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[1] During summer 2006 eddy correlation CO2 fluxes were
measured in the Greenland Sea using a novel system set‐up
with two shrouded LICOR‐7500 detectors. One detector
was used exclusively to determine, and allow the removal
of, the bias on CO2 fluxes due to sensor motion. A
recently published correction method for the CO2‐H2O
cross‐correlation was applied to the data set. We show that
even with shrouded sensors the data require significant
correction due to this cross‐correlation. This correction
adjusts the average CO2 flux by an order of magnitude from
−6.7 × 10−2 mol m−2 day−1 to −0.61 × 10−2 mol m−2 day−1,
making the corrected fluxes comparable to those calculated
using established parameterizations for transfer velocity.
Citation: Lauvset, S. K., W. R. McGillis, L. Bariteau, C. W.
Fairall, T. Johannessen, A. Olsen, and C. J. Zappa (2011), Direct
measurements of CO2 flux in the Greenland Sea, Geophys. Res.
Lett., 38, L12603, doi:10.1029/2011GL047722.

1. Introduction

[2] Because the atmospheric CO2 concentration is rising
due to the burning of fossil fuels, land use changes, and
cement production it is important to accurately quantify the
size of the total ocean carbon sink and its variations with
time. For this we need to know the air‐sea CO2 flux.
Because it is difficult to measure the air‐sea CO2 flux (FCO2)
directly, global estimates mostly rely on calculations of the
form

FCO2 ¼ kSDfCO2 ð1Þ

where DfCO2 is the difference between the fugacity of CO2

in the sea (fCO2
sea) and in the air (fCO2

air). S is the gas sol-
ubility, and k is an estimate of the gas transfer velocity
usually parameterized as a function of wind speed at a mean
height of 10 m above the water surface for neutral atmo-
spheric stability (U10N). We define FCO2 to be negative into
the ocean. The most widely used parameterizations of k
have been derived using tracer release experiments [Ho et al.,
2006; Liss and Merlivat, 1986; Nightingale et al., 2000],

wind‐wave tank experiments [Liss and Merlivat, 1986], and
radiocarbon invasion rates [Naegler et al., 2006; Sweeney
et al., 2007; Wanninkhof, 1992]. Yet, none of these cap-
ture the complete range of processes relevant to air‐sea gas
exchange, nor are they consistent. To resolve these issues
we need direct measurements of the air‐sea CO2 flux.
[3] Direct measurements of the FCO2 can be obtained

using the eddy correlation (EC) method [McGillis et al.,
2001a, 2004; Wanninkhof and McGillis, 1999], but several
difficulties with the EC method still exist after a decade of
significant technical advances. First among these is the con-
siderable greater magnitude of observed EC FCO2 compared
to bulk parameterization or tracer derived fluxes [Broecker
et al., 1986; Kondo and Tsukamoto, 2007; Prytherch et al.,
2010], resulting in few published data sets of FCO2 from
EC experiments. Recent research suggests that the mea-
surements are too high due to a strong contamination of the
CO2 signal by water vapor, in addition to sensor motion
contamination and dilution effects.
[4] In this paper we will present the first data set of EC

FCO2 measured in the Greenland Sea featuring unique
environmental conditions, and using a novel instrument
set‐up. We also use this data set to test the suitability of the
PKT correction method [Prytherch et al., 2010] for data sets
measured in such environmental conditions and with this
instrument set‐up.

2. Experiment and Methods

[5] The data were obtained on the Greenland Sea cruise
58GS20060721 [Olsen andOmar, 2007], carried out onboard
the research vessel G.O. Sars between July 21 and August 3,
2006. The cruise started in Akureyri, Iceland and ended in
Tromsø, Norway. The flux measurement system was set up
on a mast installed at the bow of the ship ∼14.5 m above the
sea surface. Two LICOR‐7500 open path non‐dispersive
infrared (NDIR) detectors, a 3D Gill Sonic anemometer, a
Motionpak, and a compass were collocated on top of the
ship mast. The NDIR detectors were mounted ∼1 m from
the sonic anemometer and motion system, and both were
shrouded in rigid plastic housings. The shrouds prevent loss
of data due to severe weather conditions and icing, leading
to a more robust data set. The instrument set‐up is sche-
matically shown in Figure 1. Air entered the first sensor,
hereafter referred to as ‘sample’, at 570 l min−1 and passed
through a mixing chamber connected to a high volume
pump; the intake of the second sensor, hereafter referred to
as ‘null’, is taken from the mixing chamber using a second
flow path at 200 ml min−1. The sensors were mounted next
to each other with the long axes aligned vertically so that
they experienced the same motion, and the rigid fit in the
shroud prevented flexing of the support structures of the
detectors thus reducing the motion artifact. On subsequent
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deployments it has been found that the mixing chamber acts
like a low pass filter with a time constant of 300 s, and by
using Equation 11 of Horst [1997] we calculate that using
this set up the null sensor measurement fluctuations are
reduced by ∼97%. The remaining signal is thus essentially
due to the motion alone. Motion contamination was first
described by Fairall et al. [2000] and previously correction
methods for close‐path systems based on covariance with a
calibration gas [McGillis et al., 2001b] and a second iden-
tical null sensor with a sealed input [McGillis et al., 2004]
have been used, and correlation with measured ship motion
variables [Yelland et al., 2009; Miller et al., 2010] for open‐
path systems which need less correction. We assume that the
motion artifact is the same for both sensors and subtract this
from the sample signal on a point‐by‐point basis.
[6] The ship was equipped with an underway fCO2 sys-

