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WELL-POSEDNESS OF THE WATER-WAVES EQUATIONS

DAVID LANNES

1. Introduction

1.1. Presentation of the problem. The water-waves problem for an ideal liquid
consists in describing the motion of the free surface and the evolution of the velocity
field of a layer of perfect, incompressible, irrotational fluid under the influence
of gravity. In this paper, we restrict to the case when the surface is a graph
parameterized by a function ζ(t,X), where t denotes the time variable and X =
(X1, . . . , Xd) ∈ Rd the horizontal spatial variables. The method developed here
works equally well for any integer d ≥ 1, but the only physically relevant cases are
of course d = 1 and d = 2. The layer of fluid is also delimited from below by a not
necessarily flat bottom parameterized by a time independent function b(X). We
denote by Ωt the fluid domain at time t.
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The incompressibility of the fluids reads

(1.1) div V = 0 in Ωt, t ≥ 0,

where V = (V1, . . . , Vd, Vd+1) denotes the velocity field (V1, . . . , Vd being the hori-
zontal, and Vd+1 the vertical components of the velocity). Irrotationality reads

(1.2) curl V = 0 in Ωt, t ≥ 0.

The boundary condition on the velocity at the surface and at the bottom are given
by the usual assumption that they are both bounding surfaces, i.e. surfaces across
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which no fluid particles are transported. At the bottom, this reads

(1.3) Vn|{y=b(X)} := n− · V |{y=b(X)} = 0, for t ≥ 0, X ∈ Rd,

where n− :=
1√

1 + |∇Xb|2
(∇Xb,−1)T denotes the outward normal vector to the

lower boundary of Ωt. At the free surface, the boundary condition is kinematic and
reads

(1.4) ∂tζ −
√

1 + |∇Xζ|2Vn|{y=ζ(X)} = 0, for t ≥ 0, X ∈ Rd,

where Vn|{y=ζ(X)} := n+ · V |{y=ζ(X)}, with n+ :=
1√

1 + |∇Xζ|2
(−∇Xζ, 1)T de-

noting the outward normal vector to the free surface.
Neglecting the effects of surface tension yields that the pressure P is constant at
the interface. Up to a renormalization, we can assume that

(1.5) P |{y=ζ(X)} = 0 for t ≥ 0, X ∈ Rd.

Finally, the set of equations is closed with Euler’s equation within the fluid,

(1.6) ∂tV + V · ∇X,yV = −ged+1 −∇X,yP in Ωt, t ≥ 0,

where −ged+1 is the acceleration of gravity.
Early works on the well-posedness of Eqs. (1.1)-(1.6) within a Sobolev class

go back to Nalimov [27], Yosihara [38] and Craig [10], as far as 1D-surface waves
are concerned. All these authors work in a Lagrangian framework - which allows
one to consider surface waves which are not graphs- and rely heavily on the fact
that the fluid domain is two dimensional. In this case, complex coordinates are
canonically associated to the R2-coordinates, and the incompressibility and irrota-
tionality conditions (1.1) and (1.2) can be seen as the Cauchy-Riemann equations
for the complex mapping V1 − iV2. There is therefore a singular integral operator
on the top surface recovering boundary values of V2 from boundary values of V1.
The water-waves equations (1.1)-(1.6) can then be reduced to a set of two nonlin-
ear evolution equations, which can be “quasi-linearized” using a subtle cancellation
property noticed by Nalimov. It seems that this cancellation property was the main
reason why the Lagrangian framework was used. A major restriction of these works
is that they only address the case of small perturbations of still water. The reasons
of this restriction is quite technical, but the most fundamental is that this smallness
assumption ensures that a generalized Taylor criterion is satisfied, thus preventing
formation of Taylor instabilities (see [33, 4] and the introduction of [36]). Physically
speaking, this criterion assumes that the surface is not accelerating into the fluid
region more rapidly than the normal acceleration of gravity. From a mathematical
viewpoint, this condition is crucial because the quasilinear system thus obtained
is not strictly hyperbolic (zero is a multiple eigenvalue with a Jordan block) and
requires a Lévy condition on the subprincipal symbol to be well-posed; one can see
Taylor’s criterion precisely as such a Lévy condition (see Section 4.1 below). In
[3], Beale et al. proved that the linearization of the water-waves equations around
a presumed solution is well-posed, provided this exact solution satisfies the gen-
eralized Taylor’s sign condition (which is a weaker assumption than the smallness
conditions of [27, 38, 10]). Wu’s major breakthrough was to prove in [36] that
Taylor’s criterion always hold for solutions of the water-waves equations, as soon
as the surface is nonself-intersect. Her energy estimates are also better than those
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of [3] and allow her to solve the full (nonlinear) water-waves equations, locally in
time, and without restriction (other than smoothness) on the initial data, but in
the case of a layer of fluid of infinite depth. The only existing theorems dealing
with the case of finite depth require smallness conditions on the initial data when
the bottom is flat [10], and an additional smallness condition on the variations of
the bottom parameterization b when the bottom is uneven [38].

Very few papers deal with the well-posedness of the water-waves equations in
Sobolev spaces in the three dimensional setting (i.e. for a 2D surface). In [22],
the generalization of the results of [3] to the three dimensional setting is proved.
More precisely, the authors show, in the case of a fluid layer of infinite depth, that
the linearization of the water-waves equations around a presumed solution is well-
posed, provided this exact solution satisfies the generalized Taylor’s sign condition.
As in [3], the energy estimates provided are not good enough to allow the resolution
of the nonlinear water-waves equations by an iterative scheme. In [37], S. Wu (still
in the case of a fluid layer of infinite depth) solved the nonlinear equations. Her
proof rely heavily on Clifford analysis in order to extend to the 3D case (some of)
the results provided by harmonic analysis in 2D. In the case of finite depth, no
results exist.

1.2. Presentation of the results. In this paper, we deliberately chose to work
in the Eulerian (rather than Lagrangian) setting, since it is the easiest to handle,
especially when asymptotic properties of the solutions are concerned. Inspired by
[29, 13] we use an alternate formulation of the water-waves equation (1.1)-(1.6).
From the incompressibility and irrotationality assumptions (1.1) and (1.2), there
exists a potential flow φ such that V = ∇X,yφ and

(1.7) ∆X,yφ = 0 in Ωt, t ≥ 0;

the boundary conditions (1.3) and (1.4) can also be expressed in terms of φ:

(1.8) ∂n−φ|{y=b(X)} = 0, for t ≥ 0, X ∈ Rd,

and

(1.9) ∂tζ −
√

1 + |∇Xζ|2∂n+φ|{y=ζ(t,X)} = 0, for t ≥ 0, X ∈ Rd,

where we used the notations ∂n− := n− ·∇X,y and ∂n+ = n+ ·∇X,y. Finally, Euler’s
equation (1.6) can be put under Bernouilli’s form

(1.10) ∂tφ+
1

2
|∇X,yφ|2 + gy = −P in Ωt, t ≥ 0.

As in [13], we reduce the system (1.7)-(1.10) to a system where all the functions
are evaluated at the free surface only. For this purpose, we introduce the trace of
the velocity potential φ at the surface

ψ(t,X) := φ(t,X, ζ(t,X)),

and the (rescaled) Dirichlet-Neumann operator G(ζ, b) (or simply G(ζ) when no
confusion can be made on the dependence on the bottom parameterization b),
which is a linear operator defined as

G(ζ)ψ :=
√

1 + |∇Xζ|2∂n+φ|{y=ζ(t,X)}.



4 DAVID LANNES

Taking the trace of (1.10) on the free surface and using the chain rule shows that
(1.7)-(1.10) are equivalent to the system

(1.11)





∂tζ −G(ζ)ψ = 0,

∂tψ + gζ +
1

2
|∇Xψ|2 −

1

2(1 + |∇Xζ|2)
(G(ζ)ψ + ∇Xζ · ∇Xψ)

2
= 0,

which is an evolution equation for the elevation of the free surface ζ(t,X) and the
trace of the velocity potential on the free surface ψ(t,X). Our results in this paper
are given for this system.

The first part of this work consists in developing simple tools in order to make the
proof of the well-posedness of the water-waves equations as simple as possible. It is
quite obvious from the equations (1.11) that the Dirichlet-Neumann operator will
play a central role in the proof; we give here a self-contained and quite elementary
proof of the properties of the Dirichlet-Neumann operator we shall need. A major
difficulty lies in the dependence on ζ of the operator G(ζ)·. It is known that such
operators depend analytically on the parameterization of the surface. Coifman and
Meyer [9] considered small Lipschitz perturbations of a line plane, and Craig et al.
[12, 13] C1 perturbations of hyperplanes in any dimension. Seen as an operator
acting on Sobolev spaces, G(ζ)· is of order one. In [13], an estimate of its operator
norm is given under the form:

(1.12) |G(ζ)ψ|Hk ≤ C (k, |ζ|C1) (|ζ|Ck+1 |ψ|H1 + |ψ|Hk+1) ,

for all integer k ≥ 0 (estimates in Lq-based Sobolev spaces are also provided). In
order to obtain this estimate, the authors give an expression of G(ζ)· as a singular
integral operator (inspired by the early works of Garabedian and Schiffer [17] and
Coifman and Meyer [9] on Cauchy integrals) and use a multiple commutator esti-
mate of Christ and Journé [6]. Estimate (1.12) has the interest of being “tame”
(in the sense of Hamilton [21], i.e. the control in the norms depending on the reg-
ularity index k is linear), but is only proved for flat bottoms, and costs too much
smoothness on ζ: a control of |ζ|Ck+1 is needed in (1.12), and hence of |ζ|Hs , with
s > d/2 + k + 1, if one works in a Sobolev framework. A rapid look at equations
(1.11) shows that one would like to allow only a control of ζ in Hk+1(Rd) (i.e., ζ
and ψ should have the same regularity). Using an expression of G(ζ)· involving
tools of Clifford Algebras [18] and deep results of Coifman, McIntosh and Meyer [8]
and Coifman, David and Meyer [7], S. Wu obtained in [37] another estimate with
a sharp dependence on the smoothness of ζ:

(1.13) |G(ζ)ψ|Hs ≤ C (s, |ζ|Hs+1) |ψ|Hs+1 ,

for all real number s big enough. If estimate (1.13) is obviously better than (1.12),
it has two drawbacks. First, it is not tame, and hence not compatible for later use
of a Nash-Moser convergence scheme. Second, its proof requires very deep results
which make its generalization to the present case of finite and uneven bottom highly
nontrivial. In this paper, we prove in Th. 3.6 the following estimate

(1.14) |G(ζ)ψ|Hk+1/2 ≤ C (k, |ζ|Hs0 ) (|ζ|Hk+3/2 |∇Xψ|Hs0−1 + |∇Xψ|Hk+1/2) ,

for all k ∈ N, and where s0 is a fixed positive real number. This estimate has the
sharp dependence on ζ of (1.13) and is tame as (1.12). Moreover, it is sharper
than the above estimates in the sense that only the gradient of ψ is involved; this
will prove very useful here. Estimates (1.14) also holds for uneven bottoms and its
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proof uses only elementary tools of PDE: since the fluid layer is diffeomorphic to
the flat strip S := Rd × (−1, 0), we first transform the Laplace equation (1.7) with
Dirichlet condition φ = ψ at the surface and homogeneous Neumann condition
∂n−φ = 0 at the bottom into an elliptic boundary value problem (BVP) with
variable coefficients defined in the flat strip S. The Dirichlet-Neumann operator
G(ζ)· can be expressed in terms of the solution to this new BVP (see Prop. 3.4).
We give sharp tame estimates for a wide class of such elliptic problems in Th. 2.9.
Choosing the most simple diffeomorphism between the fluid domain and S as in
[12, 2] and applying Th. 2.9 to the elliptic problem thus obtained, we can obtain,
via Prop. 3.4, a tame estimate on G(ζ)·. However, this estimate is not sharp since
instead of |ζ|Hk+3/2 as in (1.14), one would need a control of |ζ|Hk+2 . We must
therefore gain half a derivative more to obtain (1.14). The trick consists in proving
(see Prop. 2.13) that there exists a “regularizing” diffeomorphism between the fluid
domain and the flat strip S.
We also need further information on the Dirichlet-Neumann operator. In Th. 3.10,
we give the principal symbol of G(ζ)·: for all f ∈ H1/2(Rd),

∣∣(G(ζ) − gζ(X,D)
)
f
∣∣
Hj/2 ≤ Cst |f |Hj/2 , j = −1, 0, 1,

where gζ(X, ξ) :=
√
|ξ|2 + |∇Xζ|2|ξ|2 − (∇Xζ · ξ)2, and where the constant in-

volves the L∞-norm of a finite number of derivatives of ζ. Note in particular that
for 1D surfaces, gζ(X,D) = |D|, while for 2D surfaces it is a pseudo-differential
operator (and not a simple Fourier multiplier). We then give tame estimates of the
commutator of G(ζ)· with spatial (in Prop. 3.15) and time (in Prop. 3.19) deriva-
tives. Finally, we give in Th. 3.20 an explicit expression of the shape derivative of
G(ζ)·, i.e. the derivative of the mapping ζ 7→ G(ζ)·, and tame estimates of this and
higher derivatives are provided in Prop. 3.25.
Note that all the above results are proved for a general constant coefficient elliptic
operator −∇X,y · P∇X,yφ = 0 instead of −∆X,y in (1.7). This is useful if one
wants to work with non dimensionalized equations. This first set of results consists
therefore in preliminary tools for the study of the water-waves problem; we would
like to stress the fact that they are sharp and only use classical tools of PDE.

