeds are precisely
determined by

c p g k= / , (2)

where k k
r

= 2  is the wavenumber of the ocean wave.
The interpretation of HF radar backscatter has generally

attributed all of the residual phase shift, ∆v p , to bulk

ocean currents with scales much larger than the wavelength
of an individual Bragg wave, i.e., ∆v pc .  The contribu-

tions from non-linear wave interactions, ∆v pw , on the

other hand, have not received individual attention.  It may
indeed be important to identify these contributions
because, should they exist, they represent a bias relative to
the flow that would be detected by purely Eulerian
measurement systems, such as moored current meters or
Acoustic Doppler Current Profilers.

The mechanism of non-linear wave interactions leading
to a mean current is commonly referred to as Stokes drift
(Kenyon, 1969).  It has not been clear, however, how to
apply the notion of Stokes drift to alterations of Bragg
wave phase speeds as detected by HF radar backscatter.
Because the electromagnetic backscatter occurs at the ocean
surface, does that mean that the appropriate non-linear
wave interaction contribution is the Stokes drift evaluated
at the surface?  We suggest that this is not correct and,
instead, propose that the appropriate contribution is the
depth-weighted Stokes drift.  In this case, the weighting
function derives from the Bragg wave particle velocity as
used by Stewart and Joy (1974).  i.e.,
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where U
S
 is the component of the Stokes drift parallel to

the radar look direction.  We support this depth weighting
by showing that the resulting phase speed shift due to the
Stokes drift from an arbitrary wave energy spectrum is in
agreement with the shift in phase speed due to higher order
corrections to the dispersion relation calculated using a
perturbation approach (Weber and Barrick, 1977; Barrick
and Weber, 1977).  The reconciliation of our approach with
that of Weber and Barrick is given in the Section 2.



Sample velocity impacts are given in Sections 3 and 4
based on equilibrium wave spectra and observed wave
spectra, respectively.  Some conclusions from this work
and suggestions for future investigations are provided in
Section 5.

2. STOKES DRIFT OF BRAGG WAVES

In this section we relate the results obtained through
perturbation expansions to those obtained by depth-
weighting the Stokes drift formula as in (3).  Details of
this comparison can be found in Laws (2001).  An
overview of the results is provided here.

Weber and Barrick (1977) used a third order expansion
of the gravity wave dispersion relation to investigate non-
linear effects.  They expanded the equations about the
radian wave frequency, ω ω ω= +

0 2
,to derive the phase
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The factor, ω ω
2 0
( ) /
r
k , is referred to as the normalized

correction to the deep-water phase speed.  For this
perturbation expansion to be valid, the scale of the
problem must be small compared to both the spatial and
temporal scales of energy transfer yet large compared with
the wavelengths and periods of the dominant waves
present.  These conditions are generally met for the spatial
and temporal integration times used with HF backscatter
measurements.  Assuming these conditions are met, the
perturbation results may be generalized to random surfaces
and the mean normalized correction is given by
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where S
1
( )k  is the first order approximation to the wave

height spectrum S( )k .
We now turn to demonstrating that the current due to

Stokes drift for a given wave height spectrum can be used
to calculate the correction to the phase velocity of gravity
waves in deep water and that, for collinear waves, the
resulting phase shift approaches the second order
perturbation form of Barrick and Weber.  Beginning with
the expression for Stokes drift at a particular depth
produced by a two-dimensional ocean wave spectrum
(Kenyon, 1969),

 

r r
r

r
U k

k
k

S
z S

k

k k z h

kh
d( ) ( )

( )

cosh

sinh( )
,=

+
−∞

∞

∫∫
( )[ ]





1 2 2

2

2

ρ ω
(6)

where ρ is the water density and h is the water depth, we
neglect the higher order corrections to the phase velocity,

i.e., letω ω≈ =
0

gk , and simplify (6) as
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for the deep water limit (kh >> 1).  Using (7) in (3) we
obtain
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Exchanging the order of integration and evaluating the
integral over depth we find
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Finally, we investigate the case of a unidirectional
spectrum where the x-axis is aligned with the radar look
direction to obtain
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where the positive sign is used when the wave spectrum is
aligned in the same direction as the wave of interest and
the negative sign is used when the spectrum is aligned in
the opposite direction.  Laws (2001) goes on to show that
the different methods leading to (5) and (10) converge for
the two regimes ′ >k k  and ′ <k k, i.e., outside the
precise scale of the Bragg wave itself.

