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ABSTRACT

The influence of the wind wave parameter fluctuation on the nonlinear spectrum evolution is estimated by
solving numerically the kinetic equation taking into account the nonlinear interaction in the wave spectrum. The
nonlinear energy transfer is calculated using an original numerical integrating method of the highest accuracy
that is described in the paper. The results of numerical simulation shows that wind wave parameter fluctuation
produces a significant increase effect of the nonlinear wave spectrum evolution. The present study results in a
parameterization, which is made possible taking into account this effect in spectral wind wave models.

1. Introduction

The wind waves are a nonstationary probability pro-
cess. The evolution of the wind wave field, as is shown
by the experimental data, occurs in a wide range of
spatial and temporal scales. The period of wave move-
ment fluctuations or simply the period of wave is the
shortest temporal scale. The wind wave periods change
in a range from several to ten seconds. Their value de-
pends on a number of circumstances (stage of wave
development, wind speed, presence of currents, swells,
etc.). Their characteristic scale for wind waves in the
sea can be considered as a value of t 1 ø 1–10 s.

The wave movements connected with the group wave
structure are the second temporal scale (Davidan et al.
1978, 1985). The periods of wave group fluctuations
change in a range from several tens to several hundreds
of seconds. The wave groups repeat approximately in
10–15 average wave periods (t 2 ø 10–15t 1). They con-
sist of five to nine waves. Their temporal recurrence
scale, being accepted as the first approximation, makes
up t 2 ø 102 s.

The so-called quasioscillations can be referred to the
third temporal fluctuation scale of the sea surface. They
are fairly well traced in changes of the frequency spec-
trum form and in its parameters, even for stable con-
ditions of wave development (Andreev 1988; Zaslavskii
and Krasitskii 1993; Bitner-Gregersen and Gran 1983).
The quasioscillation periods are approximately equal
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from 5 to 20 min. The scale estimation of these periods
can be accepted as t 3 ø 103 s.

Wave field changes, occuring within the period of 3–6
hours, are the fourth temporal scale. This scale is es-
timated as t 4 ø 104 s. The essential changes of the wind
wave spectrum and all its parameters usually occur with-
in this time interval. It is interesting to note, as far as
the temporal scale is concerned, that in numerical sim-
ulation of wind wave, with a similar temporal step the
data of the surface wind field are input in mathematical
models. The mathematical models used for practical ap-
plication are based on the numerical solution of the wave
energy balance equation (Davidan et al. 1985; Komen
et al. 1994). The field changes, which occur in smaller
temporal and spatial scales, are not taken into account.

The next temporal scale of evolution of the wind wave
fields is a synoptic range of order t 5 ø 105 (Davidan
et al. 1978). Numerical simulations of the wind wave
in forecasting problems are usually carried out with the
help of mathematical models for the intervals of time.
The scale variation of the wind wave field (including
seasonal, interannual variability, etc.) can be extended,
but their detailed consideration is far from the frame-
work of the given article.

It should be noted that all above-mentioned temporal
scales of the wind wave field variability differ one from
another in order. That is why researchers could inves-
tigate the evolution of wave fields in one scale inde-
pendently from another. But the problem of mutual in-
fluence of spatiotemporal evolution of wave field of one
scale on another remains to be investigated.

2. Description of the frequency spectrum
quasioscillation

Temporal wave records with 20-min duration were
obtained in most wind wave field measurements. These
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FIG. 1. Proportion E(t) obtained by the running averaging h2(t) (a)
for averaging interval 60 s (Zaslavskii and Krasitskii 1993); (b) for
averaging interval 150 s (Andreev 1988).

realizations were supposed to be sufficient for obtaining
a representative estimation of the wave energy spectral
density. This process was considered to be ergodic
(Davidan et al. 1978, 1985). The time intervals of such
duration were identified as ‘‘a quasi-stationary state in-
terval.’’ It was assumed that the local wave energy de-
fined as E 5 ^h2& 5 # S(k) dk remains constant, that
is, E 5 ^h2& 5 const (where h 5 h(r, t) is the sea
surface displacement as a function of the spatial coor-
dinate r and time t and S is the spatial wind wave spec-
trum). Deviation from this condition was explained as
sampling variability of random process.