We then turn to investigate the water-waves equations (1.11). The first step
consists of course in solving the linearization of (1.11) around some reference state
U = (ζ, ψ), and in giving energy estimates on the solution. Using the explicit
expression of the shape derivative of the Dirichlet-Neumann operator given in Th.
3.20, we can give an explicit expression of the linearized operator L. Having the
previous works on the water-waves equations in mind, it is not surprising to find
that L is hyperbolic, but that its principal symbol has an eigenvalue of multiplicity
two (i.e., it is non strictly hyperbolic). In the works quoted in the previous section,
this double eigenvalue is zero. Due to the fact that we work here in Eulerian, as
opposed to Lagrangian, variables, this double eigenvalue is not zero anymore, but
iv · ξ, ξ being the dual variable of X , and v being the horizontal component of the
velocity at the surface of the reference state U . It is natural to seek a linear change
of unknowns which transforms the principal part of L into its canonical expression
consisting in an upper triangular 2 × 2 matrix with double eigenvalue iv · ξ and
a Jordan block. Prop. 4.2 gives a striking result: this a priori pseudo-differential
change of unknown is not even differential, and the commutator terms involving
the Dirichlet-Neumann operator that should appear in the lower order terms all
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vanish! This simplifies greatly the sequel.
Having transformed the linearized operator L into an operator M whose principal
parts exhibits the Jordan block structure inherent to the water-waves equations,
we turn to study this operator M. The Lévy condition needed on the subprincipal
symbol of M in order for the associated Cauchy problem to be well-posed is quite
natural, due to the peculiar structure of M : a certain function a depending only on
the reference state U must satisfy a ≥ c0 > 0 for some positive constant c0 (this is
almost a necessary condition, since the linearized water-waves equations would be
ill-posed if one had a < 0). It appears in Prop. 4.4 that this sign condition is exactly
the generalized Taylor’s sign condition of [3, 22, 36, 37]. Assuming for the moment
that this condition holds, we use the tools developed in the first sections to show,
in Prop. 4.5, that the Cauchy problem associated to M is well-posed in Sobolev
spaces, and to give energy estimates on the solution. There is a classical loss of
information of half a derivative on this solution due to the Jordan block structure,
but also a more dramatic loss of information with respect to the reference state U ,
which makes a Picard iterative scheme inefficient to solve the nonlinear equation.
Fortunately, the energy estimates given in Prop. 4.5 are tame, and Nash-Moser
theory will provide a good iterative scheme. Inverting the change of unknown of
Prop. 4.2, tame estimates are deduced in Prop. 4.14 for the solution of the Cauchy
problem associated to the linearized operator L. The last step of the proof consists
in solving the nonlinear equations (1.11) via a Nash-Moser iterative scheme. This
requires to prove that the Taylor’s sign condition a ≥ c0 > 0 holds at each step of
the scheme (and of course that the surface elevation ζ − b remains positive!). It
is quite easy to see that it is sufficient for this condition to be satisfied that the
first iterate satisfies it. Wu proved that this is always the case in infinite depth.
We prove in Prop. 4.15 that this result remains true in the case of flat bottoms.
For uneven bottoms however, we must assume that the generalized Taylor’s sign
condition holds for the initial data. This can be ensured by smallness conditions
on the initial data, but we also give a sufficient condition stating that the Taylor’s
sign condition can be satisfied for initial data of arbitrary size provided that the
bottom is “slowly variable” in the sense that

IIb(V0τ , V0τ ) ≤ g√
1 + |∇Xb|2

,

where b is the bottom parameterization, IIb the second fundamental form associated
to the surface {(X, y) ∈ Rd+1, y = b(X)}, and V0τ the tangential component of the
initial velocity field V0 evaluated at the bottom.
Our final result is then given in Th. 5.3. For flat bottoms (i.e. b(X) = b = Cst <
0), it can be stated as:

Theorem 1.1. Let ζ0 ∈ Hs+1(Rd) and ψ0 be such that ∇Xψ0 ∈ Hs(Rd)d, with
s > M (M depending only on d). Assme moreover that

ζ0 − b ≥ 2h0 on Rd for some h0 > 0.

Then there exists T > 0 and a unique solution (ζ, ψ) to the water-waves equations
(1.11) with initial conditions (ζ0, ψ0) and such that (ζ, ψ−ψ0) ∈ C1

(
[0, T ], Hs(Rd)×

Hs(Rd)
)
.

Organization of the paper. Section 2 is devoted to the study of the Laplace equa-
tion (1.7) in the fluid domain, or more precisely to the equation −∇X,y·P∇X,yφ = 0,
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where P is a constant coefficient, symmetric and coercive (d+ 1)× (d+ 1) matrix.
In Section 2.1, we show that this equation can be reduced to an elliptic boundary
problem with variable coefficients on a flat strip, and sharp tame elliptic estimate for
such problems are given in Section 2.2. We then show in Section 2.3 that among the
various diffeomorphisms between the fluid domain and the flat strip, they are some
particularly interesting, which we call “regularizing diffeomorphisms” and which
allow the gain of half a derivative with respect to the regularity of the surface
parameterization.

Section 3 is entirely devoted to the properties of the Dirichlet-Neumann operator.
Basic properties (including the sharp estimate (1.14) mentioned above) are gathered
in Section 3.1. In Section 3.2, we are concerned with the derivation of the principal
part of the Dirichlet-Neumann operator, and in Section 3.3 with its commutating
properties with space or time derivatives. Finally its shape derivatives are studied
in Section 3.4.

The linearized water-waves equations are the object of Section 4. We first show
in Section 4.1 that the linearized equations can be trigonalized and prove in Section
4.2 that the Cauchy problem associated to the trigonalized operator is well-posed in
Sobolev spaces, assuming that a Lévy condition on the subprincipal symbol holds.
We also provide in this section tame estimates on the solution. The link with the
solution of the original linearized water-waves equations is made in Section 4.3, and
the Lévy condition discussed in Section 4.4.

The fully nonlinear water-waves equations are solved in Section 5. A simple
Nash-Moser implicit function theorem is first recalled in Section 5.1 and then used
in Section 5.2 to obtain our final well-posedness result.

Finally, a technical proof needed in Section 2.1 has been postponed to Appendix
A.

1.3. Notations. Here is a set of notations we shall use throughout this paper:
- Cst always denotes a numerical constant which may change from one line to
another. If the constant depends on some parameters λ1, λ2, . . . , we denote it by
C(λ1, λ2, . . . ).
- For any α = (α1, . . . , αd+1) ∈ Nd+1, we write |α| = α1 + · · · + αd+1;
- For all i = 1, . . . , d, we write ∂i = ∂Xi ; similarly, we write ∂d+1 = ∂y, and, for all
α ∈ Nd+1, ∂α = ∂α1

1 . . . ∂
αd+1

d+1 .

- We denote by Ck
b (Rd) the set of the functions continuous and bounded on Rd to-

gether with their derivatives of order lower or equal to k, endowed with its canonical
norm | · |k,∞ =

∑
|α|≤k |∂α · |L∞ . We denote also C∞

b = ∩kC
k
b .

- We denote by (·, ·) the usual scalar product on L2(Rd).
- We denote by Λ = Λ(D), or 〈D〉, the Fourier multiplier with symbol Λ(ξ) = 〈ξ〉 =
(1 + |ξ|2)1/2.
- For all s ∈ R, we denote by Hs(Rd) the space of distributions f such that

|f |Hs :=
( ∫

Λ(ξ)s|f̂(ξ)|2
)1/2

< ∞, where f̂ denotes the Fourier transform of f .
We also denote H∞ = ∩sH

s.
- If f ∈ C([0, T ], Hs(Rd)), we write |f |Hs

T
= supt∈[0,T ] |f(t)|Hs .

- If B is a Banach space and if f, g ∈ B, then we write |f, g|B = |f |B + |g|B. If
F = (f1, . . . , fn)T ∈ Bn, then |F |B := |f1|B + · · · + |fn|B.
- For all s ∈ R, ⌈s⌉ denotes the first integer strictly larger than s (so that ⌈1⌉ = 2).
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2. Elliptic boundary value problems on a strip

Throughout this section, we work on a domain Ω defined as

Ω = {(X, y) ∈ Rd+1, b(X) < y < a(X)},
where a and b satisfy the following condition:

(2.1) ∃h0 > 0, min{−b, a− b} ≥ h0 > 0 on Rd,

(this assumption means that we exclude beaches or islands for the fluid domain,
either perturbed or at rest).
We also consider a constant coefficients elliptic operator P = −∇X,y ·P∇X,y, where
P is a symmetric matrix satisfying the following condition:

(2.2) ∃p > 0 such that PΘ · Θ ≥ p|Θ|2, ∀Θ ∈ Rd+1.

Finally, we consider boundary value problems of the form

(2.3)

{
Pu = h on Ω,
u|{y=a(X)} = f, ∂P

n u|{y=b(X)} = g,

where h is a function defined on Ω and f, g are functions defined on Rd. Moreover,
∂P

n u|{y=b(X)} denotes the conormal derivative associated to P of u at the boundary
{y = b(X)},
(2.4) ∂P

n u|{y=b(X)} = −n− · P∇X,yu|{y=b(X)},

where n− denotes the outwards normal derivative at the bottom.

Notation 2.1. For all open set U ⊂ Rd+1, we denote by ‖· : U‖p, ‖· : U‖k,∞ and
‖· : U‖k,2 the canonical norms of Lp(U), W k,∞(U) and Hk(U) respectively.
When no confusion is possible on the domain U , we write simply ‖ · ‖p, ‖ · ‖k,∞ and
‖ · ‖k,2.

2.1. Reduction to an elliptic equation on a flat strip. Throughout this
section, we denote by R any diffeomorphism between Ω and the flat strip S =
Rd × (0, 1), which we assume to be of the form

(2.5) R :
Ω → S

(X, y) 7→ (X, r(X, y)),

and we denote its inverse R−1 by S,

(2.6) S :
S → Ω

(X̃, ỹ) 7→ (X̃, s(X̃, ỹ)).

We always assume the following on s:

Assumption 2.2. One has s ∈ W 1,∞(S) with s|ey=0 = a and s|ey=−1 = b. More-

over, there exists c0 > 0 such that ∂eys ≥ c0 on S.

Finally, we need the following definition:
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Definition 2.3. Let k ∈ N. The mapping s, given by (2.6), is called k-regular if
it satisfies Assumption 2.2 and can moreover be decomposed into s = s1 + s2 with
s1 ∈ Ck

b (S) and s2 ∈ Hk(S), and if ∂eys1 ≥ c0 on S.

Remark 2.4. The most simple diffeomorphism R between Ω and S is given by

r(X, y) =
y − a(X)

a(X) − b(X)
,

and hence s(X̃, ỹ) = (a(X̃)−b(X̃))ỹ+a(X̃). If a ∈ Hk∩W 1,∞(Rd) and b ∈ Ck
b (Rd),

it is clear that s is k-regular, with s1(X̃, ỹ) := −b(X̃)ỹ, s2(X̃, ỹ) := (1 + ỹ)a(X̃),
and c0 = h0.

To any distribution u defined on Ω one can associate, using the diffeomorphism
R and its inverse S given by (2.5)-(2.6), a distribution ũ defined on S as

(2.7) ũ = u ◦ S,
and vice-versa,

(2.8) u = ũ ◦R.
The following lemma shows that the constant coefficients elliptic equation Pu =

0 on Ω can be equivalently formulated as a variable coefficients elliptic equation

P̃ũ = 0 on S.

Lemma 2.5. Suppose that the mapping s, given by (2.6) satisfies Assumption 2.2.
Let P = −∇X,y · P∇X,y with P satisfying (2.2).

Then the equation Pu = h holds in D′(Ω) if and only if the equation P̃ũ = (∂eys)h̃

holds in D′(S), where ũ and h̃ are deduced from u and h via formula (2.7), and

P̃ := −∇ eX,ey · P̃∇ eX,ey, with

P̃ =
1

∂eys

(
∂eysIdd×d 0
−∇ eXs

T 1

)
P

(
∂eysIdd×d −∇ eXs

0 1

)
.

Moreover, one has, for all Θ ∈ Rd+1,

P̃Θ · Θ ≥ p̃|Θ|2, with p̃ = Cst p
c20

‖∂eys‖∞(1 + ‖∇ eX,eys‖2
∞)

.

Proof. By definition, Pu = h in D′(Ω) if and only if

(2.9)

∫

Ω

Puϕ =

∫

Ω

hϕ, ∀ϕ ∈ D(Ω).

By definition of P, one also has∫

Ω

Puϕ =

∫

Ω

P∇X,yu · ∇X,yϕ

=

∫

Ω

P

(
(∇ eX ũ) ◦R+ ∇Xr(∂ey ũ) ◦R

∂yr(∂ey ũ) ◦R

)
·
(

(∇ eX ϕ̃) ◦R+ ∇Xr(∂eyϕ̃) ◦R
∂yr(∂eyϕ̃) ◦R

)

=

∫

S
|∂eys|P

(
∇ eX + (∇Xr) ◦ S∂ey

(∂yr) ◦ S∂ey

)
ũ ·
(

∇ eX + (∇Xr) ◦ S∂ey

(∂yr) ◦ S∂ey

)
ϕ̃.

Integrating by parts yields therefore that
∫
Ω Puϕ is equal to

−
∫

S
ϕ̃

(
∇ eX · +∂ey((∇Xr) ◦ S·)

∂ey((∂yr) ◦ S·)

)
· |∂eys|P

(
∇ eX + (∇Xr) ◦ S∂ey

(∂yr) ◦ S∂ey

)
ũ
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and thus to

−
∫

S
ϕ̃∇ eX,ey ·

(
Id 0

((∇Xr) ◦ S)T (∂yr) ◦ S

)
|∂eys|P

(
Id (∇Xr) ◦ S
0 (∂yr) ◦ S

)
∇ eX,eyũ.

By definition of r and s, one has r(X̃, s(X̃, ỹ)) = ỹ for all (X̃, ỹ) ∈ S. Differentiating

this identity with respect to X̃ and ỹ respectively yields

(∇Xr) ◦ S + (∂yr) ◦ S∇ eXs = 0, ∂eys(∂yr) ◦ S = 1.

Using these expressions in the above expressions gives the equality

(2.10)

∫

Ω

Puϕ =

∫

S
P̃ũϕ̃,

where P̃ is as given in the statement of the lemma. Since one clearly has
∫

Ω

hϕ =

∫

S
∂ysh̃ϕ̃,

the first claim of the lemma follows from (2.9) and (2.10).

We now prove the coercivity of P̃. One has, for all Θ ∈ Rd+1,

P̃Θ · Θ =
1

∂eys
PAΘ ·AΘ, with A :=

(
∂eysIdd×d −∇ eXs

0 1

)
,

and owing to (2.2) we have therefore

(2.11) P̃Θ · Θ ≥ p

∂eys
|AΘ|2.

