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ABSTRACT

We investigate the reflection and nonlinear interaction between the first and second harmonics of a two-
dimensional Boussinesq wavetrain. Effects of topography are included, the depth departing from a constant
in a finite region. It is found that topography can speed up or retard energy transfer between first and
second haimonics. The reflection coefficient in the present context is significantly different from the one ob-
tained by using linear theory. This is partly due to partitioning of energy between harmonics.

1. Introduction

We propose to investigate theoretically the effects
of bottom topography on moderate-amplitude shallow
water waves. This problem is relevant to the under-
standing of the distribution of wave energy in near-
shore processes.

A distinctive character of these waves as they enter
shallow water is the generation of secondary crests.
Mason and Keulegan (1944) observed that multiple
secondary crests are generated when long waves move
over reefs modeled by step-like topography; the
criteria for their formation is

a/B>4, (1.1)

where « and B are, respectively, defined as a¢/H and
H/\, where a is the wave amplitude, \ the wavelength
and H the depth over the reef. This relation was verified
by Horitkawa and Wiegel (1959) who also observed
that the formation of secondary waves is a character-
istic of shallow water waves rather than the shape of
the bottom. Experiments of Goda (1967) further
strengthened this observation. Recently Mei and
Unlilata (1972) studied the harmonic generation of
shallow water waves over flat bottom and showed that
the appropriate criteria should be «/8? greater than
some constant.

Williams (1964) investigated the passage of a deep-
water wavetrain onto a thin submerged horizontal
plate. He observed the formation of higher harmonics
as the wave moved over that obstacle. In accord with
the above criteria, the second and third harmonic
content increases as the depth over the plate is de-
creased, while the wave amplitude of the fundamental
1s held fixed. For relatively shallow depths, the first
and second harmonics were of comparable magnitude.

! Contribution No. 62 of the Geophysical Iluid Dynamics In-
stitute, Ilorida State University.

Furthermore, reflections were significant. Byrne’s
(1969) field observations of induced multiple gravity
waves generated by submerged offshore bars lying
parallel to the shore show similar characteristics: as the
tide increased the depth over the crest of the bar, he
noticed that only the large-amplitude waves would
generate secondary crests. From Byrne’s oscillograph
traces, there was strong evidence of reflection. Fourier
decomposition of his surface traces indicates that the
energy content of the first and second harmonics are
dominant, though higher harmonics are present.

From these observations it appears that reflection
is important when topography is present. We shall
investigate the reflection and nonlinear interaction
between the first and second harmonics of a moderate-
amplitude, two-dimensional shallow water wavetrain
over a scattering region 0<Z<Z, in which the depth
varies with Z. For simplicity we will neglect third and
higher harmonics. Therefore, our results are valid
only in cases for which higher harmonics are negligible.

2. Formulation

We assume the bottom topography to have hori-
zontal characteristic scales comparable to or smaller
than those associated with the waves. The presence of
this topography could induce reflection.

Consider a two-dimensional wavetrain and let (&,2)
be the spatial coordinates where the undisturbed free
surface lies at 2=0, and Z= —/A (%) denotes the bottom.
Let =0 be the shoreline and measure Z positive
seaward. In the Boussinesq approximation, the moder-
ate-amplitude long-wave equations are

h? hhzs

<7/+g$:£+_<7<75=3~<7w+7z/?fg‘m+——2—qt, (2.1)

FHLE+R)F):=0, (2.2)
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where _ a 9 ]
1 ¢ ) — =t g
g=——— 4(%,2,t)dz (2.3) dx dx 90X
(h+$) J 5 . , (212

is the depth-averaged horizontal velocity and { is the
free surface displacement. This set of equations can
be obtained if one averages over depth the equations
of shallow water waves as derived by Mei and Méhanté
[1966; Eqs (30), (31)]; the approximations behind
these equations are discussed in that paper. Some gen-
eral discussion about these equations can also be found
in Hoogstraten (1968).
Let us scale the dimensional quantities as

x=3/H, h=h/H, ¢=F/H
t=t/(H/g)}, q=q/a(g/H)}, ’

where H is a characteristic depth. The nondimensional
equations read

(2.4)

h? /7
Ql+§‘x+a(IQau=§_Q1zt+hhxqm+'—2‘—‘q1, (25)

¢t [ +4)g =0, (2.6)

where

a=a/HK1. (2.7)

It can be shown [see Mei and Unliata (1972) for the
special case of A=constant] that solution of these
equations obtained by a straightforward expansion in
a is inadequate because the second order terms grow
linearly and soon become of the same magnitude as
the first order terms. Since we have not yet used the
wavelength A in our scaling an additional horizontal
variable must be introduced; thus, we write

x=%/\=Bx where B=H/\. (2.8)
The problem then involves a and 8; for simplicity, we
will only look at the class of waves for which

O(@)=0(8).