But this assumption was refuted by research executed
in the last decade. The latest data reveal that the con-
dition of constant process dispersion is not valid for a
quasistationary interval. Local dispersion makes up a
quasiperiodic fluctuation (or simply quasi oscillations)
in both the temporal (t 3) and the corresponding spatial
scale range. This phenomenon, well known as smoothed
instantaneous wave energy history (SIWEH), was de-
scribed in Zaslavskii and Krasitskii (1993), Bitner-Gre-
gersen and Gran (1983), Mase (1989), and Sand (1982).
The experimental evidence of these existing effects were
measurements of local wave dispersion E 5 ^h2& ob-
tained by Zaslavskii and Krasitskii (1993) in the North
Atlantic. The experiment was performed under station-
ary conditions of wave development and in the absence
of swell. Obtained for an averaging interval of 60 s, the
local dispersion E(t) is shown in Fig. 1a. The fluctua-
tions of wave dispersion E(t) 5 E 1 E I(t) with an ;5

min temporal scale can be seen. The amplitude E I(t),
comparable with the E dispersion, is estimated for a
total set. These fluctuations are not dependent upon the
group structure of wind waves estimated within a narrow
band of their spectrum. The average wave period in this
case was 6 s, whereas the temporal scale of wave group
was less than 60 s. It is important to note that the es-
timations of sampling variability were smaller than the
fluctuations of wave dispersion, which allows one to
observe the phenomenon.

There are data of similar quality in some other papers.
An example of time variation of wave dispersion (An-
dreev 1988) is presented in Fig. 1b. The dispersion was
estimated for 150-s intervals with a fluctuation period
of 7–15 min. Similar data of variation E(t) with 300-s
averaging are obtained in Efimov and Soloviev (1984),
where a 15–20 min fluctuation period was estimated.

The local fluctuation of wind wave dispersion is in-
terconnected with fluctuations of the corresponding
wave spectra. Such spectral density fluctuations of wave
development with 3.5-min long wave records (Andreev
1988) is shown in Fig. 2.

Spectra with limited wave records have the following
estimated features:

R measured wave values have various spectral densities
and wave dispersions;

R the most conservative parameter is a spectral maxi-
mum frequency vmax, which has approximately the
same value during different wave records; and

R the greatest fluctuations in vicinity of the spectral
maximum are exhibited in the spectral density.

The sea surface is assumed to respond to low-fre-
quency wind bursts and squalls. This phenomenon can
be considered as a quasi oscillation, clearly revealed in
changes of frequency spectrum and wave dispersion,
even in stable conditions of wave development (An-
dreev 1988, Zaslavskii and Krasitskii 1993).

It is possible to simulate the aforementioned wave
fluctuations of wind wave spectrum parameters by a
source function of the wave energy balance equation,
which includes the wave energy input by the wind ac-
tion. The role of gusts in wind wave generation was
estimated (Komen et al. 1994) with the WAM model,
where the average wind speed was replaced by its ran-
dom distribution. The effect of gusts was shown to lead
to increasing wave energy generation.

There exists a micrometeorological maximum order-
ing a minute period of the atmospheric turbulence spec-
tra (Monin and Iaglom 1996). Thus the fluctuations of
wind wave parameters appear in these temporal scales.
A mechanism of wind dispersion generation by atmo-
spheric turbulence can be possibly connected with both
pressure and wind speed fluctuations. It should be noted
that temporal scales of the micrometeorological maxi-
mum in these atmospheric characteristics differ signif-
icantly. It is an order of several tens of minutes for the
pressure spectra and a minute for wind speed. This qua-
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sioscillation period of wave spectral parameters, as
shown above, is correlated with the pressure fluctuation
of atmospheric turbulence.

It is shown (Zaslavskii and Krasitskii 1993) that the
presence of local variant fluctuations within the quasi-
stationary state time intervals (t 3) is a result of spatio-
temporal wave field nonuniformity, and it can be de-
scribed by the kinetic equation for wind wave spectrum
evolution. Due to its energy conservation the nonlinear
energy transfer was not taken into consideration. The
wave dispersion fluctuations were determined by varia-
tions of wind-generated waves connected with ‘‘micro-
meteorological bursts.’’ Dispersion fluctuations of the sea
surface were shown to be quasiperiodical due to changes
of the local wave spectrum and, namely, its peakedness.

Due to the existence of general problems of the wind
wave theory (Komen et al. 1994; Lavrenov 1998), wave
generation by the wind and wave dissipation are not con-
sidered here. The effect of wind wave parameter fluc-
tuations on the nonlinear spectrum evolution is studied
by introducing a periodically changing term into the en-
ergy balance equation. The wave parameter fluctuations
produce variations of the spectral form including the
peakedness. It causes a local variation of nonlinear energy
transfer in the wave spectrum. Taking into account the
cubic proportion between the nonlinear energy transfer
and the spectrum value, it was interesting to estimate the
influence of these variations at the large temporal scales
(t 4/t 5). The first estimation of this kind was made by
Lavrenov (1999), although the value of effect was over-
estimated. Due to the importance of this problem, we
decided to fulfil a more detailed investigation of the qua-
sioscillatory effect, paying attention to the accuracy of
nonlinear interaction integral computation.