The matrix A is invertible, and its inverse is given by

A−1 =
1

∂eys

(
Idd×d ∇ eXs

0 ∂eys

)
,

so that Θ = A−1AΘ can be bounded as

|Θ| ≤ Cst
1

c0

(
1 + ‖∇ eX,eys‖∞

)
|AΘ|.

Together with (2.11), this estimate yields the result of the lemma. �

The next lemma shows how the boundary conditions are transformed by the
diffeomorphism R.

Lemma 2.6. Suppose that the mapping s, given by (2.6), satisfies Assumption 2.2.
For all u ∈ C1(Ω), one has

u|{y=a} = ũ|{ey=0}, and ∂P
n u|{y=b} =

1√
1 + |∇Xb|2

∂
eP
n ũ|{ey=−1}.

Proof. The first assertion of the lemma is straightforward. We now prove the
second. By definition,

∂
eP
n ũ|ey=−1 = −(−ed+1) · P̃∇ eX,eyũ|ey=−1

= −(−ed+1) · P̃
(

∇Xu|y=b + ∇ eXs|ey=−1∂yu|y=b

∂eys|ey=−1∂yu|y=b

)
.
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Replacing P̃ by its expression given in Lemma 2.5, one obtains easily that

∂
eP
n ũ|ey=−1 = −

(
∇Xs|ey=−1

−1

)
· P∇X,yu|y=b

=
√

1 + |∇Xb|2∂P
n u|y=b,

which ends the proof of the lemma. �

Lemmas 2.5 and 2.6 show that the study of the boundary problems (2.3) can be
deduced from the study of elliptic boundary value problems on a flat strip:

Proposition 2.7. Suppose that the mapping s, given by (2.6), satisfies Assumption
2.2. Then u is a (variational, classical) solution of (2.3) if and only if ũ given by
(2.7) is a (variational, classical) solution of

(2.12)

{
P̃ũ = (∂eys)h̃ on S,
ũ|ey=0 = f, ∂

eP
n ũ|ey=−1 =

√
1 + |∇Xb|2g,

where P̃ is as given in Lemma 2.5.

The next section is therefore devoted to the study of the well-posedness of such
variable coefficients elliptic boundary value problems on a flat strip. Before this,

let us state a lemma dealing with the smoothness of the coefficients of P̃ . Its proof
is given in Appendix A

Lemma 2.8. Let k ∈ N and assume that the mapping s, given by (2.6), is (1 + k)-

regular. Then one can write P̃ = P̃1 + P̃2 with P̃1 ∈ Ck
b (S)(d+1)2 , P̃2 ∈ Hk(S)(d+1)2

and

‖P̃1‖k,∞ ≤ C
( 1

c0
, ‖s1‖k+1,∞

)
,

‖P̃2‖k,2 ≤ C
( 1

c0
, ‖s1‖1+k,∞, ‖s2‖1,∞

)
‖s2‖1+k,2.

2.2. Variable coefficients elliptic equations on a flat strip. We have seen in
the previous section that the theory of elliptic equations on a general strip of type
(2.3) can be deduced from the study of elliptic equations on a flat strip, but with
variable coefficients. In this section, we study the following generic problem:

(2.13)

{
Qu := −∇X,y ·Q∇X,yu = h on S,
u|y=0 = f, ∂Q

n u|y=−1 = g,

where we recall that ∂Q
n denotes the conormal derivative associated to Q,

(2.14) ∂Q
n u|y=0 = −ed+1 ·Q∇X,yu|y=0, ∂Q

n u|y=−1 = −(−ed+1)·Q∇X,yu|y=−1.

We also assume that Q satisfies the following coercivity assumption

(2.15) ∃q > 0 such that Q(X, y)Θ · Θ ≥ q|Θ|2, ∀Θ ∈ Rd+1, ∀(X, y) ∈ S.
The main result of this section is the following:

Theorem 2.9. Let k ∈ N, m0 = ⌈d+1
2 ⌉. Let f ∈ Hk+3/2(Rd), g ∈ Hk+1/2(Rd) and

h ∈ Hk(S).

i. If Q ∈ W 1+k(S)(d+1)2 satisfies (2.15), then there exists a unique solution u ∈
Hk+2(S) to (2.13). Moreover,

‖u‖k+2,2 ≤ C
(1
q
, ‖Q‖1+k,∞

)(
‖h‖k,2 + |f |Hk+3/2 + |g|Hk+1/2

)
.
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ii. If Q1 ∈ Ck+1
b (S)(d+1)2 and Q2 ∈ H1+k ∩Wm0,∞(S)(d+1)2 are such that Q :=

Q1 +Q2 satisfies (2.15), then there exists a unique solution u ∈ Hk+2(S) to (2.13).
Moreover, when k ≥ m0,

‖u‖k+2,2 ≤ Ck × (‖h‖k,2 + |f |Hk+3/2 + |g|Hk+1/2)

+ Ck × (‖h‖m0−1,2 + |f |Hm0+1/2 + |g|Hm0−1/2) ‖Q2‖1+k,2,

where Ck = C
(

1
q , ‖Q1‖1+k,∞, ‖Q2‖m0+1,∞

)
.

Remark 2.10. i. The proof below shows that the quantity ‖∇X,yu‖k+1,2 can be
estimated more precisely than ‖u‖k+2,2. Namely, one can replace the quantities
|f |Hk+3/2 and |f |Hm0+1/2 in both estimates of the theorem by |∇Xf |Hk+1/2 and
|∇Xf |Hm0−1/2 respectively. This remark is very useful when giving estimates on
the Dirichlet-Neumann operator.
ii. The second estimate of the theorem remains of course valid when k < m0, but
in that case, the first estimate of the theorem is more precise.

Proof. Even though S is unbounded, the proof follows the same lines as the usual
proofs of existence and regularity estimates of solutions to elliptic equations on reg-
ular bounded domains ([26, 19]), but special care must be paid to use the specific
Sobolev regularity of the coefficients of Q. We only prove the second point of the
theorem since the first one can be obtained by skipping the fourth step of the proof
below.
Step 1. Construction of a variational solution to (2.13). We first introduce
f ♯(y, ·) := χ(y|D|)f , where χ is a smooth compactly supported function such that
χ(0) = 1. Classically, one has f ♯|y=0 = f and,

(2.16) ‖∇X,yf
♯‖1,2 ≤ Cst |∇Xf |H1/2 , |∂Q

n f
♯
|y=−1

|H1/2 ≤ Cst ‖Q‖1,∞|∇Xf |H1/2 .

It follows that u is a variational solution of (2.13) if and only if u♯ := u − f ♯ is a
variational solution to

(2.17)

{
Qu♯ = h− Q(f ♯) := h♯,
u♯|y=0 = 0, ∂Q

n u
♯|y=−1 = g̃,

where g̃ := g − ∂Q
n f

♯|y=−1.

Define the space V as V := D(Rd × [−1, 0)), where the closure is taken relatively
to the H1(S)-norm. It is a classical consequence of Lax-Milgram’s theorem that
there exists a unique u♯ ∈ V such that

(2.18)

∫

S
Q∇X,yu

♯ · ∇X,yv =

∫

S
h♯v −

∫

y=−1

g̃v, ∀v ∈ V.

Step 2. Regularity of the variational solution. We show that u♯ ∈ H2(S) using
the classical method of Nirenberg’s tangential differential quotients. For all v ∈ V
and i = 1, . . . , d, one has ρi,hv ∈ V , where ρi,hv is defined as

ρi,hv :=
τi,hv − v

h
, with τi,hϕ := ϕ(· + he1), ∀ϕ ∈ D(Rd × [−1, 0));

we also recall that the adjoint operator of ρi,h is −ρi,−h and that one has the
product rule v1ρi,hv2 = ρi,h(v1v2)− ρi,hv1τi,hv2. Using (2.18) with ρi,hv instead of
v, one gets therefore
∫

S
(τi,−hQ)∇X,yρi,−hu

♯·∇X,yv =

∫

−1

g̃ρi,hv−
∫

S

(
h♯ρi,hv − ρi,−hQ∇X,yu

♯ · ∇X,yv
)
.
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By the trace theorem and Poincaré’s inequality, we get |ρi,hv|H−1/2 ≤ Cst ‖∇X,yv‖2,
so that the r.h.s of the above inequality can be bounded from above by

(2.19) Cst
(
|g̃|H1/2 + ‖h♯‖2 + ‖Q‖1,∞‖∇X,yu

♯‖2

)
‖∇X,yv‖2.

Taking v = ρi,−hu
♯ as test function in (2.19), using condition (2.15), and letting

h→ 0, one gets therefore

(2.20) ‖∂2
iju

♯‖2 ≤ Cst
1

q

(
|g̃|H1/2 + ‖h♯‖2 + ‖Q‖1,∞‖∇X,yu

♯‖2

)

for all 1 ≤ i, j ≤ d+1 such that i+ j ≤ 2d+1. The missing term ∂2
yyu

♯ is obtained
as usual using the equation,

(2.21) −∂2
yyu

♯ =
1

qd+1,d+1

(
Qu♯ +

∑

i+j≤2d+1

∂i

(
qi,j∂ju

♯
)

+ (∂yqd+1,d+1)∂yu
♯
)
,

where Q = (qi,j)i,j , from which it follows easily that

(2.22) ‖∂2
yyu

♯‖2 ≤ Cst

q

(
‖h♯‖2 + ‖Q‖1,∞

( ∑

i+j≤2d+1

‖∂2
iju

♯‖2 + ‖∇X,yu
♯‖2

))
.

From (2.20) and (2.22), it follows that u♯ ∈ H2(S) and satisfies

‖∇X,yu
♯‖1,2 ≤ C

(1
q
, ‖Q‖1,∞

)(
|g̃|H1/2 + ‖h♯‖2 + ‖∇X,yu

♯‖2

)
.

Replacing u♯, h♯ and g̃ by their expression in the above inequality, and using the
estimates (2.16) yields:

(2.23) ‖∇X,yu‖1,2 ≤ C
(1
q
, ‖Q‖1,∞

)(
‖h‖2 + ‖∇X,yu‖2 + |∇Xf |H1/2 + |g|H1/2

)
.

Step 3. Further regularity. We show by finite induction on k that for all u ∈
H2+k(S), k = 0, . . . ,m0 − 1, one has

‖∇X,yu‖1+k,2 ≤ C
(1
q
, ‖Q‖1+k,∞

)
(2.24)

×
(
‖Qu‖k,2 + ‖∇X,yu‖k,2 + |∇Xu|y=0

|H1/2+k + |∂Q
n u|y=−1

|H1/2+k

)
.

By Step 2, this assertion is true when k = 0. Let m0 > k ≥ 1 and assume it is also
true for 0 ≤ l ≤ k − 1.
For all i = 1, . . . , d, we apply (2.24)l with l = k − 1 to the function ρi,hu:

‖∇X,yρi,hu‖k,2 ≤ C
(1
q
, ‖Q‖k,∞

)(
‖Qρi,hu‖k−1,2 + ‖∇X,yρi,hu‖k−1,2

+|∇xρi,hu|y=0
|Hk−1/2 + |∂Q

n (ρi,hu)|y=−1|H−1/2+k

)
.(2.25)

We now estimate the four terms which appear in the r.h.s. of (2.25). Since Qρi,hu =
ρi,h(Qu) + ∇X,y · (ρi,hQ)∇X,yτi,hu, one has

(2.26) ‖Qρi,hu‖k−1,2 ≤ ‖Qu‖k,2 + Cst ‖Q‖k+1,∞‖∇X,yu‖k,2,

The second and third terms of (2.25) are very easily controlled. For the fourth one,
we use the explicit expression of ∂Q

n (ρi,hu), use the trace theorem, and proceed as
for the derivation of (2.26) to obtain

(2.27) |∂Q
n (ρi,hu)|y=−1|Hk−1/2 ≤ |∂Q

n u|y=−1
|Hk+1/2 + Cst ‖Q‖k+1,∞‖∇X,yu‖k,2.
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From (2.25), (2.26) and (2.27) (and letting h → 0), it follows that ‖∂iu‖k+1,2 is
bounded from above by the right hand side of (2.24). In order to complete the
proof, we still need an estimate of ∂2

yu in Hk(S). As in Step 2, such an estimate is
obtained using (2.21).
Step 4. Further regularity. We show by induction on k that (2.24) can be gener-
alized for k ≥ m0 as

‖∇X,yu‖1+k,2 ≤ Ck ×
(
‖Qu‖k,2 + ‖∇X,yu‖k,2 + ‖Q2‖1+k,2‖∇X,yu‖m0,2

+|∇Xu|y=0
|H1/2+k + |∂Q

n u|y=−1
|H1/2+k

)
,(2.28)

where Ck = C
(

1
q , ‖Q1‖1+k,∞, ‖Q2‖m0+1,∞

)
.

The procedure is absolutely similar to Step 3. It is strictly unchanged until Eq.
(2.26) where we use now use Moser’s tame estimates on products (e.g. [1]):

Lemma 2.11. Let l ∈ N and u, v ∈ H l(S) ∩ L∞(S). Then one has

‖uv‖l,2 ≤ Cst (‖u‖l,2‖v‖∞ + ‖v‖l,2‖u‖∞) .

This yields

‖Qρi,hu‖k−1,2 ≤ ‖Qu‖k,2

+ Cst
(
(‖Q1‖k+1,∞ + ‖Q2‖1,∞)‖∇X,yu‖k,2 + ‖Q2‖1+k,2‖∇X,yu‖∞

)
.

Estimate (2.27) is modified along the same lines and it follows from the Sobolev
embedding Hm0(S) ⊂ L∞(S) that ‖∂iu‖k+1,2 is bounded from above by the right
hand side of (2.28).
An estimate on ∂2

yu in Hk(S) is then provided as before using (2.21), which con-
cludes the induction.
Step 5. Endgame. From the variational formulation of the problem, one gets easily
the following lemma, whose proof we ommit.

Lemma 2.12. Let h ∈ L2(S), f ∈ H1/2(Rd) and g ∈ H−1/2(Rd).
If u ∈ H2(S) solves the boundary value problem (2.13) then

‖∇X,yu‖2 ≤ C
(1
q
, ‖Q‖∞

)
(‖h‖2 + |∇Xf |H−1/2 + |g|H−1/2)

and

‖u‖1,2 ≤ C
(1
q
, ‖Q‖∞

)
(‖h‖2 + |f |H1/2 + |g|H−1/2) .

