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SURFACE WAVES AND LOW FREQUENCY NOISE IN THE DEEP OCEAN 

Lawrence H. Larsen 

Department of Oceanography, University of Washington, Seattle, Wa 98195 

Abstract. Low frequency (1-5 minute) 
pressure fluctuations have been observed in the 
deep sea beneath 4000 m of water. This paper 
proposes a model connecting the beat of surface 
gravity waves to the observed pressure 
fluctuations. The model depends on the presence 
of nonlinear surface gravity wave packets. 

Introduction 

Long period pressure disturbances (1-5 
minutes period) were observed at a depth of 
4000 m in the Pacific Ocean by Sutton et al. 
(1965). The intensity of the noise was observed 
to increase during periods of enhanced surface 
wave activity and they observed signals ranging 
from 3 to 300 microbars of pressure. The noise 
was in both crystal hydrophone records and in 
records from long period seismometers. 

In this note I show that noise of the magni- 
tude observed can be related to the existence 

of a coherent pocket of surface waves. A 
coherent packet may be defined as a group of 
surface waves that propagate as an entity and 
move at the group velocity of a carrier wave. 
An example is the modulated wave train discussed 
by Lake and Yuen (1977). For this discussion 
the detailed nonlinear behavior of surface waves 

is not important, however it is required that 
surface waves form coherent entities composed 
of a number of individual waves. Two 

simplified assumptions are used in this study; 
the wave packet is to propagate at the group 
velocity at the carrier wave and the wave packet 
is sinusoidal in shape. 

Analysis 

Assume that a carrier wave of wave number, k, 
and frequency, m, exists. Let this carrier 
wave be modulated in space and time. Let the 
wave amplitude be a and e -- ak be a small 
parameter describing the slope of the carrier 
wave. Then if spatial and temporal scales of 
the modulation, X, T, are ex, et, where x and 
t are space and time, a wave modulation is 
governed by the nonlinear Schr6dinger equation. 
Zakharov (1968) derived this equation for deep 
water. Benny and Roskes (1969) and Davey and 
Stewartson (1974) derive the equations for the 
modulation based on the assumption that ekh << 1. 
The assumption that ekh << 1 is violated in 
4000 m of water. In the deep ocean ekh is large 
compared to unity but not infinite as was assumed 
in Zakharov's (1968) analysis. 

A complete development of the equations 
for arbitrary gkh is not required in order to 
understand the effects of a modulated wave train 

and is omitted in this discussion. The 

modulation equation is a variant of the nonlinear 
Schr6dinger equation and it has been shown by 
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Longuet-Higgins (1976) that this equation passes 
uniformly from the shoaling depths considered by 
Benney and Roskes (1969) and Davey and Stewartson 
(1974) to the deep water equations as derived 
by Zakharov (1968). Since this discussion 
centers on a single fourier component of the 
modulation envelope the modulation equation is 
not required. 

Consider a wave train of amplitude, a, 
propagating on a fluid of depth, h. Introduce 
non-dimensional length and time scales (x*, z*) 
= (kx, kz), t* = mt, and scale the actual water 
surface displacement q on the peak amplitude 
a, then the non-dimensional surface displacement 
% = q/a is of order unity. The velocity 
potential is measured in units of ac where c is 
the phase speed of the carrier wave. A non- 
dimensional gravity is defined g* = gk/m 2. For 
a freely propagating linear gravity wave in 
deep water g* = 1. 

In terms of the non-dimensional variables, 
the mathematical problem may be stated 

V2% = 0 -D < z < •% 2.1 

%z = 0 z =-D =-kh 2.2 

2g% + 2•t + g(•2 X + •2 ) = 0 z--e• 2.3 
•z TM •t + •x • z = • 2.4 x 

It is convenient to approximate the boundary 
conditions (2.3) and (2.4) by expanding the 
equations about z=0. This leads to the 
boundary conditions 

+•2x) ) 2g• + 2•t)z=0 =-e(2%• tZ)z=0 z=0 
+ 0(•2) 2.5 

- = -• •x q•x •) + O(e2) 2.6 %t %Z)z= 0 
Now seek the solution of the above problem in 

terms of an expansion in •. The leading terms 
are: 

' * -ix %(x,z,t;0) = •e 1X + • e , 
, 2.7 

• =1, X=X- t 

ß , -i X •(x t;0) =-ig cosh (z+D)(•elX _ • e ) 2 8 ' cosh D ' 

with the dispersion relation go = 1 where 
o -- tanh kh. 