3. Formulation of the problem

In order to make a quantative estimation of the phys-
ical processes related to quasi oscillations it is necessary
to define their parameters. A number of unsolved prob-
lems remain, namely the proportion between the oscil-
lation period and spectrum parameters, its peakedness,
stage of wave development, etc. Using the results of a
previous paper (Zaslavskii and Krasitskii 1993), an el-
ementary approximation of spectral density in the quasi-
stationary state interval with quasi oscillations can be
presented as an approximation of the JONSWAP spec-
trum (Hasselmann et al. 1973) with periodic spectral
density maximum changes (or spectrum peakedness).
This spectrum variation can be presented as

S(v, w, vmax, t) 5 SJONSWAP(v, w)gmsin(2p/t ) f (v) , (1)

where S(v, w, vmax, t) is the frequency–angular spec-
trum of wind waves; SJONSWAP(v, w) is JONSWAP spec-
trum with the frequency dependence determined by

45 vmax2 25 f (v)S (v) 5 ag v exp 2 g ,JONSWAP 1 2[ ]4 v

2(v 2 v )maxf (v) 5 exp 2 ;
2[ ]2svmax

g is the spectrum peakedness parameter, m is the relative
oscillation amplitude of the spectral maximum; t is a
period of the oscillations that has a t ; t 3 order. It
should be noted that the temporal dependence of spectral
enhancement could be defined in this case as 5g̃
g[12msin(2p/t )] .

According to experimental data (Andreev 1988; Zas-
lavskii and Krasitskii 1993) it is assumed that the fre-
quency of the vmax spectral maximum changes signifi-
cantly less at a given time interval than the spectral
value as it is. Use of the spectral approximation (1) can
be proved by experimental results. The spectral peaked-
ness parameter g shows a decreasing tendency as waves
develop (Mitsuyasu et al. 1980; Donelan et al. 1985;
Babanin and Soloviev 1998). The JONSWAP spectrum
transforms to the Pierson–Moskowitz spectrum at g 5
1 in case the fetch X is large enough. High variability
of the spectral peakedness parameter g is well known
according to measuring data. It is so high that a sys-
tematic dependence g(x̃) cannot be found for a wide
range of dimensionless fetch changes x̃ 5 Xg/U 2. That
is why g(x̃) dependence was not found in the JONSWAP
experiment (Hasselmann et al. 1973).

Now the nonlinear spectrum evolution in the presence
of its quasioscillations for a spatially homogeneous case
is to be calculated numerically. The following equation
is considered:

]S
5 G (S) 2 Sf (v) cos(2p t/t), (2)nl 2]t

where f 2(v) 5 mf (v) ln(g)2p/t ; Gnl(S) is the integral
of nonlinear interactions in the wind wave spectrum
taken relatives to the spectral energy density S(v, w).

It is interesting to note that, in case when Gnl(S) is
equal to zero, Eq. 2 produces the spectral solution (1).
On the other hand, if oscillations are excluded ( f 2(v)
5 0), the traditional nonlinear spectral evolution is de-
scribed by Eq. (2).

Generally the expression for the integral of nonlinear
energy transfer relative to the spectral density of wave
action N(k) (Hasselmann 1962; Zakharov 1969) is writ-
ten as

G (N ) 5 T(k, k , k , k )d(k 1 k 2 k 2 k )d(v 1 v 2 v 2 v )nl EEE 1 2 3 1 2 3 1 2 3

3 {N N (N 1 N ) 2 N N(N 1 N )} dk dk dk , (3)2 3 1 1 2 3 1 2 3
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FIG. 2. Spectral density fluctuations of developing waves (1–5) cal-
culated for wave record 3.5-min-long intervals (Andreev 1988).

where N1 5 N(ki) is the spectral density of wave action,
T(k, k1, k2, k3) is the kernel function of the nonlinear
interaction between wave components, and d(k) and
d(v) are the Dirac delta functions describing the inter-
action resonance conditions among four-wave compo-
nents.

Starting with the fundamental papers (Hasselmann
1962; Zakharov 1968), where the right-hand term of Eq.
(2) contains only the nonlinear interaction Gnl(S), tra-
ditionally it is applied in studying the nonlinear wave
spectral evolution. However, isolating the Gnl(S) func-
tion, the right-hand term of Eq. (2) includes an addi-
tional component, periodical in time, that is not used in
wind wave models. The second component of the right-
hand term of Eq. (2) may be assumed to be an approx-
imation of the mechanism of wave energy supply by
the wind and the wave energy dissipation. In reality it
is not precisely so. General problems of wave devel-
opment under wind effect and dissipation are not dis-
cussed in this paper. An attempt to describe the spectral
evolution due to nonlinear energy transfer and spectral
quasioscillation is undertaken below.