3. EQUILIBRIUM WAVE SPECTRUM RESULTS

We now examine the effect of Stokes drift on the phase
speed of deep-water Bragg waves for the case in which the
surface wave spectrum is in equilibrium with local wind
forcing.  According to Pierson and Moskowitz (1964), the
equilibrium surface wave spectrum has the form
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W is the wind speed, fo = 2.75 x 10-2, and vo = 0.140.
Assuming n = 4 (Pierson and Moskowitz, 1964), the wave
energy spectrum is given by
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where ν = ω/2π is the frequency in cycles/sec, θ is the

angle with respect to the wind vector, and G(θ) represents a
directional spreading model.  For simplicity, we
investigate the maximum effect, which is aligned with the
wind.  For this case, G(θ) = G(0) = 1.  Downwind,
equilibrium spectra are shown in Figure 1 for three
different wind speeds.  For higher wind speeds the energy
peak shifts to lower frequencies, which moves the period
of the dominant waves up from about 7 sec to 10 sec for
the range of wind speeds shown here.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

Frequency, ν (Hz)

15 m/s

13 m/s

9 m/s

E
4(

ν)
 (

m
2 /

H
z)

Figure 1.  Theoretical downwind wave energy spectra for fully
developed seas in equilibrium with wind speeds of 9 m/s, 13
m/s, and 15 m/s.

Using the equilibrium spectra in (7), it is possible to,
numerically, evaluate the downwind Stokes drift as a
function of depth for different wind speeds.  Those results
are shown in Figure 2 for the range of winds used in
Figure 1.  At the lower wind speed of 9 m/s, which is
typical of the conditions over Monterey Bay, Stokes drift
values range from 0.23 m/s at the surface to near zero at
10 m depth.  For waves in equilibrium with wind speeds
of 15 m/s, surface Stokes drift currents rise to 0.35 m/s.

It is interesting to assess which portion of the wind
wave spectrum provides the largest contribution to Stokes
drift.  This too was investigated numerically by continu-
ously increasing the range of frequencies included in the
integral in (7).  These results are shown in Figure 3 at
three different depths for the 15 m/s wind speed case.
From Figure 1 it can be seen that the wave spectra peaks
near 0.10 Hz for this case and the energy is down below
the half power point at frequencies above 0.15 Hz.  Despite
this, frequencies below 0.15 Hz account for only 65% of
the Stokes drift at 2 m depth and only 35% of the Stokes
drift at the surface.  Because of the strong frequency

weighting in these calculations, the higher frequencies
contribute more to Stokes drift than might be expected
from the spectral shapes.
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Figure 2.  Downwind Stokes drift as a function of depth for
waves spectra in equilibrium with wind speeds of 9 m/s, 13
m/s, and 15 m/s.

Finally, we use the equilibrium wave spectra to assess
the magnitude of the phase speed shift for Bragg waves
due to Stokes drift, which we term the “Stokes shift.”
Using (7) in the depth weighting formula (3), we obtain
the following formula for Stokes shift under equilibrium
wave conditions (see Laws, 2001 for details):
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Equation (14) was evaluated for the range of equilibrium
wind speeds used above and the results are presented in
Figure 4 as a function of Bragg wavenumber.  For
reference, the four wavenumbers associated with the
different frequencies used by the Multi-frequency Coastal
Radar (MCR; Teague et al., 2001) system are denoted on
the figure.  All commonly used HF radar system
frequencies fall close to one of the MCR frequencies.  The
Stokes shift ranges from 0.12 m/s to 0.27 m/s over the
wind speed range for the higher radar frequency (21.8
MHz).  At the lowest radar frequency (4.8 MHz), the
Stokes shift ranges from 0.07 m/s to 0.13 m/s for the
same range of wind speeds.  The effect due to Stokes drift
is larger on the higher frequency Bragg waves because their
depth weighting function is trapped more closely to the
surface.
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Figure 3.  Fraction of total Stokes drift as a function of the
upper frequency limit for waves in equilibrium with a wind
speed of 15 m/s at the surface, 0.5 m depth, and 2.0 m depth.
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Figure 4.  Shift in phase speed of Bragg resonant waves due to
Stokes drift as a function of radar wave number for wave
spectra in equilibrium with wind speeds of 9 m/s, 13 m/s, and
15 m/s.  The dashed lines denote wave numbers corresponding
to the four frequencies of operation for the MCR system: CH1
(4.8 MHz), CH2 (6.8 MHz), CH3 (13.4 MHz), and CH4 (21.8
MHz).