Iterating estimates (2.24) and (2.28) and using the lemma gives the theorem. �

2.3. Regularizing diffeomorphisms. If u solves the boundary value problem
(2.3), then one can give precise estimates on ũ = u ◦S, owing to Prop. 2.7 and 2.8,
and using Th. 2.9. However, these estimates depend strongly on the diffeomor-
phism S chosen to straighten the fluid domain. The trivial diffeomorphism given
in Remark 2.4 is not the best choice possible: in order to control the Hk(S)-norm
of its Sobolev component, one needs to control the Hk(Rd)-norm of the surface
parameterization a. The next proposition shows that there exists “regularizing”
diffeomorphisms for which a linear control of the Hk−1/2-norm suffices.

Proposition 2.13. Let k ∈ N, k− 1
2 > 1+ d

2 , and let b ∈ Ck
b (Rd), a ∈ Hk−1/2(Rd).

If there exists h0 > 0 such that a−b ≥ h0 on Rd, then there exists a diffeomorphism
S of the form (2.6) such that
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• s is k-regular (with c0 = h0/2);
• One has ∂eys|ey=0 = a− b;

• One has s1 = −b(X̃)ỹ and ‖s2‖k,2 ≤ Cst |a|H−1/2+k .

Remark 2.14. i. The diffeormorphism S provided by this lemma is a perturbation of
the trivial diffeomorphism given in Remark 2.4. The Ck

b -component s2 remains un-
changed, and the behavior at the surface is exactly the same. However, the Sobolev
component s2 is half a derivative smoother here than for the trivial diffeomorphism
(where it has the smoothness of a). This is why we say that the diffeomorphism is
“regularizing”.
ii. Note that if a ∈ C([0, T ], H−1/2+k(Rd)) for some T > 0, and that the condi-
tion a − b > h0 is satisfied uniformly in t ∈ [0, T ], then one has ∂ts = ∂ts2 and
‖∂ts2‖k,2 ≤ C(|∂ta(t)|H−1/2+k

T

). This will be used in the proof of Prop. 3.19.

iii. If a ∈ Hk+3/2(Rd) with k > d/2 is such that a − b ≥ h0 > 0 on Rd,
then one can find a neighbourhood Ua of a in Hk+3/2 such that for all a ∈ Ua,

a − b ≥ 3
4h0. To each of these a ∈ Ua, one can associate a regularizing diffeomor-

phism Sa(X, y) = (X, sa(X, y)) by Prop. 2.13. The proof shows that if Ua is small
enough, then the mapping a 7→ sa is affine. This mapping is therefore smooth and
(using the notations of the proof) one can check that for all h ∈ Hk+3/2(Rd), one
has das · h = (ỹ + 1)hλ for some λ > 0. Hence,

das · h|ey=0 = h, das · h|ey=−1 = 0, ∂eydas · h|ey=0 = h.

Proof. Note that the Jacobian of the mapping (X̃, ỹ) ∈ S 7→ (X̃, s(X̃, ỹ)) ∈ Ω is
equal to |∂eys|. Therefore, if s satisfies the properties stated in the lemma, S is
indeed a diffeomorphism between S and Ω.
Let s1 ∈ Ck

b (S) be given by

s1(X̃, ỹ) = −b(X̃)ỹ, ∀(X̃, ỹ) ∈ S;

we look for s2 ∈ Hk(S) such that s := s1 + s2 satisfies

(2.29) ∂eys ≥
h0

2
on S, s2|ey=0 = a, ∂eys2|ey=0 = a, s2|ey=−1 = 0.

We construct such a mapping s2 using a Poisson kernel extension of a. Let χ be
a smooth, compactly supported, function defined on R and such that χ(0) = 1
and χ′(0) = 0. For any λ > 0, and a ∈ Hk−1/2(Rd), we define aλ ∈ Hk(S) as

aλ(·, ỹ) = χ(λỹ〈D〉)a. From this definition it follows also that for all (X̃, ỹ) ∈ S,
one has

|∂eyaλ(X̃, ỹ)| = |λχ′(λỹ〈D〉)〈D〉a| ≤ λ|χ′|∞
∫

Rd

〈ξ〉|â(ξ)|dξ

≤ Cst λ|χ′|∞|a|Hk−1/2 ,(2.30)

since k − 1/2 > 1 + d/2.
Define now s2 := (ỹ + 1)aλ. It is obvious that s2 satisfies the last three conditions
of (2.29). For the first one, remark that

(2.31) −b+ ∂eys2 = (−b+ a) + (aλ − a) + (1 + ỹ)∂eyaλ,

and that

|aλ(X̃, ỹ) − a(X̃)| =
∣∣∣
∫ ey

0

∂eyaλ(X̃, ỹ′)dỹ′
∣∣∣ ≤ sup

S
|∂eyaλ|.(2.32)
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Taking λ small enough, one can complete the proof from (2.30), (2.31), (2.32) and
the assumption a− b ≥ h0. �

3. The Dirichlet-Neumann operator

The aim of this section is to investigate the properties of the Dirichlet-Neumann
operator associated to a class of boundary value problems included in the general
framework studied in Section 2. It is known that such operators depend analytically
on the parameterization of the surface. Coifman and Meyer [9] considered small
Lipschitz perturbations of a line plane, and Craig et al. [12, 13] C1 perturbations
of hyperplanes in any dimension. These studies rely on subtle estimates of singular
integral operators. More recently, Nicholls and Reitich [28] addressed the analyticity
of the Dirichlet-Neumann operator using a simple method based on a change of
variables (see also [2]). Here, we are also interested in the dependence of the
Dirichlet-Neumann on the fluid domain, but from a Sobolev rather than analytical
viewpoint. The sharp elliptic estimate of the previous section allow us to give
“tame” estimates on the action of the Dirichlet-Neumann operator on Sobolev
spaces. In this section, we also compute the principal symbol of the DN operator,
give tame estimates of its commutators with spatial or time derivative, and also
study carefully its shape derivatives.

3.1. Definition and basic properties. As in Section 2, we consider a fluid do-
main Ω of the form

Ω = {(X, y) ∈ Rd+1, a(X) < y < b(X)},

where a and b satisfy:

(3.1) ∃h0 > 0, min{−b, a− b} ≥ h0 > 0 on Rd.

We also consider a constant coefficients elliptic operator P = −∇X,y · P∇X,y,
satisfying the coercivity condition (2.2). The boundary value problems we consider
in this section are a particular case of the boundary value problems (2.3) since
we only consider the case of homogeneous source term and Neumann boundary
condition at the bottom. More precisely, let u solve

(3.2)

{
Pu = 0 on Ω,
u|{y=a(X)} = f, ∂P

n u|{y=b(X)} = 0,

where we recall that, as defined in (2.4), ∂P
n denotes the conormal derivative asso-

ciated to P .
For all k ∈ N and f ∈ Hk+3/2(Rd), and provided that a and b are smooth enough,
we know by Th. 2.9 that u ∈ Hk+2(Ω) exists and is unique. Therefore, the following
definition makes sense:

Definition 3.1. Let k ∈ N, and assume that a, b ∈ W 2,∞(Rd) satisfy condition
(3.1). We call Dirichlet-Neumann operator the operator G(a, b) defined as

G(a, b) :
Hk+3/2(Rd) → Hk+1/2(Rd)

f 7→ −
√

1 + |∇Xa|2∂P
n u|{y=a(X)},

where u denotes the solution of (3.2).



WELL-POSEDNESS OF THE WATER-WAVES EQUATIONS 17

Remark 3.2. i. Thus defined, G(a, b) is not exactly the Dirichlet-Neumann operator

because of the scaling factor
√

1 + |∇Xa|2; yet, we use this terminology for the sake
of simplicity.
ii. Thanks to the minus sign in the definition, G(a, b) maps the Dirichlet data to
the (rescaled) outward normal derivative when P = Id.

As in Section 2, we can associate to (3.2) an elliptic boundary value problem on
the flat strip S = Rd × (0, 1): denoting by R the “regularizing” diffeormorphism
between S and Ω (and by S its inverse) given in Prop. 2.13, and ũ = u ◦S, one has

(3.3)

{
P̃ũ = 0 on S,
ũ|{ey=0} = f, ∂

eP
n ũ|{ey=−1} = 0,

where P̃ = −∇ eX,eyP̃ · ∇ eX,ey is as given in Lemma 2.5.

Notation 3.3. We denote by f ♭ the solution of the b.v.p. (3.3).

Proceeding as in the proof of Lemma 2.6, one can define the Dirichlet-Neumann
operator in terms of f ♭.

Proposition 3.4. Under the same assumptions as in Def. 3.1, one has

G(a, b)f = −∂ eP
n f

♭|ey=0, ∀f ∈ H3/2(Rd),

where f ♭ is as defined in Notation 3.3.

Before stating our main estimates on the DN operator, let us state some nota-
tions.

Notation 3.5. i. When a bottom parametization b ∈ W k,∞(Rd) (k ∈ N ∪ {∞}) is
given, we generically write B = |b|W k,∞ .
ii. For all r, s ∈ R, we denote generically by M(s) (resp. Mr(s)) constants which
depend on B and |a|Hs (resp. r, B and |a|Hs).

The next theorem shows that the DN operator is of order one, and gives precise
estimates on its operator norm.

Theorem 3.6. Let m0 = ⌈d+1
2 ⌉ and a, b be two continuous functions satisfying

(3.1). Then:
i. For all k ∈ N, if a, b ∈W k+2,∞(Rd) then for all f such that ∇Xf ∈ Hk+1/2(Rd)2,
one has

|G(a, b)f |Hk+1/2 ≤ C
(
|a|W k+2,∞ , |b|W k+2,∞

)
|∇Xf |Hk+1/2 .

ii. For all k ∈ N, if a ∈ H2m0+1/2 ∩Hk+3/2(Rd) and if b ∈W k+2(Rd), then

|G(a, b)f |Hk+1/2 ≤Ms(2m0 + 1/2) (|∇Xf |Hk+1/2 + |a|Hk+3/2 |∇Xf |Hm0+1/2) ,

for all f such that ∇Xf ∈ Hk+1/2 ∩Hm0+1/2, and where we used Notation 3.5.

Remark 3.7. Note that the DN operator is defined for functions f whose gradient is
in some Sobolev space, but which are not necessarily in a Sobolev space themselves.

Proof. We just prove the second part of the theorem; the proof of the first one is
very similar. Owing to Prop. 3.4, we have

|G(a, b)f |Hk+1/2 =
∣∣∂ eP

n ũ|0
∣∣
Hk+1/2 =

∣∣P̃ |ey=0ed+1 · ∇ eX,eyũ|ey=0

∣∣
Hk+1/2 .
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By the trace theorem, this yields

|G(a, b)f |Hk+1/2 ≤ Cst
∥∥P̃ ed+1 · ∇ eX,eyũ

∥∥
k+1,2

,

where the notation ‖ · ‖ is as in Notation 2.1.

Using the decomposition P̃ = P̃1 + P̃2 of Lemma 2.8 and the tame product estimate
of Lemma 2.11, one obtains

|G(a, b)f |Hk+1/2 ≤ Cst ‖P̃1‖k+1,∞‖∇ eX,eyũ‖k+1,2

+ Cst ‖P̃2‖∞‖∇ eX,eyũ‖k+1,2 + Cst ‖P̃2‖k+1,2‖∇ eX,eyũ‖m0,2.(3.4)

Now, remark that when the diffeomorphism S between the flat strip S and the
fluid domain Ω is the regularizing diffeomorphism of Prop. 2.13, the estimates of
Lemma 2.8, together with the Sobolev embedding Hm0(S) ⊂ L∞(S), give

‖P̃1‖k+1,2 ≤ C (B) ,

‖P̃2‖k+1,2 ≤ C (B, |a|Hm0+1/2) |a|Hk+3/2 .(3.5)

Similarly, the constant Ck which appears in Th. 2.9 when one takes Q = P̃ can
be bounded from above by C (B, |a|H2m0+1/2) and the result follows therefore from
(3.4), Th. 2.9 and Remark 2.10. �

Some important properties of the DN operator are listed in the next proposition.

Proposition 3.8. Let a, b ∈W 2,∞(Rd) satisfy (3.1). Then:
i. The operator G(a, b) is self-adjoint:

(G(a, b)f, g) = (f,G(a, b)g), ∀f, g ∈ S(Rd);

ii. The operator G(a, b) is positive:

(G(a, b)f, f) ≥ 0, ∀f ∈ S(Rd).

iii. We also have the estimates
∣∣(G(a, b)f, g

)∣∣ ≤M(m0 + 1/2)|f |H1/2|g|H1/2 , ∀f, g ∈ S(Rd),

and for all µ ≥ ep
3 , where p̃ is given in Lemma 2.5, one has

∣∣([G(a, b) + µ]f, f
)∣∣ ≥ Cst p̃|f |H1/2 , ∀f ∈ S(Rd).

Remark 3.9. Using the self-adjointness of G(a, b), one could extend this operator
to all Sobolev spaces Hs(Rd), s ∈ R.

Proof. i. According to Prop. 3.4, and using Notation 3.3, one has (G(a, b)f, g) =

(∂
eP
n f

♭|0, g), and Green’s identity yields (∂
eP
n f

♭|0, g) = (f, ∂
eP
n g

♭|0). Using Prop. 3.4
once again yields the result.

ii. Writing (G(a, b)f, f) = (∂
eP
n f

♭|0, f) and integrating by parts, one obtains

(G(a, b)f, f) =

∫

S
∇X,yf

♭ · P̃∇X,yf
♭

≥ p̃‖∇X,yf
♭‖2

2,(3.6)
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where the last inequality uses the coercivity of P̃ proved in Lemma 2.5.
iii. Proceeding as in ii. one has

(G(a, b)f, g) =

∫

S
∇X,yf

♭ · P̃∇X,yg
♭

≤ ‖P̃‖∞‖∇X,yf
♭‖2‖∇X,yg

♭‖2,

and the first estimate follows from Lemma 2.12.
To prove the second estimate, remark first that by Poincaré’s inequality, we have
‖f ♭‖2 ≤ 2‖∂yf

♭‖2 + |f |2, and therefore ‖∇X,yf
♭‖2 ≥ 1

2 (‖f ♭‖2 − |f |2). As a con-

sequence, we obtain ‖∇X,yf
♭‖2 ≥ 1

3‖f ♭‖1,2 − 1
3 |f |2. Using (3.6) and the estimate

|f |H1/2 ≤ Cst ‖f ♭‖1,2, we deduce (G(a, b)f, f) ≥ C|f |H1/2 − ep
3 |f |2. The end of the

proof is then straightforward. �

3.2. Symbol of the Dirichlet-Neumann operator. In order to compute the
commutator of G(a, b) with differential operators, which is a crucial step to obtain
energy estimates for the water-waves equations, we need to know its principal sym-
bol. Since this result is interesting in itself, we state it as a theorem (we use the
classical notation σ(x,D) to denote the pseudo-differential operator associated to
the symbol σ(x, ξ)).