tem [Pierrot et al., 2009] used to measure the fCO2 in both
the surface ocean and the atmosphere, the sea surface tem-
perature (SST) and the sea surface salinity (SSS). This
system is calibrated every 3–4 hours using three referenced
standard gases obtained from the National Oceanographic
and Atmospheric Administration Earth System Research
Laboratory (NOAA/ESRL). Navigation data were retrieved
from the ship’s measurement system.
[7] Collected data were processed in 10‐minute blocks and

fluxes were obtained by correlating the motion‐corrected
vertical velocity with the fast fluctuations of interest (CO2,
temperature, H2O). The short averaging time does not pres-
ent a problem since the portions of fluxes not resolved at
low frequency represent only a small contribution to the
total covariance. For details concerning how the high fre-
quency wind speed measurements were corrected for the
ship’s movement see Edson et al. [1998]. Only data with
relative wind vectors ±90° to bow‐on were used. Data

blocks where the standard deviation of ship speed and ship
heading were greater than 0.2 m s−1 and 5° respectively
were removed, as were data with large motion corrections.
The flow tilt calculated from the sonic anemometer was also
used to roughly account for flow distortion effects [Fairall
et al., 1997]. Because of problems with the NDIR sensors
and the ship compass during the first half of the cruise, the
results of this study are mostly based on the last half of the
cruise, east of ∼7°W. Out of the total 1896 10‐minute
averages, 652 passed all quality controls.
[8] Both latent heat and CO2 fluxes were computed from

the sample NDIR sensor, while the sensible heat flux was
computed from vertical velocity–sonic temperature covari-
ance. The humidity contribution to sonic temperature was
removed using the bulk latent heat flux using Equation 8 of
Schotanus et al. [1983]. We use the bulk algorithm because
the sonic anemometer produce more reliable timeseries than
fast humidity sensors and because using the bulk algorithm
eliminates any effect of spatial separation of the humidity
sensor and the sonic anemometer. The effects of humidity
and temperature on the CO2 measurements were removed
prior to calculating the flux by converting the measured
molar densities into mixing ratios using the gas law and the
high frequency temperature measurements and air pressure
(which is of minor importance). The shroud on the sample
sensor acts like a low pass filter with a time constant of 0.3 s
which using Equation 11 of Horst [1997] gives a signal
attenuation of ∼5%. This error in the temperature dilution
correction due to our set up is within acceptable boundaries.
The shrouded set‐up is designed to reduce the sensor con-
tamination from rain and heavy sea spray, but the intake is
not filtered. As a consequence a larger than expected CO2–
H2O cross‐correlation, which is most likely due to hygro-
scopic particles on the optical surfaces, was observed also
after correcting for the dilution effect. Additional correction
was therefore made using the PKT method [Prytherch
et al., 2010]. Consistent with subsequent deployments
we see an increase in the magnitude of the correction with
time, suggesting that contamination is the reason behind the
cross‐correlation.

3. Results and Discussion

[9] The average EC FCO2 calculated from the pre‐PKT
data is −6.7 × 10−2 mol m−2 day−1, with a standard deviation
of 0.27 mol m−2 day−1. The raw CO2 flux has considerable
scatter, but there is a statistically significant (>95%) nega-
tive correlation with latent heat flux (FH2O, Figure 2a) which
indicates that the PKT correction is warranted. The average
post‐PKT FCO2 is −0.61 × 10−2 mol m−2 day−1, with a
standard deviation of 0.11 mol m−2 day−1. This is compa-
rable to the CO2 flux calculated using Wanninkhof ’s [1992]
k‐U10N parameterization (−0.56 × 10−2 mol m−2 day−1). The
post‐PKT FCO2 still have considerable scatter, especially
when the FH2O is low, but there is no longer a negative cor-
relation (Figure 2b). The post‐PKT FCO2 is small (Figure 2b),
but this is not unexpected given the calm wind conditions
(Figure 3). The “flux” measured by the null sensor is on
average −8.8 × 10−4 mol m−2 day−1 with a standard devia-
tion of 0.018 mol m−2 day−1 (Figure 2c). Removing the null
“flux” removes scatter from the sample flux data reducing
the standard deviation from 0.23 to 0.11. The difference
between flux data before and after removing the null “flux”