4. OBSERVED WAVE SPECTRUM RESULTS

The equilibrium wave spectra used in Section 3 may not
always reflect the actual directional wave spectrum,
particularly near the coastline where fetch can be limited.
However, simultaneous measurements of HF backscatter
and wave spectra from which Stokes shift can be computed
are not common.  We report results from one particular
data set in this section, which was collected in Monterey

Bay between 3 September and 11 November, 1999.
Again, more details may be found in Laws (2001).

During the Fall 1999 period, MCR data were collected
from two locations around Monterey Bay.  At the same
time, a flux buoy was deployed in the Bay by the
Department of Meteorology at the Naval Postgraduate
School.  The locations of the radar sites and buoy are
shown in Figure 5.  The unique aspects of this data set are
the multi-frequency data collected by the MCR systems
and the combination of bulk wind, direct wind stress, and
directional wave data collected by the flux buoy.
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Figure 5.  Location of MCR HF radar sites (triangles) and
moored flux buoy in Monterey Bay during Fall 1999.

Given directional wave spectra, the vector Stokes shift
may be computed directly using (9).  The magnitude and
direction of the computed shift for the Bragg waves
associated with the highest MCR frequency (21.8 MHz)
are shown in Figure 6.  The magnitude was typically
below 0.02 m/s during this period with short-duration
peak values up to 0.08 m/s.  The magnitudes for Bragg
waves associated with lower radar frequencies would have
been even smaller.  The direction of the vector Stokes shift
was typically toward the east-southeast reflecting the
onshore wave conditions at the flux buoy location.

The wind speeds measured at the flux buoy during this
period (not shown) were weak.  Most days winds exhibited
a clear diurnal cycle with speeds between 2 m/s and 6 m/s.
The strong event on year day 280 had peak speeds of 13
m/s.  Comparing the computed Stokes shift in Figure 6
with the theoretical values in Figure 4 based on
equilibrium wave spectra we see that the observed values
were about half as large as the equilibrium values, which
suggests that the observed wave field at the flux buoy was
not in equilibrium with the local winds.  This result can
be seen more clearly in direct comparisons of the observed



and equilibrium spectra (not shown).  Individual wave
spectra were examined to determine whether the spectral
contributions to Stokes shift from the observed waves were
similar to what was found for the equilibrium cases even
though the energy levels were lower.  One example was
taken from the wave event on year day 301, which is

denoted on the time series in Figure 6.  The two-
dimensional wave spectrum was collapsed into a single
dimension by plotting the peak energy at each frequency in
Figure 7.  The highest overall energy levels were for waves
with periods longer than 10 seconds, which includes the
contributions from swell.
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Figure 6.  Magnitude and direction (toward) of the Stokes shift for Bragg waves
resonant with 21.8 MHz radiowave signals calculated from observed directional wave
spectra at the flux buoy in Monterey Bay.  The heavy line denotes a 12-hr running
average and the vertical bar denotes the period of the example spectrum.
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Figure 7.  Wave energy density as a function of frequency
(upper panel) and the fraction of total Stokes shift for Bragg
waves resonant with 21.8 MHz radiowave signals as a function
of upper frequency cut-off (lower panel).

The spectral information in Figure 7 also shows the
cumulative contributions to the total Stokes shift as a
function of the upper wave frequency limit.  It is even

more apparent in this non-equilibrium example that the
shorter wind waves dominate the Stokes shift calculation
with most of the contribution coming from waves with
periods less than 5 seconds.

The small Stokes shift values computed from this data
set are well within typical noise levels of the HF radar
systems.  For this reason it is difficult to verify that the
proposed Stokes shift formula is correct based on field
observations.  If the Stokes shift effect were larger, it
would be expected to be correlated with the HF radar-
derived radial velocities.  A complicating factor is that the
waves can be strongly correlated with wind, which itself is
correlated with near-surface current.  Laws (20001) presents
the comparisons between observed currents and Stokes
shift for all MCR frequencies.  He also investigates the
correlation between currents and wind or wind stress.
Because the currents are relatively weak in this data set and
the signal-to-noise performance of the MCR systems was
relatively poor during that period, the results of these
comparisons are not conclusive.  The situation is
improved, somewhat, when the unique multi-frequency
aspect of the MCR data is exploited to compare near-



surface shear to the computed Stokes shift and observed
wind and wind stress records.