Theorem 3.10. There exists an integer q0, depending only on d, such that if
a ∈ Hq0+1/2(Rd) and b ∈ C∞

b (Rd) satisfy (3.1) then, for j = −1, 0, 1, one has

∀f ∈ Hj/2(Rd),
∣∣(G(a, b) − ga(X,D)

)
f
∣∣
Hj/2 ≤M(q0 + 1/2)|f |Hj/2 ,

where M(·) is as defined in Notation 3.5 and the symbol ga(X, ξ) is given by

ga(X, ξ) =

√

(PN ·N)

(
ξ
0

)
· P
(
ξ
0

)
−
[
N ·

(
ξ
0

)]2
,

with N := (−∇Xa, 1)T .

Remark 3.11. i. The estimate of the theorem can be extended to higher order
Sobolev spaces, but we do not need such a result here.
ii. The parameterization b of the bottom does not appear in the principal symbol
of G(a, b). This is not surprising since the contribution to the surface of the bottom
is “smoothed” by the elliptic equation.
iii. For the water-waves equations, one has P = Id(d+1)×(d+1) and ga takes the
simple form

ga(X,D) =
√
|ξ|2 + |∇Xa|2|ξ|2 − (∇Xa · ξ)2.

There is therefore an interesting phenomenological difference between the 1D and
the 2D cases. In the latter, the principal symbol of the Dirichlet-Neumann oper-
ator is a pseudo-differential operator, while in the former, it is simply a Fourier
multiplier: ga(D) = |D|, which does not depend on the fluid domain.

Proof. The proof of the theorem relies strongly on the factorization procedure of
elliptic operators, as set forth in [35] (see also [30]). Recall that, according to Prop.

3.4, one has G(a, b)f = −∂ eP
n f

♭|0, where f ♭ denotes the solution of (3.3). The idea
is to deduce an approximation of G(a, b)f from an approximation f ♭

app of f ♭ for
which the conormal derivative at the surface can be explicitly computed. In order

to find such an approximation, we first approximate the elliptic operator P̃; this is
where we need the factorization procedure mentioned above.
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Writing P̃ =

(
P̃1 p̃

p̃T p̃d+1

)
, one can check that the operator P̃ can be written

under the form

P̃ = −p̃d+1∂
2
ey −

(
2p̃ · ∇ eX + (∂ey p̃d+1 + ∇ eX · p̃)

)
∂ey(3.7)

+P1∆ eX +
(
(∇ eX · P1) + ∂eyp̃

)
· ∇ eX .

We now look for an approximation of P̃ of the form

(3.8) P̃app := −p̃d+1(∂y − η−(X̃, ỹ, D))(∂y − η+(X̃, ỹ, D)),

where, for all ỹ ∈ [−1, 0], η±(X̃, ỹ, D) denotes the pseudo-differential operator of

symbol η±(X̃, ỹ, ξ). Obviously, if one wants the highest order terms of P̃app to

match those of P̃, η±(X̃, ỹ, ξ) must be the roots of the second order polynomial

Σ(P̃) = −p̃d+1η
2 − 2ip̃ · ξη + ξ · P̃1ξ, namely,

(3.9) η±(X, y, ξ) =
1

p̃d+1

(
− ip̃ · ξ ±

√
p̃d+1ξ · P̃1ξ − (p̃ · ξ)2

)
.

We now take the function f ♭
app we are looking for as an approximate solution of the

equation P̃appφ = 0; from (3.8), it suffices to take an approximate solution of the
backward evolution equation

(3.10) (∂ey − η+(X̃, ỹ, D))u = 0, u|ey=0 = f, for ỹ ∈ [−1, 0];

we take therefore

(3.11) f ♭
app(X̃, ỹ) := σapp(X̃, ỹ, D)f

where σapp(X̃, ỹ, ξ) := exp
(
−
∫ 0

ey

η+(X̃, y′, ξ)dy′
)
.

Since the real part of η+ is always positive, σapp(X̃, ỹ, D) is smoothing for all
y ∈ [−1, 0). As a consequence, one has:

Lemma 3.12. Let m0 = ⌈d+1
2 ⌉. Let a ∈ H2m0+1/2(Rd) and b ∈ W d+1,∞(Rd)

satisfy condition (3.1). Then

‖f ♭
app‖2 ≤M(2m0 + 1/2)|f |H−1/2 , and ‖f ♭

app‖1,2 ≤M(2m0 + 1/2)|f |H1/2 ,

where M(·) is as defined in Notation 3.5.

Proof. From the explicit expression of η+ given in (3.9), one deduces

‖P̃‖∞
p̃

|ξ| ≥ ℜ
(
η+(X̃, ỹ, ξ)

)
≥ C+|ξ|,

where C+ is a positive constant which depends on h0, p, |b|1,∞ and |a|Hm0+1/2 . Let
us define σ̃app as

σ̃app(X̃, ỹ, ξ) := σapp(X̃, ỹ, ξ) exp
(
− C+

2
ỹ|ξ|
)
;

it is clear that σ̃app(X̃, ỹ, ξ) is a symbol of order zero (uniformly in ỹ ∈ [−1, 0]).

The operator σ̃app(X̃, ỹ, D) acts therefore continuously on L2(Rd). Moreover, its
operator norm can be bounded in terms of a finite number of L∞-norm of space-

frequency derivatives of the symbol σ̃app(X̃, ỹ, ξ) (d-derivatives with respect to X̃
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and d derivatives with respect to ξ are enough, see [23] – see also [25]). Using the
Sobolev embedding Hs(Rd) ⊂ L∞(Rd) for s > d/2, it follows that

|σ̃app(X̃, ỹ, D)φ|2 ≤M(2m0 + 1/2)|φ|2, ∀φ ∈ L2(Rd).

Thus,

‖f ♭
app‖2 =

(∫ 0

−1

∣∣σ̃app(X̃, y,D)
(
exp(

C+

2
y|D|)f

)∣∣2
2
dy
)1/2

≤ M(2m0 + 1/2)
(∫ 0

−1

∣∣ exp(
C+

2
y|D|)f

∣∣2
2
dy
)1/2

.

The gain of half a derivative claimed in the first estimate of the lemma is deduced
from this expression by a classical computation (see e.g. Prop. 12.4 of [34]).
One can estimate the first order derivatives of f ♭ in the same way, which yields the
second estimate of the lemma. �

We now prove that f ♭
app is indeed an approximate solution of (3.10) and hence

of the equation P̃appf
♭
app = 0.

Lemma 3.13. There exists an integer q0, depending only on d, such that if a ∈
Hq0+1/2(Rd) and b ∈ C∞

b (Rd) satisfy condition (3.1) then

‖P̃appf
♭
app‖2 ≤M(q0 + 1/2)|f |H1/2 .

Proof. Simple computations yield

P̃appf
♭
app = −p̃d+1(∂ey − η−(X̃, ỹ, D))

(
(η+σ̃app)(X̃, ỹ, D) − η+(X̃, ỹ, D)σ̃app(X̃, ỹ, D)

)(
exp(

C+

2
ỹ|D|)f

)
,(3.12)

where σ̃app and C+ are as in the proof of Lemma 3.12.

It is easy to check that η−(X̃, ỹ, D) is of order one, so that it acts continuously
on H1(Rd) with values in L2(Rd). As in the proof of Lemma 3.12 above, we can
bound its norm in terms of a finite number of derivatives of the symbol. For q0
large enough, we have therefore

‖P̃appf
♭
app‖2 ≤M(q0 + 1/2)

×
∥∥∥
(
(η+σ̃app)(X̃, ỹ, D) − η+(X̃, ỹ, D)σ̃app(X̃, ỹ, D)

)(
exp(

C+

2
ỹ|D|)f

)∥∥∥
1,2
,

where M(·) is as defined in Notation 3.5.

Similarly, the operator (η+σ̃app)(X̃, ỹ, D) − η+(X̃, ỹ, D)σ̃app(X̃, ỹ, D) is of order 0,
so that (taking a larger q0 if necessary), one has

‖P̃appf
♭
app‖2 ≤M(q0 + 1/2)

∥∥ exp(
C+

2
y|D|)f

∥∥
1,2
,

and one can conclude the proof as for Lemma 3.12. �

We now proceed to estimate the difference f ♭ − f ♭
app:

Lemma 3.14. There exists an integer q0, depending only on d, such that if a ∈
Hq0+1/2(Rd) and b ∈ C∞

b (Rd) satisfy (3.1), then

‖f ♭ − f ♭
app‖2,2 ≤M(q0 + 1/2)|f |H1/2 .
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Proof. Since by definition P̃f ♭ = 0, one gets

P̃(f ♭ − f ♭
app) = −(P̃ − P̃app)f ♭

app − P̃appf
♭
app

:= h1
app + h2

app,(3.13)

together with the boundary conditions (f ♭ − f ♭
app)|0 = 0 and ∂

eP
n (f ♭ − f ♭

app)|−1 =

−∂ eP
n f

♭
app|−1. Using Th. 2.9, we find therefore

(3.14) ‖f ♭ − f ♭
app‖2,2 ≤M(2m0 + 1/2)

(
‖h1

app‖2 + ‖h2
app‖2 + |∂ eP

n f
♭
app|−1|H1/2

)
.

Using (3.7) and the definition of P̃app, one checks easily that P̃ − P̃app is a first
order operator, so that with the help of Lemma 3.12, one gets the bound ‖h1

app‖2 ≤
M(q0 +1/2)|f |H1/2. Owing to Lemma 3.13, the same bound also holds on ‖h2

app‖2.

Finally, since f 7→ ∂
eP
n f

♭
app|−1 is a smoothing operator, such an estimate also holds

for |∂ eP
n f

♭
app|−1|H1/2 , and the proof of the lemma is complete. �

We are now ready to finish the proof of the theorem. First remark that G(a, b)f+

∂
eP
n f

♭
app|0 = −∂ eP

n (f ♭ − f ♭
app)|ey=0 so that

∣∣G(a, b)f + ∂
eP
n f

♭
app|0

∣∣
H1/2 ≤M(m0 + 1/2)‖f ♭ − f ♭

app‖2,2;

by Lemma 3.14, we have therefore, for some q0 ∈ N,

(3.15)
∣∣G(a, b)f + ∂

eP
n f

♭
app|0

∣∣
H1/2 ≤M(q0 + 1/2)|f |H1/2.

To prove that (3.15) coincides with the estimate of the theorem in the case j = 1/2,

we must show that ∂
eP
n f

♭
app|ey=0 = −ga(X,D)f , which we do now.

Thanks to Lemmas 2.5 and 2.13, we know the explicit expression of P̃ |y=0; from
the definition of the conormal derivative, one can then compute easily

(3.16) ∂
eP
n f

♭
app|ey=0 = −N · P

(
∇Xf

0

)
− N · PN

a− b
∂eyf

♭
app|ey=0,

where N := (−∇Xa, 1)T .
The explicit expression of η+ given in (3.9) yields also

∂yf
♭
app|y=0 =

a− b

PN ·N×

−N · P

(
∇Xf

0

)
+

√

(PN ·N)

(
D
0

)
· P
(
D
0

)
−
[
N ·

(
D
0

)]2
f


 .

Plugging this expression into (3.16) yields ∂
eP
n f

♭
app|ey=0 = −ga(X,D)f , which con-

cludes the H1/2-estimate of the theorem. Recalling that the DN operator is self-
adjoint (see Prop. 3.8), one deduces the H−1/2-estimate by a standard duality
argument; finally, the L2-estimate is obtained by interpolation. �

3.3. Commutator estimates. This section is devoted to the proof of tame esti-
mates of the commutator of the Dirichlet-Neumann operator with spatial derivatives
and time derivative. The next proposition deals with the case of spatial derivatives.
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Proposition 3.15. There exists an integer q0, depending only on d, such that if
a ∈ Hq0+1/2(Rd) and b ∈ C∞

b (Rd) satisfy (3.1) then for all k ∈ N and α ∈ Nd,
|α| ≤ k, one has

∣∣[Λ1/2∂α, G(a, b)]f
∣∣
2
≤Mk(q0 + 1/2) (|f |Hk+1/2 + |a|Hk+3/2 |f |Hm0+3/2) ,

where Mk(·) is as defined in Notation 3.5.

Remark 3.16. The interest of this commutator estimate is that it is “tame”: even
though we have a loss of derivative (in the sense that one needs to control the
Hk+3/2-norm of a and not only its Hk+1/2-norm), this loss is linear, and the mul-
tiplicative constant which appears in front of it involves only Sobolev norms of f
independent of k. This point is crucial to obtain tame energy estimates later.

Proof. First remark that the following identity holds for all α ∈ Nd, |α| ≤ k:

[Λ1/2∂α, G(a, b)] = [Λ1/2, G(a, b)]∂α + Λ1/2[∂α, G(a, b)],

so that

(3.17)
∣∣[Λ1/2∂α, G(a, b)]f

∣∣
2
≤
∣∣[Λ1/2, G(a, b)]∂αf

∣∣
2

+
∣∣[∂α, G(a, b)]f

∣∣
H1/2 .