From Mason and Keulegan’s (1944) criterion for the
“disintegration” of a wavetrain we deduce that the
above range of parameters puts us in the regime in
which growth of second harmonics is possible. We will
further assume that the bottom topography could
induce effects comparable in size to the nonlinearities,
i.e., we write

(2.9)

b (2, X) =14a f(x,X), (2.10)

where the departures of /# from a flat surface are O(e);
f(x,X) is an O(1) function. In order to further simplify
the mathematics we will take

f(®,X)=0 for x<O0, (2.11)

x> Ko

Now we introduce a two-scale expansion, 3.,

0= X D +ag® (e X )+
S"=§‘(1)(x)th>+a§‘(2)<x)Xyl)+ e

and substitute the above into (2.5) and (2.6). Equating
like powers of a, we obtain the equations for the first
two orders as

(1)+§<1> N (1)—01
o Tis T f (2.13)
W
s“t +Qz =0
@, @ ® Iy W
gt +8e —3ez=—{x —¢W¢s +3}gxa
(1) [¢3) 1)
2 1
+3f9m+2met +fozt L. (214)

2) 2) 1 D 1 L [¢9]
g‘l +q:: =—gx *3‘1 g<)_§‘( )qz .

1
—f: = fgs )

Upon elimination of the free-surface displacements
{® and ¢, we find

9% 92 1 o¢
<___~____ >g<1>=0
atr 9x® 3 9x?91?

(62 o2 1 ot
a2 9x? 3 0x%9¢

(2.15)

>g<2> =G X))|  (216)

where
1 @€ 1) 1y
G, X ) = = ix+3qusxtgox — (¢ Vg )b (Vg D)2a
2 ® @ (1) (1)
+§fq:sztt +f:cgzl,t+'2‘fa:zgtt +(fq )xz- (217)

Because (2.15) and (2.16) have the same linear dif-
ferential operator, terms found in G may produce
resonance.

Field and experimental evidence suggest that the
leading order fields contain first and second harmonics.

Thus, we write
2 ¢y, (1
EW,gW)y =2 e V; (%X),Q @X)H* (2.18)
=1

where the asterisk denotes complex conjugation, wy is
(1)

the fundamental frequency, and we=2w;. Q; satisfies

w027
[—wj2—<1——>—:|(2,- —0;  (219)
3 /ox?
and if we write
) . R
¥, (6, X) = a;(X)etis-E by (X)eiiz,  (2.20)
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where a;, b; are the amplitudes of the incident and
reflected waves, we find from (2.13) that

0y @,X) = — (ws/ k) [a(X)eibiz —by( X )eikis],

Substituting (2.21) into (2.19), we get the dispersion
relation

(2.21)

D(wjk) =wp(14-k2/3)—k2=0. (2.22)

In the present normalization, O(w;)~0(%k;)<<1 for long
waves. When % is small, a plot of D{w,k)=0 in the
{(w,k) plane departs slightly from the straight line
w==~F. As a result, when ws="2w;,

=2k +AR, (2.23)

where Ak measures the deviation of the curve D{(w,k) =0
from the line w=*% at w="2w;=w,; Ak is a detuning or
mismatching factor. For small mismatch, near reso-
nance conditions occur; energy from the first harmonic
is readily transferred to the second harmonic. For
the higher harmonics, w;=jwi (723), we deduce
from (2.22) that the mismatching factor |k;— jki]
~ j(72—1)Ak/6. Thus, they are more strongly detuned
than the second harmonic and we are justified in
neglecting harmonics higher than the second. The
O(®) equations do not provide the equations for the
amplitudes a;(X), b;(X). These are found by removal
of secularities at the O(a). The forcing G (x,X,t) con-
tains exponentials with exponents =i(wjidkx);
i (wjkw, )i (k;£k)x] with 7, n=1, 2. Several
tones are produced by nonlinear mixing. The “danger-
ous” ones are those that are in near resonance with
the linear operator. We expand G (x,X,t) as

