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ABSTRACT

It is shown that soliton wave packets have some unexpected properties when they move on waters
of finite depth and, in particular, that the wave packet forces a long gravity wave. Furthermore,
the long gravity wave affects the shape of the wave packet in factors that decay linearly with increasing
depth. Thus, although the carrier wave may be effectively short compared with the depth, the wave

packet is not.

1. Introduction

An envelope of deep water waves is known to
obey the nonlinear Schrédinger equation (Whitham,
1974). Experiments by Yuen and Lake (1975, 1977)
have shown that pulses of nonlinear waves break
up into solitons and that the observed properties of
the solitons are in qualitative agreement with predic-
tions obtained from the nonlinear Schrédinger
equation.

Here we note that soliton wave packets have some
unexpected properties when water depth is included
in the analysis. The modulation envelope is shown
to force a long gravity wave whose ampglitude is
inversely proportional to the difference between
the square of the group velocity of the carrier wave
and the square of the speed of a long gravity
wave. Because of the forced gravity wave the depth
is important even for carrier waves with values of
kh as large as 10. When kh approaches 1.363
the wavelength of the packet becomes infinite and
for values of kh < 1.363 the wave packet cannot exist.

2. Mathematical development

We consider the propagation of a group of waves
of nearly identical frequencies. We introduce two
time scales and two space scales, allowing a pair
of rapidly varying scales to measure the local
wave dynamics and a pair of space and time scales
to follow the modulation envelope. The rapidly
varying space and time scales are x and ¢, and
the slowly varying modulation scales are X and 7.
Benney and Roskes (1969) and Davey and Stewart-
son (1974) have derived the equations governing
such a modulation envelope. Previous interest has
focused on the stability of wave packets and in
three-dimensional effects. Here we focus on the
depth dependence of coherent wave packets.
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The inviscid equations and free surface condi-
tions for irrotational fluid motion are applied in the
domain y > —h, where h is the water depth and
y = em, where 7 is the free surface elevation.! The
velocity potential and free surface elevation are
expanded in the series

¢ = AO(y,X9T) + Al(y’X9T)eix + ‘€A2(an7T)e2ix

+ conjugate + O(e?), (2.1)
N = by(X,T)e™ + eby(X,T) + eby(X,T)e?
+ conjugate + O(e?), (2.2)

where X and T are slow space and time scales
X = ex, T = et. The basic wavetrain of wavenumber
k has a central frequency w(k) and the phase function
for the wavetrain is x = kx — w(k)t. Since the po-
tential must satisfy Laplace’s equation,? we find

coshk(y + h)

A =a
coshkh
+ e[—ifﬂ y + k) sinhk(y + h)J
1:).4 oshkh
#a,
+ ez[—% e (y + h)? .
x EESh_"(L”)_] )
coshkh
Ao = ap + 52[—1/2 (& + h)? 62“"] +..., (24
X2

! As is customary e is the small amplitude of the wave.

2 Because Laplace’s equation is solved subject to the restriction
that ekh < 1, the equations are not valid for large values of kh.
A solution for kh > 1 was derived by Larsen (1978).



924

1 2 3 45 6 7 8 9
1 T T T 17

8 8
7 7
B! 1 46
Sr 45
4t i 4
&
§ 3F 4 3
2 2r 42
£ 1} 11
£
0 ® 0
_I ﬁ’la—‘-_l
-2 1-2
-3 4-3
-4 1 1 ! 1 TR S -
1 2 3 4 5 6 7 8 9

kh (dimensionless)

F1G. 1. The left-hand sides of Eqs. (2.18) [curve 1], (2.20)
[curve 2] and (2.21) [curve 3]. Curve 1 is the inverse of the
square of the width of the wave packet. It vanishes when
kh = 1.363. Curve 2 is the amplitude of the long gravity wave
and curve 3 the amplitude of the velocity potential for the long
gravity wave. The dashed line is inserted at kh = 1,363.

" cosh2k(y + h)
Az = az _—— s
cosh2kh

where each a; = a(X,T) and a, = —(ig/w)b,.