Estimate of
∣∣[Λ1/2,G(a,b)]∂αf

∣∣
2
. The idea is to replace G(a, b) by its principal

symbol ga(X,D) computed in the previous section. One has, denoting G0 :=
G(a, b) − ga(X,D),

[Λ1/2, G(a, b)]∂αf = [Λ1/2, ga(X,D)]∂αf + Λ1/2
(
G0∂

αf
)
−G0

(
Λ1/2∂αf

)

:= A1 +A2 +A3.(3.18)

The operator [Λ1/2, ga(X,D)] is of order 1/2 and one can bound its operator norm
‖[Λ1/2, ga(X,D)]‖H1/2→L2 , as in the proofs of Lemmas 3.12 and 3.13, in terms of
the derivatives of the symbol ga(X, ξ) given in Th. 3.10. Thus, for some q0 ∈ N,

(3.19) |A1|2 ≤ C (|a|Hq0+1/2) |f |Hk+1/2 .

Both A2 and A3 can be bounded using Th. 3.10:

(3.20) |Aj |2 ≤M(q0 + 1/2)|f |Hk+1/2, j = 2, 3.

From (3.18)-(3.20), we deduce

(3.21)
∣∣[Λ1/2, G(a, b)]∂αf

∣∣
2
≤M(q0 + 1/2)|f |Hk+1/2.

Estimate of |[∂α,G(a,b)]f |H1/2 . Using Notation 3.3, it is easy to check that

(3.22) [∂α, G(a, b)]f = [∂α, P̃ |0ed+1] · ∇ eX,eyf
♭|0 − ∂

eP
n v|0,

with v := ∂αf ♭ − (∂αf)♭.
The first term of the r.h.s. of (3.22) is estimated as follows

(3.23)
∣∣[∂α, P̃ |0ed+1] · ∇ eX,eyf

♭|0
∣∣
H1/2 ≤ Cst

∥∥[∂α, P̃ ]∇ eX,eyf
♭
∥∥

1,2
.

In order to estimate the second term of (3.22), first remark that v solves the b.v.p.

(3.24)

{
P̃v = ∇ eX,ey · [∂α, P̃ ]∇ eX,eyf

♭

v|0 = 0, ∂
eP
n v|−1 = −[∂α, P̃ |−1ed+1] · ∇ eX,eyf

♭|−1;

by the trace theorem and Th. 2.9, one gets therefore

(3.25)
∣∣∂ eP

n v|0
∣∣
H1/2 ≤M(m0 + 3/2)

∥∥[∂α, P̃ ]∇ eX,eyf
♭
∥∥

1,2
.
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The term
∥∥[∂α, P̃ ]∇ eX,eyf

♭
∥∥

1,2
which appears in both (3.23) and (3.25) is estimated

in the following lemma:

Lemma 3.17. Under the same assumptions as in the proposition, one has
∥∥[∂α, P̃ ]∇ eX,eyf

♭
∥∥

1,2
≤Mk(2m0 + 1/2) (|f |Hk+1/2 + |a|Hk+3/2 |f |Hm0+3/2) .

Proof. By Lemma 2.8, we can decompose P̃ into P̃ = P̃1 + P̃2, so that [∂α, P̃ ] =

[∂α, P̃1] + [∂α, P̃2].

One has
∥∥[∂α, P̃1]∇ eX,eyf

♭
∥∥

1,2
≤ ‖P̃1‖k+1,∞‖f ♭‖k+1,2, which is itself smaller than

the r.h.s. of the estimate of the lemma, thanks to the estimates (3.5) and Th. 2.9.

In order to bound
∥∥[∂α, P̃2]∇ eX,eyf

♭
∥∥

1,2
from above, remark that

∥∥[∂α, P̃2]∇ eX,eyf
♭
∥∥

1,2
∼
∥∥[∂α, P̃2]∇ eX,eyf

♭
∥∥

2
+

d+1∑

j=1

∥∥∂j

(
[∂α, P̃2]∇ eX,eyf

♭
)∥∥

2

and that for all j = 1, . . . , d+ 1, one has ∂j [∂
α, P̃2] = [∂α, P̃2]∂j + [∂α, (∂jP̃2)]. It is

then easy to obtain, using Lemma 2.11 and the estimates (3.5), that
∥∥[∂α, P̃2]∇ eX,eyf

♭
∥∥

1,2
≤Mk(2m0 + 1/2)

(
‖f ♭‖k+1,2 + |a|Hk+3/2‖f ♭‖m0+2,2

)
.

Owing to Th. 2.9, the r.h.s. of this latter estimate is smaller than the r.h.s. of the
estimate given in the lemma, so that the proof is complete. �

From (3.22), (3.23), (3.25) and the lemma one obtains

(3.26) |[∂α, G(a, b)]f |H1/2 ≤Mk(2m0 + 1/2) (|f |Hk+1/2 + |a|Hk+3/2 |f |Hm0+3/2)

The proposition is therefore a consequence of (3.17), (3.21) and (3.26). �

We end this section with two propositions concerning the commutating properties
of the Dirichlet-Neumann operator with a general scalar-valued differential operator
of order one, and with the time derivative (when the surface depends on time).

Proposition 3.18. Let m0 = ⌈d+1
2 ⌉ and suppose that a ∈ Hm0+3/2(Rd) and b ∈

C∞
b (Rd) satisfy (3.1). Let O(∂X) be a first order differential operator on Rd with

coefficients in W 1,∞(Rd). Then, for all f ∈ H1/2(Rd), one has
∣∣([O(∂X), G(a, b)]f, f

)∣∣ ≤M(m0 + 3/2)C(|O|1,∞)|f |2H1/2 ,

where M(·) is as is Notation 3.5, and |O|1,∞ denotes the sum of the W 1,∞-norm
of all the coefficients of O(∂X).

Proof. With the same techniques as in the proof of the previous proposition, one
can show that

(3.27) [O(∂X), G(a, b)]f = ed+1 ·
(
[O(∂ eX), P̃∇ eX,ey]

)
f ♭|ey=0 − ∂

eP
n v|ey=0,

where v is the solution of the boundary value problem

(3.28)

{
P̃v = ∇ eX,ey · [O(∂ eX ), P̃∇ eX,ey]f

♭ − (∇ eX,eyO(∂ eX)) · P̃∇ eX,eyf
♭

v|ey=0 = 0, ∂
eP
n v|ey=−1 = −ed+1 ·

(
[O(∂ eX), P̃∇ eX,ey]f ♭

)
|ey=−1.

Green’s identity asserts that

(3.29) (∂
eP
n v|ey=0, f) + (∂

eP
n v|ey=−1, f

♭|ey=−1) =

∫

S
P̃vf ♭ −

∫

S
P̃∇ eX,eyv · ∇ eX,eyf

♭.
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We also know that∫

S
P̃vf ♭ =

∫

S

(
∇ eX,ey · [O(∂ eX), P̃∇ eX,ey]f ♭ − (∇ eX,eyO(∂ eX)) · P̃∇ eX,eyf

♭
)
f ♭;

Integrating by parts the first term of the r.h.s., one finds (recall that ∂
eP
n v|ey=−1 =

−ed+1 · ([O(∂ eX), P̃∇ eX,ey]f ♭)|ey=−1),
∫

S
P̃vf ♭ = −

∫

S
[O(∂ eX), P̃∇ eX,ey]f ♭ · ∇ eX,eyf

♭

−
∫

S

(
(∇ eX,eyO(∂ eX)) · P̃∇ eX,eyf

♭
)
f ♭(3.30)

+
(
ed+1 ·

(
[O(∂ eX), P̃∇ eX,ey]f ♭

)
|ey=0, f

)
+ (∂

eP
n v|ey=−1, f

♭|ey=−1).

From (3.27)-(3.30) we deduce

(
[O(∂ eX), G(a, b)]f, f

)
=

∫

S
[O(∂ eX), P̃∇ eX,ey]f ♭ · ∇ eX,eyf

♭

+

∫

S
P̃∇ eX,eyv · ∇ eX,eyf

♭ +

∫

S

(
(∇ eX,eyO(∂ eX)) · P̃∇ eX,eyf

♭
)
f ♭,

from which one obtains easily

(3.31)
(
[O(∂X ), G(a, b)]f, f

)
≤ C

(
‖P̃‖1,∞, |O|1,∞

)
‖f ♭‖2

1,2 + ‖P̃‖∞‖v‖1,2‖f ♭‖1,2.

Multiplying (3.28) by v, integrating by parts and using Poincaré’s inequality, one
obtains

‖v‖1,2 ≤M(m0 + 3/2)C(|O|1,∞)‖f ♭‖1,2,

and (3.31) yields therefore
(
[O(∂X), G(a, b)]f, f

)
≤M(m0 + 3/2)C(|O|1,∞)‖f ♭‖2

1,2,

and one concludes the proof with the help of Lemma 2.12. �

With only minor modifications, and using Remark 2.14, the same proof gives:

Proposition 3.19. Let m0 = ⌈d+1
2 ⌉ and T > 0. Let a ∈ C1([0, T ], Hm0+3/2(Rd))

and b ∈ C∞
b (Rd) satisfy (3.1) uniformly for t ∈ [0, T ]. Then, for all f ∈ H1/2(Rd),

one has

|([∂t, G(a, b)]f, f)| ≤M(m0 + 3/2)C
(
|∂ta|L∞

T

)
|f |2H1/2 ,

where M(·) is as in Notation 3.5.

3.4. Shape derivative of the Dirichlet-Neumann operator. The Dirichlet-
Neumann operator is linear but depends nonlinearly on the parameterization a
of the surface. It is known that this dependence is smooth, and even analytical
[9, 13, 28]. The next theorem gives an explicit expression of its shape derivative,
that is, of its derivative with respect to the surface parameterization. In Prop. 3.25
below we give tame estimates on the first and second shape derivatives.

Theorem 3.20. Let m0 = ⌈d+1
2 ⌉ and k ∈ N, k ≥ m0. Suppose that a ∈

Hk+3/2(Rd) and b ∈ C∞
b (Rd) satisfy (3.1).

Then there exists a neighborhood Ua of a in Hk+3/2(Rd) such that for all given

f ∈ Hk+3/2(Rd), the mapping

a ∈ Ua ⊂ Hk+3/2(Rd) 7→ G(a, b)f ∈ Hk+1/2(Rd)
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is well defined and differentiable. Moreover, for all h ∈ Hk+3/2(Rd), one has

daG(·, b)f · h = −G(a, b) (hZ) −∇X · (hv) ,

where

Z :=
1

N · PN

(
G(a, b)f − PN ·

(
∇Xf

0

))
,

with
N := (−∇Xa, 1)T and v := ∇Xf − Z∇Xa.

Remark 3.21. For the water-waves equations, one has P = Id(d+1)×(d+1), and Z is

simply given by with Z =
1

1 + |∇Xa|2
(G(a, b)f + ∇Xa · ∇Xf).

Proof. We can choose a neighborhood Ua ⊂ Hk+3/2 of a such that for all a ∈
Ua, condition (3.1) is satisfied (taking h0 smaller if necessary). To each a ∈
Ua it is therefore possible to associate a regularizing diffeomorphism Sa(X, y) =
(X, sa(X, y)) as in Prop. 2.13. Taking Ua smaller if necessary, and using Remark
2.14, we can assume that the mapping a 7→ sa is affine. We denote by das its deriv-

ative at a. Since the matrix P̃a, given by Lemma 2.5 with s = sa, has coefficients
in Hk+1(S), it follows that the mapping

a ∈ Ua ⊂ Hk+3/2(Rd) 7→ P̃a ∈ Hk+1(S)(d+1)2

is smooth. We denote by daP̃ its derivative at a. Let us also denote by f ♭
a the

solution of the boundary value problem

(3.32)

{
−∇ eX,ey · P̃a∇ eX,eyf

♭
a = 0 in S,

f ♭
a|ey=0 = f, ∂

ePa
n f ♭

a|ey=−1 = 0.

By Th. 2.9, we know that f ♭
a ∈ Hk+2(S). It is quite easy to prove that the mapping

B defined as
B : a ∈ Ua ⊂ Hk+3/2(Rd) 7→ f ♭

a ∈ Hk+2(S)

is continuous. Differentiating (3.32) with respect to a, it is easy to show that B is
differentiable at a and that for all h ∈ Hk+3/2(Rd), ṽa,h := daB · h solves

(3.33)





−∇ eX,ey · P̃a∇ eX,eyṽa,h = ∇ eX,ey · daP̃ · h∇ eX,eyf
♭
a in S,

ṽa,h|ey=0 = 0, ∂
ePa
n ṽa,h|ey=−1 = −ed+1 ·

(
daP̃ · h∇ eX,eyf

♭
a

)
|ey=−1.

The following is a key lemma. It gives an explicit function solving (3.33) except for
the Dirichlet condition at the surface.

Lemma 3.22. For all h ∈ Hk+3/2(Rd), the function ṽ♭
a,h :=

das·h
∂eysa

∂yf
♭
a solves





−∇ eX,ey · P̃a∇ eX,ey ṽ
♭
a,h = ∇ eX,ey · daP̃ · h∇ eX,eyf

♭
a,

ṽ♭
a,h|ey=0 = h

a−b∂eyf
♭
a|ey=0, ∂

ePa
n ṽ♭

a,h = −ed+1 ·
(
daP̃ · h∇ eX,eyf

♭
a

)
|ey=−1.

Remark 3.23. The expression of ṽ♭
a,h given in the above lemma might not seem

obvious. We sketch here a way to find it in the case where P = Id and for 1D
surfaces. Denote by ua the solution of the Laplace equation (1.7) in Ωa,b with
Dirichlet condition f at the surface and homogeneous Neumann condition at the
bottom. First write in variational form that ua solves this boundary value problem
and then differentiate this variational equality with respect to a using the classical
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work of Hadamard on shape functionals [20] (see also Lemma 5.1 of [15]). This yields
an expression of the derivative of the mapping a 7→ ua. Pulling this expression back
by the regularizing diffeomorphism S yields an expression of the derivative of B and
hence of ṽ♭

a,h. The expression given in Lemma 3.22 is just a generalization of this

expression found formally to the case of multi-dimensional surface waves.

Proof. Let us compute (writing (X, y) instead of (X̃, ỹ)),

∇X,y · P̃a∇X,y ṽ
♭
a,h =

das · h
∂ysa

∇X,y · P̃a∂y∇X,yf
♭
a

+∇X,y

(das · h
∂ysa

)
· P̃a∂y∇X,yf

♭
a + ∇X,y · P̃a(∂yf

♭
a)∇X,y

(das · h
∂ysa

)
.