In order to solve the problem correctly the quasios-
cillation period should be large enough for the waves
‘‘to have time’’ to interact, the latter being determined
by the characteristic time of phase intermixing (Yuen
and Lake 1987):

1
2ø v0(k)(Dk) , (4)

tph

where Dk is the wave spectral width.
The value t ph appears to be equal to several spectral

maximum periods. The condition of applicability of the
method can be written as

t ph K t 3. (5)

It should be noted that in this case the quasioscillation
period can be smaller than or of the same order as an
evaluation of the characteristic time of nonlinear waves
evolution t nl ; t . The value t nl can be estimated using
Eq. (3) according to Yuen and Lake (1987):

21 TN
ø . (6)

2t v0(k)(Dk)nl

4. Algorithm and difficulties of numerical
calculation of Eq. (2)

The kinetic equation (2) in which the right-hand side
term takes into account the presence of a collision in-
tegral describing the nonlinear energy transfer and an
additional term, which leads the spectral oscillation, is
to be solved numerically now. It is necessary to ensure
that the temporal step Dt of the numerical integration
is much smaller than the oscillation period t . In this
case the numerical solution can take into account the
spectral density quasi oscillation. The period t should
be less than the specified time of the nonlinear spectral

evolution Dt K t , t 4. It is necessary to solve nu-
merically Eq. (2) for the large timescale (t 4/t 5) using
a sufficiently small time step Dt. This is a difficult prob-
lem because the numerical computation of nonlinear
energy transfer demands considerable CPU time. It
means that the algorithm has to be efficient.

The problem of calculating the collision integral of
the nonlinear interaction is well known. Although K.
Hasselmann deduced the integral of collisions for the
first time in the early 1960s, it was really impossible to
obtain correct calculation results of the integral in its
exact form. To estimate the collision integral numeri-
cally is rather a complicated problem. This process
needs significant CPU time because, first, the collision
integral has the six-dimensional form and, second, the
core function T(k, k1, k2, k3) has a rather complicated
form.

In 1980 Masuda (1980) was one of the first to cal-
culate numerically the exact collision integral expres-
sion. Using specially selected variables, he estimated
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the singularity contribution to the integral value. The
calculation process of the integral was in other cases
traditional. Then Hasselmann and Hasselmann (1981,
1985a,b) proposed the integral calculation method,
based on symmetry of the integral expression, which
allowed one to make calculations more quickly.

At present there are three known reliable methods of
calculating the collision integral. Resio and Perrie
(1991) proposed one of these methods based on the
scaling and symmetry of the kernel function. The Sny-
der et al. (1993) method is based on the hybrid inte-
gration scheme for the algorithm of Hasselmann and
Hasselmann (1985a,b). It allows one to increase the cal-
culation speed by an order. The third method (RIAM)
was proposed by Komatsu and Masuda (1996) as a com-
bination of the Masuda algorithm (1980) with a scaling
and symmetry property of the kernel function (Resio
and Perrie, 1991). This allows one to increase the cal-
culation speed by two orders.

All of the calculations use traditional methods of nu-
merical integration. Another method, proposed by La-
vrenov (1991a, 1998), exists based on the numerical
integrating method of the highest precision (Krylov and
Shulgina 1966). Using a small number of grid points
the collision integral can be quite accurately calculated
taking little CPU time. The modified algorithm is pre-
sented in the appendix. Calculation of the collision in-
tegral (3) is performed using the numerical algorithm.
In the present paper Eq. (2) is solved by a two-step
predictor–corrector method similar to that of Lavrenov
(1991b), allowing one to obtain an accurate numerical
solution. The time step of numerical integration was
equal to 12.5 s, which made it possible to conduct nu-
merical integration up to a 105 s time interval.

5. Results of numerical modeling

In numerical computation the value of parameter m
was assumed to be equal to 0.9, which provided periodic
oscillations of spectral enhancement (1) ranging from
1.1 to 9.7 with a mean value g 5 3.3. The oscillation
periods were 10, 20, and 40 min, respectively. The cal-
culation results of the frequency spectra for m 5 0.9 at
different moments t (for different values of spectrum
peakedness ) are presented in Fig. 3a. The spectralg̃
density values are normalized by the maximum spec-
trum value for 5 3.3.g̃

The nonlinear transfer function normalized by its
maximum value for 5 3.3 is presented for the differentg̃

in Fig. 3b. Relative values of the nonlinear transferg̃
function differ significantly compared to the corre-
sponding spectral density ones. This is evidence that the
proportion between the spectral density and the nonlin-
ear energy transfer function is significantly nonlinear.
Changes of spectral influence not only influence sig-
nificantly the nonlinear energy transfer maximum, but
result in changes of nonlinear transfer function in gen-
eral as well. Magnitudes of the nonlinear energy transfer

and also particular frequencies where the nonlinear en-
ergy transfer shows its maximum, minimum, or zero
change depend on For the larger peakedness of theg̃.
spectrum the nonlinear transfer maximum is shifted to
the low-frequency range.

Using the results of spectral numerical solution
Sn(v, w) at each temporal step tn, the frequency spec-
trum maximum and the frequency of spectrum max-nSmax

imum vmax are determined. The computed changes of
the frequency spectral maximum vmax for four calcu-
lation versions are presented in Fig. 4. It is shown for
the case of the absence of the spectral maximum os-
cillations (i.e., m 5 0.0) and for three cases with os-
cillations of different periods equal to 10, 20, and 40
min, respectively.