Benney and Roskes (1969) show that the modula-
tion envelope is determined by a set of three coupled
_ equations, which in a coordinate system (X',T’)
moving with the group velocity of the wave packet
are

0b,

(2.5)

i€ w,g*

3T 2 e Dwr
2
+ e bl[ X da, w_k sech?kh
). ¢ 2 tanhkh
+ iwek?Bb2bF = 0, (216)
0a, da, sech?kh
S0 o, 0 4 eby + gk b = 0.
3T~ S ax T &b ¥ ek oy it
2.7
b, ab, 2k 9
o ax T Mo T Ty =0
(2.8)
where
sechkh
=154 + A
R 2[ tanhkh

+ (2 tanh2kh tanhkh — 4)] , (2.9
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wyy = Ya[—(kh)? sech?kh(1 + 3 tanh?kh)

+ 2kh tanhkh sech?ch — tanh?kh], (2.10)
1
A + u tanh2kh = R 2.11
Han tanhkh ( )
1
A + 2u tanhkh = (3 tanhkh — ), 2.12
i 2( tanhkh ( )

and c, is the group velocity of the carrier wave.
Egs. (2.7) and (2.8) together represent a long gravity
wave equation driven by forcing proportional to the
modulation energy. Because the forcing travels at
the group velocity the long gravity wave has an
amplitude increasing as the group velocity nears the
long wave velocity. Egs. (2.6)—(2.8) admit solutions
in terms of the Jacobian elliptic functions. Rather
than include the full set of solutions in the analysis
we investigate the limiting case of a solitary wave
packet.
We seek solutions to (2.6)—(2.8) of the form

by = que?*™X'5eT) gechkB(X' — VT'), (2.13)
a, = a; tanhkB(X' — VT'), (2.14)
by = a, sech?B(X' — VT'). (2.15)

Direct substitution in the modulation equations
yields the following relations:

Yo _ _eou (2.16)
g tanhkh
s = ——6—'2—0)1—1— - a, 2.17)
2 tanh®kh
2
B = 2a tanh?kh ’ 2.18)
Wy

= ___'3“02k2[1 PR N

2 ca%B tanhkh

X (2 + M sech?kh

c
4

+ kh sech kh)} .19

2 tanhkh

a 1 [2(V+cg)+ kh ]
aologk)  ca2 c sinhkh coshkh ]’
g (2.20)
2
if‘.‘:i[z+ (V + ¢,) sech kh] ’ @.21)
gk oy 2 c tanhkh
where
k
cp2 = —[(V + ¢,)? — gh] (2.22)
g

and c is the phase speed (=w/k).
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Since r is of order unity (or less), V is a small
number when compared with c,. Thus, the essential
features of the solution may be seen by examining
the equations with V = 0, that is, the wave packet
moves at the group velocity. In Fig. 1 we illustrate
the parameters for this limiting case. First, we note
that w,; which is a dimensionless form for the
curvature of the group velocity is always negative.
Thus, a wave packet may exist only when « is
negative (2.18).

Illustrated in Fig. 1 are the left-hand sides of
Eqgs. (2.18), (2.20) and (2.21). The width of the wave
packet, described by B, becomes infinite as B
approaches zero. This occurs for ki = 1.363, the
dashed line in Fig. 1, and represents the shallowest
water in which a wave packet may propagate. With
kh near 1.363 the wave packet is long compared
to ex and the expansion used in this paper is not
valid. Johnson (1977) discusses soliton behavior
near this critical value of kh. The two other curves
in Fig. 1 are the amplitude and velocity potential
of the forced gravity wave. The amplitude in-
creases with diminishing values of kh. Because the
long gravity wave modifies the modulation envelope
(2.6) the width of the soliton depends on the depth.

The slow rate at which B? approaches its
asymptotic value of 8 is surprising. For kA values
on the order of 10, B? is still 10% removed from
its asymptotic value. The reason for this is that the
speed of long waves increases as the square root of
the depth. Eqgs. (2.7) and (2.8) for a, and &, are the
nonhomogeneous shallow water wave equations
driven by the modulation envelope.

3. The bottom pressure

The pressure fluctuation P is determined from the

Bernoulli equation, which at the bottom, y = —#h, is
P

——gh=—¢, — ey

P

—2¢s® + 2ed,bx + €y, (3.1)

The fluid density is p. Note that (3.1) is in a stationary
coordinate system (X,T). Since the pressure field
associated with the carrier wave exhibits no unusual
behavior we examine only the low-frequency
component of the pressure. Inserting the expansion
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for the velocity potential (2.1) into (3.1), we find

—(1 + agk) agk
——— sech?h + —
tanhkh sec ca®

y [2(V+cy) kb H
¢ sinhkh

x sech®%B[X - (¢, + V)T]. (3.2)

We have replaced the small parameter € with a4 in
order to present the solution in physical terms.
Because c,? is linear in kA the pressure fluctuations
are inversely proportional to depth.

In deep water the term involving c,* dominates
the bottom pressure fluctuations. Although small in
magnitude near the surface the signature of the
forced wave may dominate at depth. Low sea level
is predicted from (3.2) beneath the highest waves in the
wave packet. This agrees with observations of surf
beats (Longuet-Higgins and Stewart, 1963).

p
——gh= gkaoz[
P
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