Using the fact that ∇X,y · P̃a∇X,yf
♭
a = 0, we obtain

∇X,y · P̃a∇X,y ṽ
♭
a,h = −∇X,y ·

(das · h
∂ysa

∂yP̃a∇X,yf
♭
a

)

+∇X,y

(das · h
∂ysa

)
· ∂y(P̃a∇X,yf

♭
a) + ∇X,y · P̃a(∂yf

♭
a)∇X,y

(das · h
∂ysa

)
.

Still using the identity ∇X,y · P̃a∇X,yf
♭
a = 0, one can remark that

∇X,y

(das · h
∂ysa

)
· ∂y(P̃a∇X,yf

♭
a) = ∂y

(
P̃a∇X,y

(das · h
∂ysa

)
· ∇X,yf

♭
a

)

− ∇X,y ·
(
∂y

(das · h
∂ysa

)
P̃a∇X,yf

♭
a

)
,

and therefore, one can write

(3.34) ∇X,y · P̃a∇X,y ṽ
♭
a,h = ∇X,y · Q̃a∇X,yf

♭
a,

where the symmetric matrix Q̃a is equal to

−∂y

(das · h
∂ysa

P̃a

)
+
(

0d+1×d P̃a∇X,y

(
das·h
∂ysa

) )
+

(
0d×d+1(

P̃a∇X,y

( das·h
∂ysa

))T

)
.

We now prove that Q̃a = −daP̃ · h. In order to do so, let us write the matrix P

under the form P =

(
P1 p

pT pd+1

)
, where P1 is a d×d symmetric matrix, p ∈ Rd

and pd+1 ∈ R. The matrix P̃a given by Lemma 2.5 can therefore be written

P̃a =

(
∂ysaP1 −P1∇Xsa + p(

−P1∇Xsa + p
)T 1

∂ysa

(
∇Xsa · P1∇Xsa + pd+1 − 2p · ∇Xsa

)
)
,

and it follows that for any h ∈ Hk+3/2(Rd), the matrix daP̃ · h is given by



∂y

(
das · h

)
P1 −P1∇X

(
das · h

)
(
−P1∇X

(
das · h

))T 1
∂ysa

(
2∇X

(
das · h

)
· P1∇Xsa − 2p · ∇X

(
das · h

) )

−∂y(das·h)
∂ysa

∇Xsa·P1∇Xsa+pd+1−2p·∇Xsa

∂ysa
.




It is then easy, though tedious, to check that Q̃a = −daP̃ ·h. From (3.34) we obtain

therefore −∇X,y · P̃a∇X,y ṽ
♭
a,h = ∇X,y · daP̃ · h∇X,yf

♭
a ant it remains only to check
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that ṽ♭
a,h satisfies the boundary conditions to conclude the proof of the lemma.

From Prop. 2.13 and Remark 2.14, one has das ·h|y=0 = h and ∂ysa|y=0 = a− b so

that ṽ♭
a,h satisfies the Dirichlet boundary stated in the lemma on the upper bound-

ary of the strip S. To check that the Neumann condition of the lower boundary is
also satisfied, recall that by definition

∂
ePa
n ṽ♭

a,h|y=−1 == ed+1 ·
(
P̃a∇X,y

(das · h
∂ysa

∂yf
♭
a

))∣∣
y=−1

.

Now, recall that owing to Remark 2.14, one has das · h|y=−1 = 0, so that

∂
ePa
n ṽ♭

a,h|y=−1 =
(∂y(das · h)

(∂ysa)2
∇Xsa · P1∇Xsa + pd+1 − 2p · ∇Xsa

)
∂yf

♭
a

∣∣
y=−1

.

One can check that this latter expression equals −ed+1 ·
(
daP̃ · h∇X,yf

♭
a

)
|y=−1,

which concludes the proof. �

From (3.33) and Lemma 3.22, ṽa,h − ṽ♭
a,h solves

{
−∇X,y · P̃a∇X,y(ṽa,h − ṽ♭

a,h) = 0

(ṽa,h − ṽ♭
a,h)|y=0 = − h

a−b∂yf
♭
a|y=0, ∂

ePa
n (ṽa,h − ṽ♭

a,h)|y=−1 = 0;

by definition of the DN operator G(a, b), it follows that −∂ ePa
n (ṽa,h − ṽ♭

a,h)|y=0 =

G(a, b)
(
− h

a−b∂yf
♭
a|y=0

)
, or equivalently

(3.35) −∂ ePa
n ṽa,h|y=0 = −∂ ePa

n ṽ♭
a,h|y=0 −G(a, b)

( h

a− b
∂yf

♭
a|y=0

)
.

To finish the proof, we write daG(·, b)f · h in terms of −∂ ePa
n ṽa,h|y=0.

One has G(a, b)f = ed+1 · P̃a∇X,yf
♭
a|y=0; hence, using the fact the ṽa,h denotes the

derivative of the mapping a 7→ f ♭
a at a applied to h ∈ Hk+3/2(Rd),

(3.36) daG(·, b)f · h = ed+1 · daP̃ · h∇X,yf
♭
a|y=0 − ∂

ePa
n ṽa,h|y=0.

Together with (3.35), and using the identity ∂yf
♭
a|y=0 = (a−b)Z, with Z as defined

in the statement of the theorem, this yields

(3.37) daG(·, b)f · h = ed+1 · daP̃ · h∇X,yf
♭
a|y=0 − ∂

ePa
n ṽ♭

a,h|y=0 −G(a, b) (hZ) .

Lemma 3.24. Under the assumptions and with the notations of the theorem, one
has

ed+1 · daP̃ · h∇X,yf
♭
a|y=0 − ∂

ePa
n ṽ♭

a,h|y=0 = −
(

∇X

0

)
·
[
hP̃a

(
v

Z

)]
.

Proof. Recall that owing to Prop. 2.13 and Remark 2.14, one has sa|0 = a, ∂ysa|0 =
a− b, das · h|0 = h and ∂ydas · h|0 = h. Using the same notations as in the proof
of Lemma 3.22, one obtains

−∂ ePa
n ṽ♭

a,h|0 = −(P1∇Xa− p)∇xhZ

+
h

a− b
(∇Xa · P1∇Xa+ pd+1 − 2p · ∇Xa)Z

−h∇X · P1∇Xf − h∇X · [(−P1∇Xa+ p)Z] .
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Using the expression of daP̃ · h given in the proof of Lemma 3.22, we also compute

ed+1 · daP̃ · h∇X,yf
♭
a|y=0 = −P1∇Xh · ∇Xf + 2(P1∇Xa− p) · ∇XhZ

− h

a− b
(∇Xa · P1∇Xa+ pd+1 − 2p · ∇Xa)Z,

and the lemma follows. �

The theorem is then a simple consequence of (3.37) and Lemma 3.24. �

Theorem 3.20 is crucial in the symbolic analysis of the linearized water-wave
equations. However, one can notice that the explicit expression it gives is not
very useful at the time of giving estimates of the shape derivatives. Indeed, both
terms of this expression are in Hk−1/2(Rd), while the derivative of the DN operator
belongs to Hk+1/2(Rd). This means that there is a cancellation of the most singular
components of both terms. Estimates of the shape derivatives have therefore to be
done at an upper level.

Proposition 3.25. Let m0 = ⌈d+1
2 ⌉ and k ∈ N, k ≥ m0. Suppose that a ∈

Hk+3/2∩H2m0+1/2(Rd), ∇Xf ∈ Hk+1/2(Rd)d and b ∈ C∞
b (Rd) satisfy (3.1). Then

the mapping
a ∈ Ua ⊂ Hk+3/2(Rd) 7→ G(a, b)f ∈ Hk+1/2(Rd)

is C∞ and the successive derivatives are “tame”:
i. For all h ∈ Hk+3/2(Rd), one has
∣∣daG(·, b)f · h

∣∣
Hk+1/2 ≤ C (k,B, |a|H2m0+1/2 , |∇Xf |Hm0−1/2)

×
(
|h|Hk+3/2 + |h|Hm0+1/2(|a|Hk+3/2 + |∇Xf |Hk+1/2)

)
;

ii. For all h1, h2 ∈ Hk+3/2(Rd)
∣∣d2

aG(·, b)f · (h1, h2)
∣∣
Hk+1/2 ≤ C (k,B, |a|H2m0+1/2 , |∇Xf |Hm0−1/2)

×
(
|h1|Hk+3/2 |h2|Hm0+1/2 + |h2|Hk+3/2 |h1|Hm0+1/2

+|h1|Hm0+1/2 |h2|Hm0+1/2(|a|Hk+3/2 + |∇Xf |Hk+1/2)
)
;

iii. Similar estimates hold for dj
aG(·, b)f , j ≥ 3.

Proof. Recall that if the diffeomorphism sa is the regularizing diffeomorphism con-
structed in Prop. 2.13, one has das · h = (y + 1)χ(λy|D|)h for some λ > 0 and
where χ is the same compactly supported function as in the proof of Lemma 2.13.
Therefore, for all k ≥ m0, ‖das · h‖k+1,2 ≤ Cst |h|Hk+1/2 . From the explicit expres-

sion of P̃a given in Lemma 2.5, and with the same computations as for Lemma 2.8,
one obtains therefore

(3.38) ‖daP̃ · h‖k,2 ≤ C (B, |a|Hm0+1/2) (|h|Hk+1/2 + |h|Hm0+1/2 |a|Hk+1/2) ;

recall also that owing to Th. 2.9 and Remark 2.10 (with Q = P̃a), the solution f ♭
a

to (3.32) satisfies for all k ≥ 0 the tame estimate
(3.39)

‖∇X,yf
♭
a‖k+1,2 ≤ C(k,B, |a|H2m0+1/2)

(
|∇Xf |Hk+1/2 + |∇Xf |Hm0−1/2 |a|Hk+1/2

)
.

Now, recall that we saw in (3.36) that

daG(·, b)f · h = ed+1 · daP̃ · h∇X,yf
♭
a|y=0 − ∂

ePa
n ṽa,h|y=0,
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where ṽa,h solves (3.33). From (3.38) and (3.39), together with Lemma 2.11, it is
easy to see that the first term of the r.h.s. satisfies the estimate of the proposition.
The estimate on the second term of the r.h.s. is deduced from Th. 2.9 applied to
the boundary value problem (3.33).
Since the method to obtain the estimates on higher derivatives of G(·, b)f are ab-
solutely similar, we omit the proof. �

4. The linearized water-waves equations

4.1. Trigonalization of the linearized system. As seen in the introduction, the
water-waves equations read

(4.1)





∂tζ −G(ζ)ψ = 0

∂tψ + gζ +
1

2
|∇Xψ|2 −

1

2(1 + |∇Xζ|2)
(G(ζ)ψ + ∇Xζ · ∇Xψ)2 = 0,

where, for the sake of simplicity, we wrote G(ζ) instead of G(ζ, b), b being the
parameterization of the bottom.
We can write this system in condensed form as

(4.2) ∂tU + F(U) = 0,

with U = (ζ, ψ)T and

(4.3) F(U) =
(
−G(ζ)ψ, gζ +

1

2
|∇Xψ|2 −

(G(ζ)ψ + ∇Xζ · ∇Xψ)
2

2(1 + |∇Xζ|2)
)T

.

This section is devoted to the study of the linearized water-waves equations around
an admissible reference state, in the following sense:

Definition 4.1. Let T > 0. We say that U = (ζ, ψ)T is an admissible reference

state if (ζ, ψ − ψ|t=0
)T ∈ C([0, T ];H∞(Rd)2), and ∇Xψ|t=0

∈ H∞(Rd)d, and if
moreover

∃h0 > 0 such that min{−b, ζ − b} ≥ h0 on [0, T ]× Rd,

where we recall that y = b(X) is a parameterization of the bottom.

By definition, the linearized operator L associated to (4.2) is given by L :=
∂t + dUF ; from the explicit expression of F given above, one computes

(4.4) dUF =

( −dζG(·)ψ −G(ζ)

−ZdζG(·)ψ − Zv · ∇X + g v · ∇X − ZG(ζ)

)
,

with Z = Z(U), v := v(U ) and, for all U = (ζ, ψ)T smooth enough,

(4.5) Z(U) :=
1

1 + |∇Xζ|2
(G(ζ)ψ + ∇Xζ · ∇Xψ)

and

(4.6) v(U) := ∇Xψ − Z(U)∇Xζ.

According to Th. 3.20, we have, for all ζ ∈ H∞(Rd),

dζG(·)ψ · ζ = −G(ζ)(Zζ) −∇X · (ζv),

so that L reads

L = ∂t +

(
G(ζ)(Z ·) + ∇X · (·v) −G(ζ)·

ZG(ζ)(Z·) + (g + Z∇X · v) v · ∇X · −ZG(ζ)·

)
.
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One can check that the principal part of the above operator admits iv · ξ as an
eigenvalue of multiplicity two and a nontrivial Jordan block. Taking V := (ζ, ψ −
Zζ)T as new unknown makes this Jordan block appear under its canonical form.
Unexpectedly enough, this change of unknowns not only trigonalizes the principal
symbol of dUF but also gives an explicit and extremely simple expression of the
lower order terms:

Proposition 4.2. Let T > 0, U be an admissible reference state, and G =
(G1, G2)

T ∈ C2([0, T ], H∞(Rd)2).
The following two assertions are equivalent:
i. The pair U = (ζ, ψ)T solves LU = G on [0, T ]× Rd;
ii. The pair V := (ζ, ψ − Zζ)T solves MV = H on [0, T ]× Rd, with

H :=

(
G1

G2 − ZG1

)
and M := ∂t +

(
∇X · (·v) −G(ζ)·

a v · ∇X

)
,

where a := g + ∂tZ + v · ∇XZ.

Notation 4.3. For all U smooth enough, we write

(4.7) a(U) := g + ∂tZ(U) + v(U) · ∇XZ(U),

where Z(U) and v(U) are as defined in (4.5)-(4.6), so that a = a(U).

The coefficient a appearing in the trigonalized operator M obviously plays an
important role. It is therefore interesting to give it a physical meaning. The pair
(ζ, ψ) being given as in Prop. 4.2, we can define a velocity potential φ by solving
the Laplace equation (1.7) in the fluid domain with Dirichlet condition φ = ψ at
the surface and homogeneous Neumann condition at the bottom. In accordance
with (1.10), we introduce the pressure P as

(4.8) −P = ∂tφ+
1

2
|∇X,yφ|2 + gy.