The solution of the nonlinear problem is 
expressed in a power series in œ the leading 
terms of which are 

% = m (X,T; e) + m(X,T; e) e mx+ m (X,T;e) e mx +... 
o 

2.9 
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% = %o(X,z,T; •) + %(X,z,t; •)elX+ 
, ß 

• (X,z,T; •)e 1x + ... 2.10 

Direct substitution into the governing 
equations yields the equations for the sub- 
harmonic terms, 

g•o = •oT =• (l-g2) z = 0 , 2.11 
a•oT •oz -Zg •2 3 - = •-• z -- 0 , 2.12 

+ •2•oXX = 0 -D z 0 2 13 •OZZ ' ' 

%oz = 0 z -- -D. 2.14 

Because Laplaces equation 2.13 involves s it is 
tempting to expand this equation in powers of •. 
Such an expansion leads to the equations derived 
by Benne¾ and Roskes (1969) and Davey and 
Stewartson (1974) and represents a solution valid 
in the limit skh << 1. This condition is not 

satisfied in deep water so an alternative 
approach is needed. In deep water g = 1 thus 
eliminating the forcing in equation 2.11. How- 
ever any coherent structure ee* propagating with 
the group velocity of the carrier wave will force 
2.12 even though the water is deep. 

Assume, 

• = cos B(X - %T) 2.15 

where B is the length scale of a harmonic 
component of a wave pocket. The approximation 
that the modulation propagates at the group 
velocity introduces the factor 1/2 T. In 
deep water, this is half the phase velocity and 
is accurate to order • A solution to the system 
2.11 to 2.14, valid for large œkh is 

-2 e cosh eB(z+D) 

o (o eB) cosh eBD o--•- 
sin B(X-1/2 T) 2.16 

e = 0(•2) , o = tanh eBD 2.17 
o o 

The message delivered by 2.17 is that in deep 
water the water level is not affected by the 
passage of a wave. In shoal water o -- sBD and 

O. 
the solution (2.16) reduces to that graven by 
Davey and Stewartson (1974). In shallow water 
e is of order e and sea level is affected by a o 

beat in the waves. 

Pressure fluctuations at the sea floor are 

determined by: 

P = -O % + nonlinear terms 2.18 
t 

and the nonlinear terms are small compared to 
-P%.. Substituting (2.16) into (2.18) and using t 
dimensioned variables the magnitude of the 
pressure fluctuation at the sea floor is 

p 2• 2amBC 
P• 219 

cosh sBkh ' ' 

In deep water, ekh >z, o o = 1 and for any wave 
packet eB/4 << 1, thus (o o -œB/4) is unity. 

For example consider a wave whose amplitude 
is 6 m and whose period is 15 seconds, then 
•-- .1. For a wave packet of 10 waves, B is of 

order unity. In waters of 4000 m depth eBkh = 7. 
Thus although the velocities and pressures 
associated with the carrier wave are negligible, 
fluctuations due to the beat of the waves are 
significant at great depths. At the bottom, 
pressure fluctuations of about 

2 2 •P • .003 m /sec 2.20 
can be found. This corresponds to 30 microbars 
of fluctuations. For a train of modulated 

waves such that every loth wave is a large wave 
the period of the signal at depth is 

2• 
T = 2.21 

skB (•) 
which is about 2.5 minutes. 

These numbers fit with the few observations 

of which the author is aware. The main object 
of this calculation is to show that a modulated 
wave train is capable of forcing low frequency 
disturbances that are measurable at the sea 
floor. 

Phillips (1969) presents another type of 
argument which is useful in interpreting the 
results of this paper; although care must be 
taken in applying the averaging scheme introduced 
by Phillips to this problem. Phillips integrates 
the vertical momentum equation from the sea 
floor to the surface. Then on averaging in the 
horizontal and to a first approximation he finds 
that bottom pressure fluctuations will have the 
magnitude. 

- 3 

P = Po• C• ß o 

Consider the passage of a wave packet. During 
the time when the wave amplitude is increasing, 
i.e. subsequent waves are of increasing amplitude 
then the correlation of C• increases. The 

o 

reverse happens during the decay stage of a 
wave packet. Longuet-Higgens and Stewart, 
(1963) use an argument based on radiation stress 
to show that the fluid pressure is least beneath 
high waves. This is also true in the model 
presented in this paper. The new feature 
presented in this paper is the connection 
between the beat of nonlinear wave trains, and 
noise of the sea floor. 
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