2
G(x;X;t) =Z eiw;th(x}X)_*_ *+ ] (224)
=1

where the dots denote remaining tones that do not
produce resonance. The G;{x,X) written in terms of
a;{X) and b;(X) are found in the Appendix. If we
assume that the bottom profile can be Fourier-de-
composed as

f@,X) =3 Fo(X)einlhiz, (2.25)

with F,=F_,* the solvability conditions for (2.16)
are that G; and G, must be orthogonal to exp(Z=ikix)
and exp(==i2kx), respectively, i.e.,

kl 2w {ky

o eE 4Gy (1, X ) dx =0, (2.26)
2w J 4

kl T/k1

_ eE2RGy (1, X )da=0. (2.27).
T Jo

We observe that Akx is an additional long scale corre-
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sponding to distances over which near-resonance con-
ditions have significant influence. This is treated on
equal footing with X as an independent variable.
From (2.26) and (2.27) we obtain four coupled non-
linear differential equations for the complex amplitudes
a; and b;(7=1,2). To O(Ak/k;) these are:

(le+i7(w1,k1; X)al—{—ié(wl, —'kl; X)b1

+iSiar*ageitr =0, (2.28)
61X+7:’Y (wl, —k1; X)b1+15 (wl,kl ) X)(Ll
—iSib*bee ks =0 (2.29)
asx 1y (woke; X)aotid(we, —ke; X)boe™ =052
+1Ssae~ ke =0, (2.30)
b2X+i’Y (wg, ——kg 5 X)bz-"la (wz,kg 5 X)@e'“’”
—i52b126mk£=0, (231)
where
,]731] (27 /1 jk1))+Xo
v (wiks; X) = ; @ (wj,k;; x,X)dx, (2.32)
™ Xo
[ k| [ @m/iikD+Xo
8(wj,ks; X) ::_2‘—“ Qlw;kj; ,X)
™ X0

Xexpli(sgnk,)j2kixJdx, (2.33)

for j=1,2. The quantities @, S; and S, are defined in
the Appendix. The meaning of the various terms and
the behavior of these equations will be discussed in
the next section by means of simple examples.

3. Examples

The effects of bottom topography are embedded in
the complex coefficients v(w;,k;; X) and &§(wjk;; X).
The former represents the influence of the bottom on
an unidirectional wavetrain whereas the latter pro-
vides the coupling and interaction between waves
traveling in opposite directions. In the absence of
8(wj,k;; X) the incident and reflected wavetrains are
uncoupled and may be analyzed independently. The
coefficients S;(7=1,2) provide the nonlinear inter-
actions between harmonics and are responsible for the
transfer of energy between the first and second har-
monics. Therefore, we must retain these terms if we
are to model the growth of second harmonics.

a. Example I

Here, the topography scale is assumed long com-
pared to the wave scale, i.e., take Fo(X) as the only
non-zero term in (2.25). Then

ki(3— 2w; %)

Y{wski; X) =
2(3~w;y

Fo(X) (3.1)

is real and

6(“’j;ki; X):'O’ (32)
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so that incident and reflected waves are uncoupled.
Since reflection is not important in this case we need
only consider an incident wavetrain. The governing
equations are

013*—ia7(w1,k1; x)al*—iaSle‘“’“alag*=0, (33)
(3.4)

where we reverted to x instead of X. We can write
these equations in a more convenient form if we define

(123—}—1'017 (wg,kg; x)ag—i—iaSge_i“"Iag =0,

a;=p; exp(i¢f)) ]2 1:27
0= —Akx—¢ot-2¢,

1 £f1 P2 ) (35)
() =——{ -, ——~>
(2aE}IN(SDY (S2)?
¢ =xaS1(2aS,E)*
where E is a constant of the motion:
p® pa?
E=<——~+———> . (3.6)
20151 20152 t=to

The real and imaginary part of (3.3), (3.4) become

du
— ==~y sinf, 3.7
di
dv
—=92sind, (3.8)
dt
dé
(—ZS;=AS+ AyFo(&) 4 (u?/v—2v) cosb, (3.9)
where
I=[aS51(2aS,E)t T
AS = —IAk ]
(3.10)

k2 3—'2(4)22 3—20)12
e |
2\ 3—w,? 3—w?
Egs. (3.7)-(3.9) with Ay=0 have been discussed by
Armstrong et al. (1962) in the context of nonlinear
optics and by Mei and Unliiata (1972) in the context
of harmonic generation of shallow water waves in the
absence of topography. The quantity / is a dimen-
sionless length; called the “‘interaction length” by
Armstrong. For AS=0, about 759, of the energy of
the first harmonic is transferred to the second harmonic
in a distance /.
For Ay=0, the salient features of the solution are:

(i) There exists a first integral of the motion expressing
the conservation of energy between the two harmonics,

wtt=1.
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(ii) AS is a measure of the phase mismatch. If |AS| 0
the energy will be transferred back and forth between
first and second harmonics and this oscillating transfer
of energy occurs over a characteristic length called
“beat length.” For |AS| =0, the beat length is infinite.
As |AS| increases the beat length as well as the maxi-
mum energy transferred to the second harmonic
decrease.

When topography is present we could rewrite (3.9) as

de
d~§=ASe;;(§‘)+ (u?/v—2v) cosb, (3.11)

where the effective AS is defined as
[44
ASur=AS+ AyFo(¢) ~ —-Akl[l ——F(,(;)], (3.12)
2

and depends upon the local depth. For a plane sloping
beach, |ASes| decreases for decreasing depth. There-
fore we expect the maximum amplitude of the second
harmonic, Vw.x, and the beat length to increase
monotonically so that at some location significant
energy Is transferred to the second harmonic. If higher
harmonics were included in {® and ¢®, energy may
also be transferred to these harmonics. We have assumed
these transfers to be small. The numerical integration
of (3.7)-(3.9) is in agreement with the above qualita-
tive description: for a beach of 0.159, slope in the
region 0<{ <&, AS=0.5 and Ay=0.252, one finds that
the second harmonic intensity |VZuax/U%((0)] at
(§—¢o)=6 (i.e., six interaction lengths shoreward of
the foot of the slope) to be about 8%, greater
that for the flat bottom case. This increase is even
higher for steeper slopes. A plot of |VZuax/U?(Co)| for
waves entering shallow and deep water is shown in
Fig. 1.

b. Example 11

Reflection becomes important when wave-scale and
subwave-scale variations in the bottom topography
are present. Barcilon et al. (1972) found for a related
linear problem that reflection is at a maximum when
the correlation coefficient between the second harmonic
and the topography is large; other harmonics did not
affect the passage of these linear waves. In the case of
nonlinear, moderate-amplitude long waves it can be
shown by substituting (2.25) into (2.33) that all the
odd harmonics as well as those multiplied by F. and
F, reflect waves. For simplicity we will consider the
bottom topography with F, as the only nonzero

2 These values of AS and Ay correspond to waves of 2 m ampli-
tude and 18-sec period propagating in water of averaged depth
of 6 m. These are approximately the conditions observed hy Byrne
(1969).
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coefficient :
0<E<$o

0, £<0, {H<{

constant,
Fy=

(3.13)

Then, in the scattering region, 0<<{<{,

v{wj,k;; §) =0

B 15203\ b
8(wjyks; §) = 5j1“‘<— —‘)F 2

2 —w12

(where §; is the Kronecker delta) and

(3.14)

au*-{—iaﬁb;* —iaSle"m’”alag* =0
b1x+1'a6al—iaSle_"A’”bl*bg ={
021+ia528‘“’”a12 =0
bzx*—f—iaSze_mk“rbl*z =0

Again writing

(3.15)

7

f=—Akx— ¢z+2¢'1
m= —A}€x+l//2—2ll/1
v=¢1—¢1

(”;P) (p1,0'1)/(26¥51ﬂ
(v,9) = (p2,02)/ (252 E)})

where £ is given by (3.6) we can write the real and
imaginary parts of (3.15) as

=p; exp(ig;), ] 1, 2)
b =g; exp (), 2
(3.16)

(3.17)

du
— = —uv sinf+ Adp sinp, (3.18)
d¢
dv
—=u?sinb, (3.19)
d¢
dp
— = —pg sinp+ Adu siny, (3.20)
[¢
dg
—=—p%siny, (3.21)
d¢
df
1—=AS+ (u¥/v—29) cosb+2A8(p/u) cosy, (3.22)
a§
du
7§= ~ASH (p%/q—2q) cosu+2A6(u/p) cosy, (3.23)
[
dv
i—§= —v cos8—g cosu+ Ad[ (p/u)+ (u/p) ] cosv. (3.24)
{;
AS is given by (3.9) and
A5=a5(w1,k1)l. (3.25)

Note 0(A8)=0(1). As boundary conditions we specify
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0.5+

5
fas]