An estimate of near-surface shear near the location of the
flux buoy was created by taking the difference of radial
velocities measured at 21.8 MHz and 4.8 MHz.  Only data
along the radial direction from the Santa Cruz MCR site
were used due to extremely poor range performance from
the system at Moss Landing during this period.  The radar-
determined velocity difference represents shear in the upper
2 m.  The precise depth difference depends on details of
the velocity profile near the ocean surface (Stewart and Joy,
1974; Ha, 1979; Teague et al., 2001; Teague et al., this
issue).  It is likely, however, that many physical processes
have vertical scales large compared with the 1 m scale of
the shear calculation.  Examples include tidal currents,
geostrophic currents, and, to an unknown extent, directly
wind-driven currents.

Comparison of the radar-derived velocity difference and
computed difference in Stokes shift for the two different
Bragg waves is given in Figure 8.  The velocity difference

data is also compared with wind speed, wind speed
squared, and friction velocity.  (The latter was directly
measured on the flux buoy using turbulent eddy correlation
sensors independent of the wind measurements.)  In these
comparisons, the complex correlation of the vector Stokes
shift difference, wind, or friction velocity against the
(scalar) velocity difference was computed.  The correlation
results presented in Figure 7 represent the magnitude of the
complex correlation and the scatter plots represent the
direction parallel to the correlation phase angle.  The
correlation values are similar for Stokes shift difference and
wind or wind stress.  The best correlation overall was
between velocity difference and wind stress (friction
velocity).  Hence, even though these results show some
skill in predicting radar-derived velocities using the wave-
based Stokes shift formula, they do not rule out the
possibility that a strong correlation between winds and
waves is responsible.
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5. CONCLUSIONS

This work has investigated the effect on non-linear wave
interactions on the measurement of ocean currents by HF
radar backscatter techniques.  Analytical work was
presented here that reconciles two independent derivations
of the expected Bragg wave phase shift: one based on the
perturbation method of Weber and Barrick (1977) and one
proposed by Laws (2001) in which the classic Stokes drift
current of Kenyon (1969) is integrated over depth weighted
by the Bragg wave particle velocities as proposed by
Stewart and Joy (1974) for the general effect due to a near-
surface velocity field.  Both of these approaches argue for
the existence of a detectable, wave-driven perturbation to
the deep-water Bragg wave phase speed, which should,
therefore, be part of the signal detected by HF radar
systems.

The magnitude of the wave-related biases was estimated
in two ways.  First, computations were done using the
equilibrium wave model and a range of wind speeds that
suggest current biases on the order of 0.10 m/s for typical
wind speeds on the order of 10 m/s.  Next, the expected
velocity biases were computed from directional wave
spectra measured in Monterey Bay in Fall 1999.  In that
case, the Stokes shift effect was about five times weaker,
which was due to low winds and, apparently, non-fully
developed sea states.

The effort presented here to extract the wave-related
portion of radial currents measured in Monterey Bay was
not convincing.  Significant correlation was seen between
the wave-estimated Stokes shift and the radar-derived
current, but even stronger correlation was found between
the wind stress and the current.  In the future, additional
data sets with simultaneous HF radar and directional wave
data should be analyzed for the effect of wave-induced
velocities.  This is important because these effects
represent a bias between HF radar-derived current
measurements and those of other current meters that is a
large fraction of the typical 0.07 m/sec to 0.15 m/sec
uncertainty levels (Graber et al., 1997, Paduan and
Rosenfeld, 1996).  It is also important because numerical
circulation models that, increasingly, use HF radar-derived
currents as validation or assimilation data sources do not
include this wave effect.  Hence, it should be removed
from the data set prior to model-data comparison or data
assimilation (or incorporated into the error covariance
descriptions).  Prior to definitive measurements of the non-
linear wave effects on HF radar measurements, we believe

that the formula presented here could be used with
directional wave data or, if necessary, with wind data to
estimate the Stokes shift for a given data set.
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