A group of data with the same symbols that have the
same value of vmax for different time t means that the
frequency vmax does not change within a considered time
interval. At the next time interval the frequency vmax

changes discontinuously. It cannot be explained by the
rough frequency discretization used in the numerical
scheme. The frequency variation of vmax is much larger
than the frequency discretization step. In total, the evo-
lution of frequency vmax is not smooth. The discontinuous
character of the nonlinear evolution of the spectral max-
imum frequency shows that the quasi oscillations can be
a ‘‘start mechanism’’ of the low-frequency spectrum evo-
lution. It occurs only at a certain moment but not within
each quasioscillation period. It takes place in cases when
the nonlinear spectral evolution has been accumulated
and it changes the spectral form in such a way that it has
become enough to make a small push (increasing the
spectral density with quasi oscillations) and thus transfer
the spectral maximum frequency to another level.

It should be noted that in the ‘‘no oscillation’’ case
vmax does not change for g 5 1 (i.e., P–M spectrum).

As seen in the calculations, the nonlinear energy
transfer produces an average spectral displacement to-
ward the low-frequency range. However, the mean evo-
lution speed of frequency maximum differs significantly
when the oscillation spectral peakedness is taken into
account. Thus, in the ‘‘no oscillation’’ case the spectral
maximum frequency decreases monotonically from the
initial value of 5 1.88 rad s21 to vmax 5 1.75 rad0vmax

s21 for t 5 104 s, to vmax 5 1.60 rad s21 for t 5 3 3
104 s, and to vmax 5 1.47 rad s21 for t 5 105 s. Oscil-
lations result in a faster decrease of the spectral maxi-
mum frequency. The period of oscillation (for the used
values) does not significantly effect the general tenden-
cy. In the presence of oscillations the spectral maximum
frequency decreases from its initial value to vmax 5 1.60
rad s21 for t 5 104 s, to vmax 5 1.43 rad s21 for t 5 3
3 104 s, and to vmax 5 1.30 rad s21 for t 5 105 s.

As soon as the spectral maximum frequency is the
most conservative parameter, comparison of these re-
sults show the essential influence of oscillations on the
nonlinear spectrum evolution speed. In this case the
average speed of spectral maximum displacement is in-
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FIG. 4. Frequency evolution of spectrum maximum vmax determined by nonlinear energy transfer
with different period quasi oscillations: 1 (1) without oscillations (approximation vmax ;
3.73t20.082); 2 (#) 10-min oscillation period (approximation vmax ; 3.01t20.0724); 3 (n) 20-min
oscillation period (approximation vmax ; 3.39t20.085); and 4 (v) 40-min oscillation period (ap-
proximation vmax ; 3.51t20.0875).

creased more than threefold. The numerical simulations
show that the average velocity of the spectral maximum
displacement depends directly on the quasi-oscillation
amplitude of the spectral maximum.

6. Parameterization of the quasioscillation
influence on the nonlinear energy transfer

Wind wave mathematical models produce the ap-
proximation of frequency–angular spectrum averaged
by a period of the order t 4. In this case spectral vari-
ations appearing at smaller time periods t 3 are not taken
into consideration. There is a problem of adequate con-
sideration of the quasi-oscillation effect and parame-
terization of its corresponding contribution to source
functions in mathematical models describing the for-
mation of the spectral structure of wind waves.

It is important to point out that fluctuations of the wind
wave field, observed in the quasi-stationary state interval,
result in significant changes of the spectral form, its
peakedness, and wave steepness. That is why local var-
iations of the nonlinear energy fransfer appear in the wave
spectrum. There is a cubic proportion between the non-

linear transfer and the spectral density. Only a double
spectral density increase within its frequency maximum
range is able to increase the nonlinear transfer intensity
by almost an order of magnitude. The periodic changes
of nonlinear energy transfer occur within the quasi-cyclic
alterations of its peakedness. When the peakedness within
the periods becomes larger in comparison with its average
value, the intensity of the nonlinear energy transfer in-
creases. When the peakedness values are small, the non-
linear transfer decreases.

Now an average analytical estimate of the nonlinear
energy transfer in the cyclically changed peakedness is
to be obtained. According to (3), the first estimation of
the nonlinear transfer value is evaluated as Gnl(S) ;

/g4. It should be noted that more accurate nu-11 3v Smax max

merical simulations (see Fig. 3) carried out for the spec-
trum (1) show that Gnl is proportional to rather than2Smax

to as considered by Lavrenov (1999). Assuming3Smax

that the maximum frequency vmax does not change with-
in one cycle and the spectral peak value changes as
Smax(t) ; gm sin(2pt/t ) , integration of the nonlinear transfer
value within one quasi-oscillation period produces the
average as follows:
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FIG. 5. Proportion between the function F and parameter m for
different values of average spectrum peakness of g. 1 (#)—g 5 1.0;
2 (n)—g 5 3.3; 3 (V)—g 5 7.0; 4 (1)—g 5 10.0.