Figure 1. Schematic of the instrument set‐up onboard R/V
G.O. Sars July 21 – August 3, 2006.
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was analysed using a one‐way ANOVA test and found to be
statistically significant with >90% confidence. This shows
that even under very calm ocean conditions having a null
sensor to remove the bias from motion is valuable.
[10] The DfCO2 was large throughout the cruise but there

are two distinct regimes: the cold, fresh Polar waters in the
west with on average −119.5 ± 13 (1s) matm; and the
warmer and more saline Atlantic waters in the east with on
average −76.5 ± 12 (1s) matm (Figure 3b). This implies a
large negative flux of CO2 into the sea. The wind speed
during the cruise ranged from 0.5 m s−1 to 10.8 m s−1 with a
mean of 4.5 ± 1.9 (1s) m s−1 (Figure 3c). 90% of all wind
speed recorded were less than 7 m s−1 and 15% less than
2.5 m s−1 so we have a quite large data set of FCO2 at very
low wind speeds. No previously published EC experiment
has reported significant amounts of data at wind speeds less
than 2.5 m s−1 so the Greenland Sea experiment is in this
respect unique.
[11] Transfer velocity (k) was calculated using equation (1)

and bin averaged in 2 m s−1 U10N intervals (Figure 4). The
pre‐PKT fluxes yield a very strong non‐linear relationship
in k‐U10N, while the corrected fluxes imply a k‐U10N rela-
tionship in the same range as established parameterizations.
There are, however, significantly higher k at very low wind
speeds than has been reported previously, and the two first
bin averages in Figure 4 are significantly higher than
Wanninkhof ’s [1992] line (grey). The second is biased high
due to three outliers in this data subset, while the first have
very low FH2O which could lead to the PKT correction not

Figure 3. (a) The temporal CO2 flux with the zero line
indicated in grey, (b) the undersaturation (DfCO2), (c) the
sonic wind speed, (d) the surface ocean temperature, and
(e) the air temperature during the cruise.

Figure 4. (top) The k bin‐averaged in 2 m s−1 wind speed
intervals plotted against U10N. The number of data points in
each bin is 23, 313, 168, 40, 25, and 7 respectively. See the
legend for further details. The error bars show the standard
error of the mean. (bottom) Close‐up of the post‐PKT k.
The thin black lines show the 95% confidence interval (esti-
mated as plus or minus two times the standard error of the
mean).

Figure 2. Eddy correlation CO2 flux as a function of latent
heat flux before and after the PKT correction. Two outliers
are not shown on plot a (1.7 and −6.3 mol m−2 day−1) and
one on plot b (−4.8 mol m−2 day−1) to avoid the variability
appearing smaller. (a) CO2 flux from the sample LICOR
before PKT correction, (b) CO2 flux from the sample LICOR
after PKT correction, also shown is a map of the cruise track
covered between July 21, 2006 and August 3, 2006 where
the red dot indicates 7°W (c) “flux” from the null LICOR.
Note that this subplot has a different scale on the y‐axis.
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working optimally [Prytherch et al., 2010]. There is no
significant diurnal cycle in the FCO2 and the buoyancy
fluxes so diurnal processes, like nighttime mixed layer
deepening and surface renewal, cannot explain the elevated
k at very low wind speeds like it could in the equatorial
Pacific [McGillis et al., 2004]. The dramatic increase in the
PKT correction with wind speed, which is also seen in
unpublished flux data from the Southern Ocean Gas
Exchange Experiment, is likely due to there being only a
few data points at winds greater than 8 m s−1, which all have
significantly higher FH2O than the data at lower winds. This
thus leads to the humidity dependent PKT correction being
larger. The variability in the corrected data is quite large,
and our data set is too small and the wind speed range too
narrow to either confirm previous or derive a new k‐U10N

relationship.

4. Conclusions

[12] Application of the PKT correction method to
observations of EC CO2 flux from the Greenland Sea lowers
EC flux data by an order of magnitude, thus making the
corrected direct fluxes comparable to bulk fluxes determined
using established k‐U10N parameterizations, at least within
the narrow range of wind speeds we encountered at this
cruise. However, the combined high variability and limited
range in wind speed means that the results from this data set
cannot confirm established parameterizations. However,
given the magnitude of the correction needed for these data
despite using shrouded, and thus somewhat weatherproofed,
sensors, it is clear that we need a more dedicated effort to
understand the mechanisms causing the large CO2‐H2O
cross‐correlation. Presented in this study are data at wind
speeds less than 2.5 m s−1, and at the overall low wind
speeds experienced during this cruise the flux of CO2 is
small and the variability is large. This despite the large
DfCO2 which suggests that the potential for carbon uptake
is very large, but apparently not utilized in the summer due
to low wind speeds. Measurements in fall and winter are
obviously needed in order to get a robust estimate of the size
of the Greenland Sea carbon sink.
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