Fic. 1. Maximum second harmonic intensity |VZmax/U2(0) |
vs mismatch parameter AS: waves propagating over flat bottom

——, waves climbing plane beach of 0.13%, slope — — —, waves
propagating into deep water over beach of 0.15 slope —— —.

u, v; v, u, 0 at the leading edge of the scattering region
¢{={o, and demand that p, ¢ vanish at the “trailing
edge,” ¢=0. The amount of reflection at ¢, depends
upon AS, Aé and the length of the scattering region {.
Thus, even though a first integral can be obtained
from (3.18)-(3.21) as

(' +0%) — (p*+¢*) =C, (3.26)

the constant of integration C is unknown until the
problem is solved. The results for AS=0.3; Ad=1.0 and
§o=1 are shown in Fig. 2. The general features are:

(1) The second harmonic is not reflected, ie., ¢*=~0
everywhere. This is anticipated because in the present
case, the bottom profile is “tuned” to reflect the first
harmonics only (cf. Barcilon ef al., 1972).

(31) Nonlinear interaction between harmonics of the
incident wave 1s still present. The rate of energy
transfer from the first to the second harmonic is slower
than that for the flat bottom case because the energy
of the first harmonic is partially reflected.

(i) The total amount of reflection is measured by
the reflection coefficient

24 g%\ 4
R=<” q) .
o

For the present case R=0.46.

(3.27)

1.0

|Asl=0.3 ' .
AB=1.0
Lo = 1.0

R=0.46

05

o}

I16. 2. Distribution of harmonic intensities vs distance along
the scattering region with bottom profile given by (3.13) : incident
first harmonic intensity U? — — —, incident second harmonic
intensity V2 —— reflected first harmonic intensity p* — — —,
incident second harmonic intensity for the flat bottom case with-
out reflection V2 — -~ —,
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If the nonlinear terms in (3.15) are neglected, we have
d]x*'f- ’L'Oéﬁbl* = 0 l

, (3.28)
brat-iada; =0

and a¢;=0,=0. These are the equations one obtains
when Airy’s linear shallow water wave equations are
used to describe the present problem. The reflection
coefficient computed by using these linear equations is

|b1/(11];=(0=tanh]A6§0I =076, (329)

which is about twice the one obtained from nonlinear
analysis. The strong reflection is due to the strong
correlation of the present bottom profile with the
incident wave. The substantial difference hetween the
linear and the nonlinear cases occurs because when
harmonic interaction is present, the energy content
of the incident first harmonic is partially reflected and
partially transferred to the second harmonic, and the
latter suffers no reflection.

4, Summary

We have only studied two simple examples in an
effort to gain an understanding of the physical mech-
anisms involved in this problem. The results show
that for long-scale topography the rate of harmonic
generation depends upon the local depth which affects
the detuning and thus the energy transfer between the
first and second harmonics. When wave-scale and
subwave-scale variations are found, reflection plays
an important part. There is a competition for the
partitioning of energy between reflection and harmonic
generation. In Example IT, the topography reflects most
strongly the first harmonic and thus depletes some of
its energy content so that there is less energy for
transfer to the second harmonic. On the other hand,
if we were to consider topography scales which would
most strongly reflect the second harmonic, we would
find that the first harmonic would undergo very little
reflection. In that case, the growth of the second har-
monic by harmonic generation will be attenuated due
to reflection. The detail dependence of the reflection
coefficient on AS, A8, a more realistic bottom topog-
raphy, as well as the inclusion of higher harmonics in
(2.18), would be worthwhile investigations in the
future.

APPENDIX
Definition of G;
For j=1, 2:
G1(x,X) = Blw){[ —iorx+ Qwi,kr; x,X)ay
+S1a1*ase B e[ —ibiy
+ @ (w1, — k1 ; 2,X)b1— S1b1 boe— 10k Jg-hiz)
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G2 (2,X) = ®(w){[ —iaox+ Q(wa,ks; %,X)as
Sy teidke |gi@herAR e 4 [ ip,
+ @(O)Q, __k2; x,X)bZ_S2b126’iAk:c]e—i(2k1+Ak)x} s

where

B(w)) =2w;(1~w?/3),

@(wj,k;; 2,X) = [wjkj(l —20,) friw?fe
Wy wj2
_Z(l ——2—>fm] / @),
1 1
)
k1 ke
ws W1
H(ri e ] s

Sg = (w]/kl)(2&)12—1“4]312)/63(602).
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