t1 ˜^G & 5 G (S(t)) dt 5 G I (p), (7)nl E nl nl 0t 0

where G̃nl is a nonlinear transfer without quasi oscil-
lations (m 5 0), I0 is a modified Bessel function of first
order, and the parameter p is determined as p 5 2m
ln(g). Assuming that m 5 1.0 and g 5 3.3, it is possible
to derive p ø 2.39 (i.e., p . 1). The Bessel function
(7) is estimated by the following the asymptotic formula
(AS USSR 1954):

p 2 2 2e 1 1 · 3
I (p) ø 1 1 1 1 · · · . (8)0 21 21!8p 2!(8p)Ï2pp

For specific parameter values I0 ø 3.05 can be ob-
tained. It can be pointed out that the spectral mean over
the period for quasi oscillations determined as (1) differs
from its corresponding value computed for the ‘‘no os-
cillation’’ case (m 5 0). The mean spectrum for the
same period is equal to

^S& 5 S̃I0(p/2), (9)

where S̃ is the spectral value without quasi oscillations
(m 5 0). In (9) the factor is equal to I0(p/2) ø 1.38. If
the nonlinear energy transfer for mean spectrum is re-
calculated, the value is increased up to a factor of 1.92.
It is 1.59 times less than the nonlinear energy transfer
with quasi oscillations.

Thus, it can be concluded that the averaged nonlinear
energy transfer within the quasi-oscillation period is es-
sentially greater than the value for the average spectrum
of the same period of time. An intensive energy flux
toward the low-frequency spectral range produces a
larger displacement of the spectral maximum frequency
toward the low-frequency range.

A simplified approximation of the relative increase
of nonlinear energy transfer due to quasi oscillations
can be derived from the ratios (8) and (9):

^Gnl& ø F(p)Gnl(^S&), (10)

where

I (p)0F(p) 5 , p 5 2m ln(g).
2I (p /2)0

As a first approximation it is possible to assume that
the relative increase of nonlinear energy transfer does
not depend on the quasi-oscillation period but is gov-
erned by the oscillation amplitude of the spectral max-
imum m and the average spectrum peakedness g. Here
F as a function of m for various values of the parameter
g is presented in Fig. 5. The function F increases mono-
tonically with growing m and parameter g. The value
of F is equal to 1.0 for g 5 1.0.

As soon as the peakedness spectral parameter g $ 1
decreases with developing waves (Babanin and Soloviev
1998) the JONSWAP spectrum for unlimited fetch X
transforms to the Pierson–Moskowitz spectrum for g 5
1. The effect of quasi oscillation becomes smaller for

the developed wind sea. At the wind wave initial de-
velopment the quasi oscillation strongly influences the
nonlinear evolution.

7. Conclusions

Wind waves are a random, stochastic hydrodynamic
process. To simplify the wind wave study a quasi-sta-
tionary state interval (on the order of 20 min) was taken
(Davidan et al. 1978). The main statistical wave param-
eters are traditionally considered to remain approxi-
mately constant. However, investigations performed
during recent decades show that the dispersion and spec-
trum of the wave process change significantly within
this interval. It is important to note that these variations
are larger than sample variability.

In the preset study numerical simulations of the en-
ergy balance equation are carried out to estimate the
influence of the wind wave parameter fluctuation on the
nonlinear spectrum evolution. The nonlinear energy
transfer within the wave spectrum is calculated using a
numerical integrating method of highest accuracy. Re-
sults of numerical simulations reveal that the wind wave
parameter fluctuation produces a significant increasing
effect on the nonlinear wave spectral evolution. Its con-
tribution at the initial stage of wind wave development
is most significant. The effect of quasi oscillation be-
comes smaller for a fully developed wind sea.

The discontinuous character of the nonlinear evolution
of the spectral maximum frequency with oscillations (see
Fig. 4) shows that quasi oscillations can be a starting
mechanism of the low-frequency spectral evolution.
However, it does not operate within each quasioscillation
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period, but only at its certain moment. It takes place when
the nonlinear spectral evolution has developed enough
and changed the spectrum in such a way that it shifts the
spectral maximum frequency to another level.

The four-wave energy transfer within the spectrum is
a nonlinear mechanism depending on the cube of the
spectral density, contrary to the wave energy input by
the wind, or quasi-linear wave dissipation (Komen et al.
1994). Therefore the wind wave models usually under-
estimate the contribution of this mechanism to wave spec-
tral structure development. The nonlinear energy transfer
computed for the averaged spectrum is much less than
the same total value for the spectrum with quasi oscil-
lations. The present study proposes a parametrization that
allows one to take the effect of quasi oscillations into
account in the spectral models of wind waves.
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APPENDIX

Optimal Algorithm of the Nonlinear Energy
Transfer Computation

The integral of the nonlinear energy transfer uses the
Webb form (1978) of the core function:

2 2pg D (k, k , k , k )1 2 3T(k, k , k , k ) 5 , (A1)1 2 3 24r vv v v1 2 3

where

2 2(v 1 v ) (kk 2 kk )(k k 2 k k ) (v 2 v ) (kk 1 kk )(k k 1 k k )1 1 1 2 3 2 3 2 2 2 1 3 1 3D(k, k , k , k ) 5 2 11 2 3 2 2[ g|k 1 k | 2 (v 1 v ) g|k 2 k | 2 (v 2 v )1 1 2 2

2(v 2 v ) (kk 1 kk )(k k 1 k k ) 13 3 3 1 2 1 21 1 [(kk )(k k ) 1 (kk )(k k ) 1 (kk )(k k )]1 2 3 2 1 3 3 1 22 ]g|k 2 k | 2 (v 2 v ) 23 3

1
4 4 42 [(kk 1 k k)(v 1 v ) 2 (kk 1 k k )(v 2 v ) 2 (kk 1 k k )(v 2 v ) ]1 2 1 1 1 3 2 3 1 2 324g

1 5
2 2 21 (v 1 v ) (v 2 v ) (v 2 v ) (k 1 k 1 k 1 k ) 1 kk k k .1 2 3 1 2 3 1 2 33g 2

Using the symmetry of variables k2 and k3 the integral
(3) can be written as

dk dk dk 5 2 dk dk dk .E 1 EE 2 3 E 1 EE 2 3

|k |#|k |2 3

(A2)

The first integration of (A2) is carried out by k3. Trans-
forming the variables from ki 5 {kxi, kyi} to ui and to
angles ui 5 arctg(kyi/kxi) and from the wave action N(k)
to the wave energy S(v, u) the expression N(k) 5
(v2/2g4)S(v, u) is obtained.

The integral (A2) is written in the form

d(v 1 v 2 v 2 v )1 2 34 4 4 4G (v, u) 5 2 T{SS (S v 1 S v ) 2 S S (Sv 1 S v )} 3 dv du dv du . (A3)nl EEEE 1 2 3 3 2 2 3 1 1 2 2 1 14 4 4 4v v v v1 2 3

Using d(v) function the (A3) integration by u2 gives the following expression:

` p

4 4 4 4G (v, u) 5 4 T{SS (S v 1 S v ) 2 S S (Sv 1 S v )}Onl E E E 1 2 3 3 2 2 3 1 1
u2 0 2p v2

Q(v , v , u )1 2 13 dv du dv , (A4)2 1 1
2 2 4v v v Ïv [(k 1 v ) 2 v ]ÏB(v , v , u )1 2 3 a a 3 2 1 2 1
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FIG. A1. Function B21/2(v2) for different value parameter «a 5
2ka/ .2va

where

v 5 v 1 v; v 5 v 2 v ;a 1 2 a 2

2 4 4 2 2k 5 [v 1 v 1 2v v cos(u 2 u )];a 1 1 1

Q(v , v , u ) 5 Q[2k 2 v cos(u 2 u )]1 2 1 a a 2 a

is the Heaviside function:
2 4 4 2u 5 u 6 arccos[(k 1 v 2 v )/(2k v )];2 a a 2 3 a 2

2 4 4 2u 5 u 7 arccos[(k 1 v 2 v )/(2k v )];3 a a 3 2 a 3

2 2u 5 arccos[(v cosu 1 v cosu )/k ]a 1 1 a

3 sign(k 1 k ).1y y

Function B 5 B(v1, v2, u1) is written as

B 5 [v2 2 va /2 1 ka /(2va)]

3 [(v2 2 va /2)2 2 (ka /2 2 /4)].2va (A5)

It should be noted that the function B 5 B(v1, v2, u1)
can be equal to zero at some points (see Fig. A1). It
produces the difficulty to integrate (A4) numerically.
The most optimal algorithm of integration, which dif-
ferentiate the present method from others (Hasselmann
and Hasselmann 1981; Masuda 1980; Komatsu and Ma-
suda 1996; Polnikov 1989; Resio and Perrie 1991) can
be based on utilization of the Jacobi weight functions
(Krylov and Shulgina 1966).

In case «a . 1 (where «a 5 2ka/ ) the integration2va

range is

1 1
v (1 2 « /2) # v # v (1 2 Ï« 2 1 ).a a 2 a a2 2

There are two singularities at the both integration range
boundary points (Fig. A1). Using the Jacobi weight
functions the integration by s2 (in case «a . 1) can
approximated as

b f (v , v , u )1 2 1 1F̃ (v , u ) 5 dv1 1 1 E 2Ï(v 2 a)(b 2 v )a 2 2

np
5 f (v , v , u ), (A6)O 1 2 j 1 1n j51

where f 1(v2, v1, u1) is a function without singularity;

a 5 v /2 2 k /(2v ); b 5 v (1 2 Ï« 2 1 )/2;a a a a a

v 5 (b 1 a)/2 1 (b 2 a)/2 cos[(2j 2 1)p /2/n].2 j

In case «a , 1 the range of integration is va(1 21
2

«a/2) # v2 , va. At the integration range boundary1
2

[i.e., v2 5 (1 2 «a/2)] the function B 5 B(v1, v2, u1)1
2

becomes zero (Fig. A1). In this case the following for-
mula can be applied:

d f (v , v , u )2 2 1 1F̃ (v , u ) 5 dv2 1 1 E 2Ïv 2 aa 2

n

5 Ïd 2 a A f (v , v , u ), (A7)O j 2 2 j 1 1
j51

where Aj are weight coefficients, v2j are function or-
dinates, and f 2(v2, v1, u1) is a function without sin-
gularity at the point v2 5 a. The numerical solution
shows (Fig. A2) that it is enough to take n 5 7 to obtain
a good result with a relative error less than 1%–2%. For
many practical computation it is enough to use n 5 4.

The following integration is carried out with respect
to u1 assuming that the function F̃2(v1, u1) is periodical.
It is known (Krylov and Shulgina 1966) that the nu-
merical algorithm of the highest precision integration is
an ordinary rectangular method:

p

˜ ˜J(v ) 5 F(v , u ) du1 E 1 1 1

2p

m212p ˜5 F(v , u 1 j), (A8)O 1 1im i50

where u1i 5 (2p/m)i. In the case where j 5 p/(2m) or
j 5 3p/(2m), the expression (A8) is valid for Cm(u) 5
Tm21(u) 1 am cos(mu), where Tm21 is a trigonometrical
polynomial with the power of m 2 1. To get results
with error less than 1%–2%, a sufficiently large number
of ordinates, that is, m $ 90 is to be taken.

The problem is that the latter integration on u1 is not
optimal. A large number of ordinates should be used
because the function F̃(v1, u1) includes singulaties as
well. The function F̃(v1, u1) becomes infinite in case
where «a 5 2ka/ 5 1. The most effective integration2va

can be achieved by transforming the variables. In this
case the Jacobi functions can be used to obtain the cu-
bature formulas. Thus function (A8) can be written
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FIG. A2. Calculation of nonlinear energy transfer function using a different number of grid
points n in (A5) and (A6): 1) n 5 2; 2) n 5 3; 3) n 5 4; 4) n 5 5; 5) n 5 7; 6) n 5 8.

p

˜ ˜J(v ) 5 F(v , u ) du1 E 1 1 1

2p

p

˜5 F̃(v , u )/Ï|cos(u 2 u ) 2 A| du , (A9)E 1 1 1 1

2p

where

˜˜̃F 5 FÏ|cos(u 2 u ) 2 A| ,1

4 4 4 2 2A 5 [(v 1 v ) 2 4(v 1 v )]/(8v v ).1 1 1

The function A # 1 has its maximum value at the point
v 5 va.

Introducing a new variable x 5 cos(u 2 u1), the in-
tegral (A9) can be presented in the following form:

1 1
6˜ ˜J(v ) 5 F̃(v , u ) dx,O1 E 1 1

26u Ï1 2 x Ï|A 2 x|1 21

(A10)

where: 5 u 6 arccos(x).6u1

The function is smooth enough. The integral˜̃F(v , x)1

(A10) includes the same singularities as the first order
elliptical integral. Numerical results show that it is
enough to use six to eight ordinates to obtain good ac-
curacy.
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FIG. A3. Numerical results of one-dimensional nonlinear energy transfer function Gnl(v) for JONSWAP spectrum for two different value
of spectrum peakedness g 5 1 (a) and 3.3 (b), correspondingly. 1) According to paper (K. Hasselmann and S. Hasselmann, 1981); 2) by
present algorithm.

The last integration by v1 can be carried out effec-
tively taking into account that the function J̃(v1) is ap-
proximated as J̃(v1) ; for a large values of v1, and26v1

as J̃(v1) ; for small values v1. It allows one to15425v1

use the traditional cubature method of integration. It also
allows one to use the traditional cubature method of
integrating (Lavrenov, 1998). It should be noted that to
speed up the procedure of computation, the part of func-
tion in (A4) that does not depend on the spectral value
is computed using the symmetry quantity (Hasselmann
and Hasselmann 1981).

As an example Figs. A3a and A3b present the nu-
merical results of one-dimensional nonlinear energy
transfer Gnl(v) for JONSWAP spectrum for two differ-
ent value of spectrum peakedness: g 5 1 and 3.3, cor-
respondingly. For comparison the results of Hasselmann
and Hasselmann (1981) are presented as well to show
the stability of our algorithm.

It should be noted that the main advantage of the
algorithm is that integration is based on a relatively
smaller number of grid points compared to the usual
methods. It speeds up the computation at least by two
orders (Lavrenov 1998).
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