The following proposition shows that if (ζ, ψ) solves the water-waves equations (4.1)

at some time t0, then the pressure P defined in (4.8) vanishes at the surface and the
normal derivative of the pressure at the surface coincides with −a. The condition
a ≥ c0 > 0 we shall impose later -see (4.10)- coincides therefore with the traditional
Taylor criterion [33, 3, 22, 37] that the interface is not accelerating into the fluid
region more rapidly than the normal component of the gravity.

Proposition 4.4. Let T > 0 and U be an admissible reference state. If for some
t0 ∈ [0, T ], U solves the water-waves equations (4.1), then P , defined in (4.8),
satisfies

P |{y=ζ(t0,X)} = 0 and − ∂n+P |{y=ζ(t0,X)} = a(t0, ·).
Proof. Let us remark that

∂tφ|{y=ζ(t,X)} = ∂tψ − ∂yφ|{y=ζ(t,X)}∂tζ,

∇Xφ|{y=ζ(t,X)} = ∇Xψ − ∂yφ|{y=ζ(t,X)}∇Xζ,

∂yφ|{y=ζ(t,X)} = Z,

where Z = Z(U) is defined in (4.5). It follows therefore from (4.8) that

−P |{y=ζ(t,X)} = ∂tψ + gζ +
1

2
|∇Xψ|2 − 1

2
Z
(
2∂tζ −G(ζ)ψ + ∇Xψ · ∇Xζ

)
.
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From this expression, one deduces easily that P |{y=ζ(t0,X)} = 0 if U solves (4.1) at
time t = t0.
We now prove the second statement of the proposition. One has by definition

−∂n+P |{y=ζ(t,X)} = − 1

1 + |∇Xζ|2
(
−∇Xζ · ∇XP + ∂yP

)∣∣
{y=ζ(t,X)} .

At time t = t0, we just saw that P |{y=ζ(t0,X)} = 0, from which one deduces easily
that −∂n+P |{y=ζ(t0,X)} = −∂yP |{y=ζ(t0,X)}. Now, from the definition (4.8) of P ,
one computes

−∂yP = ∂t∂yφ+ ∇Xφ · ∇X∂yφ+ ∂yφ∂
2
yφ+ g.

Remarking that

(∂t∂yφ)|{y=ζ(t,X)} = ∂tZ − ∂2
yφ|{y=ζ(t,X)}∂tζ,

∇X∂yφ|{y=ζ(t,X)} = ∇XZ − ∂2
yφ|{y=ζ(t,X)}∇Xζ,

one obtains finally −∂yP |{y=ζ(t0,X)} = a(t0, ·), which concludes the proof. �

4.2. Study of the trigonalized operator M. Because the principal part of M
has a Jordan block, the Cauchy problem

(4.9)

{
MV = H
V |t=0 = V0,

could be either ill- or well-posed. Such situations have been extensively studied
for differential systems (see [16] and references therein for the study of general
non strictly hyperbolic problems, and [11] for a more related situation), and seem
inherent to the water-waves problem [10, 36, 37]: in order to be well-posed, a Lévy
condition is needed on the sub-principal symbol of M. Since the operator G(ζ) is
positive, the Lévy condition on M reads

(4.10) ∃c0 > 0 such that a(t,X) ≥ c0, ∀(t,X) ∈ [0, T ]× Rd,

where a is defined in terms of U as in Prop. 4.2. The next proposition shows that
under this condition, the Cauchy problem associated to the trigonalized operator
M is well-posed, and that one gets tame estimates on the solution.

Proposition 4.5. Let m0 = ⌈d+1
2 ⌉, T > 0 and let U be an admissible reference

state. Let also H ∈ C([0, T ] ×H(Rd)2) and V0 ∈ H∞(Rd)2.
Then, there is a unique solution V ∈ C1([0, T ], H∞(Rd)2) to (4.9) and for all k ∈ N,
there exists κk, νk such that

|V (t)|Hk+1/2×Hk+1 ≤ κke
νkt|V0|Hk+1/2×Hk+1

+ κk

∫ t

0

eνk(t−t′)|H(t′)|Hk+1/2×Hk+1dt′(4.11)

+ κk

∫ t

0

eνk(t−t′)
(
|ζ|Hk+3/2 + |v|Hk+2 + |a − g|Hk+1

)
|V |Hm0+3/2×Hm0+2dt′.

The constants κk, νk depend on b and U through

κk = C
(
k,B, |a − g|

H
m0−1/2

T

, |ζ|
H

m0+1/2

T

)
,

νk = C
(
k,B, |a − g|

H
1/2+m0
T

, |v|
H

m0+3/2

T

, |ζ|
H

q0+1/2

T

, |∂ta|Hm0−1/2

T

, |∂tζ|Hm0−1/2

T

)
,

where q0 is an integer depending only on d, and B is as in Notation 3.5.
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4.2.1. Proof of Prop. 4.5. As it is often the case for equations similar to (4.9) (see
e.g. [36, 37]), we first consider a parabolic regularization of (4.9):

(4.12)

{
MεV = H
V |t=0 = V0,

, with Mε := M +

(
0 −ε2Λ2

0 0

)
.

Even for (4.12), well-posedness is not straightforward. As in [36, 37], we choose to
use an iterative scheme to prove it. Let us first introduce the notations

(4.13) ∇vf :=
1

2
(∇X · (fv) + v · ∇Xf), ∀f ∈ S(Rd),

and

Aε :=

(
∇v −ε2Λ
a ∇v

)
, A :=

(
1
2∇X · v −G(ζ)

0 − 1
2∇X · v

)
,

so that Mε = ∂t +Aε +A.
We seek a solution of (4.12) as a limit of the sequence (V n)n defined for all n ∈ N

as

(4.14)

{
(∂t +Aε)V

n+1 = H −AV n,
V n+1|t=0 = V0,

and V 0 = V0.

Well-posedness of Cauchy problems of type (4.14) is ensured by the next lemma.

Lemma 4.6. Let T > 0, U be an admissible reference state, and let also H =
(H1, H2)

T ∈ C([0, T ], H∞(Rd)2) and V0 ∈ H∞(Rd)2. For all ε ∈ (0, 1), the Cauchy
problem {

(∂t +Aε)V = H
V |t=0 = V0,

admits a unique solution V ∈ C1([0, T ], H∞(Rd)2). Moreover, for all s ∈ R there
exists λs = λs(ε, U) and Cs = C(s, ε, U) such that

|V |Hs×Hs+1 ≤ Cs

(
eλst|V0|Hs×Hs+1 +

∫ t

0

eλs(t−t′)|H(t′)|Hs×Hs+1dt′
)
.

Proof. In order to perform energy estimates on the equation, we seek a change of

unknowns which symmetrizes the operator Aε. Let Sε =

( √
a 0

0 εΛ

)
; one has

S−1
ε =

( 1√
a

0

0 1
εΛ−1

)
(note the importance here of the Lévy condition (4.10)).

The operator Sε is a symmetrizer of Aε in the sense that SεAεS
−1
ε = A1

ε +A0
ε, with

A1
ε =

(
∇v −ε√aΛ

εΛ(
√

a·) ∇v

)
and A0

ε =

( √
a[∇v,

1√
a
] 0

0 Λ[∇v,Λ
−1]

)
,

that is, the principal part A1
ε of SεAεS

−1
ε is an anti-adjoint operator of order one.

The natural energyEs,ε associated to the equation is therefore defined asEs,ε(V ) :=∣∣SεΛ
sV
∣∣2
2

=
(
ΛsV, S2

εΛsV
)
. As usual, one computes

d

dt
e−2λtEs,ε(V ) = −2λe−2λtEs,ε(V ) + 2e−2λt

(
Λs(∂t +Aε)V, S

2
εΛsV

)

− 2e−2λt
(
ΛsAεV, S

2
εΛsV

)
+ e−2λt

(
ΛsV, [∂t, S

2
ε ]ΛsV

)
.(4.15)
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Estimate of
(
Λs(∂t + Aε)V,S

2
εΛ

sV
)
. By Cauchy-Schwartz and then Hölder’s

inequality, one obtains easily

(4.16)
∣∣(Λs(∂t +Aε)V, S

2
εΛsV

)∣∣ ≤ 1

2
Es,ε(V ) +

1

2
Es,ε((∂t +Aε)V ).

Estimate of
(
ΛsAεV,S

2
εΛ

sV
)
. One has

(
ΛsAεV, S

2
εΛsV

)
= (SεΛ

sAεΛ
−sS−1

ε SεΛ
sV, SεΛ

sV ),

and since the principal symbols of SεΛ
sAεΛ

−sS−1
ε and SεAεS

−1
ε are the same,

we deduce from the decomposition SεAεS
−1
ε = A1

ε + A0
ε above that the operator

SεΛ
sAεΛ

−sS−1
ε is of order one with skew-symmetric principal symbol. Classical

results of pseudo-differential calculus yield therefore
∣∣(ΛsAεV, S

2
εΛsV

)∣∣ ≤ C (ε, s, U) |SεΛ
sV |22

= C (ε, s, U)Es,ε(V ).(4.17)

Estimate of
(
ΛsV, [∂t,S

2
ε ]ΛsV

)
. Since [∂t, S

2
ε ] =

(
∂ta 0
0 0

)
, one obtains easily

(
ΛsV, [∂t, S

2
ε ]ΛsV

)
= (ΛsV1, ∂taΛsV1) and thus

(4.18)
∣∣ (ΛsV, [∂t, S

2
ε ]ΛsV

) ∣∣ ≤ C
(
U
)
Es,ε(V ).

Endgame. Using (4.15), (4.16), (4.17) and (4.18) one obtains

d

dt
e−2λtEs,ε(V ) ≤ e−2λt (1 + C(s, ε, U) − 2λ)Es,ε(V )

+ e−2λtEs,ε((∂t +Aε)V ).

For λ large enough (in order for the prefactor of Es,ε to be negative in the r.h.s. of
the inequality above),we have therefore

(4.19) Es,ε(V (t)) ≤ e2λtEs,ε(V0) +

∫ t

0

e2λ(t−t′)Es,ε

(
(∂t + Aε)V (t′)

)
dt′.

Now, remark that 1
κ |V |2Hs×Hs+1 ≤ Es,ε(V ) ≤ κ|V |2Hs×Hs+1 , for some constant κ

depending on ε, s, 1
c0

and U . Equation (4.19) gives therefore the desired energy

estimate in Hs × Hs+1-norm, and it is routine to conclude the proof by classical
duality arguments. �

Owing to this lemma, we have the following estimate for (4.14):

∣∣V n+1
∣∣
Hs×Hs+1 ≤ Cs ×

(
eλst|V0|Hs×Hs+1 +

∫ t

0

eλs(t−t′)|H −AV n|Hs×Hs+1dt′
)
.

From the definition of A, one obtains easily, for all s > d/2,

|AV n|Hs×Hs+1 ≤ C (B,U) |V n|Hs×Hs+1 ,

so that one has finally, for all s > d/2,
∣∣V n+1

∣∣
Hs×Hs+1 ≤ C (s, ε, B, U)

×
(
eλst|V0|Hs×Hs+1 +

∫ t

0

eλs(t−t′) (|H(t′)|Hs×Hs+1 + |V n(t′)|Hs×Hs+1) dt′
)
.

Proving the convergence of the iterative scheme (4.14) is then classical. We have
therefore:
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Lemma 4.7. Let T > 0 and U be an admissible reference state satisfying (4.10).
Let also H = (H1, H2)

T ∈ C([0, T ], H∞(Rd)2) and V0 ∈ H∞(Rd)2.
Then, for all ε ∈ (0, 1), there exists a unique solution V ∈ C1([0, T ], H∞(Rd)2) to
(4.12).

We now turn to give precise energy estimates on the solution V to (4.12) given
by Lemma 4.7.
Let us denote by M ε the spatial part of the operator Mε, so that Mε = ∂t +M ε,
and decompose it as Mε = M1,ε,µ +M0,µ with

M1,ε,µ =

(
∇v −Gε,µ

a ∇v

)
, and M0,µ =

(
1
2∇X · v µ

0 − 1
2∇X · v

)
,

where Gε,µ := G(ζ) + ε2Λ2 + µ and µ is some real positive constant (which we add

here because we will need the operator G(ζ) + µ to control the H1/2-norm as in
Prop. 3.8).
As in the proof of Lemma 4.6, the strategy consists in symmetrizing the principal
part of the operator, namely, M1,ε,µ. The operator Sε,µ which symmetrizes M1,ε,µ

is given here by

Sε,µ =

( √
a 0

0 G1/2
ε,µ

)
,

where G1/2
ε,µ denotes the square root of the operator Gε,µ. The natural energy to

consider here is therefore

(4.20) Es,ε,µ(V ) = (ΛsV, S2
ε,µΛsV ), with S2

ε,µ =

(
a 0
0 Gε,µ

)
.

In fact, we do not work directly with all s ∈ R: the estimates of Th. 2.9 show that
it is convenient to work with Sobolev spaces Hk+1/2(Rd), k ∈ N. Instead of taking
s = k + 1/2 in the definition above, we change it slightly as

(4.21) Ek+1/2,ε,µ(V ) =
∑

α∈Nd,|α|≤k

(
Λ1/2∂αV, S2

ε,µΛ1/2∂αV
)
;

when ε = 0, we write simply Ek+1/2,µ instead of Ek+1/2,0,µ. The link between spaces
of finite energy for (4.21) and Sobolev spaces is made in the next lemma.

Lemma 4.8. Let T > 0 and U be a reference state satisfying (4.10).
Then, there exists µ > 0 such that for all V ∈ H∞(Rd)2 and k ∈ N,

1

κk

|V |2Hk+1/2×Hk+1 ≤ Ek+1/2,ε,µ(V ) − ε2|V2|2Hk+3/2 ≤ κk|V |2Hk+1/2×Hk+1 ,

where κk is as in the statement of Prop. 4.5.

Notation 4.9. From now on, we always take µ = µ and write simply Ek+1/2,ε instead
of Ek+1/2,ε,µ.

Proof. For all α ∈ Nd, |α| ≤ k, write
(
Λ1/2∂αV, S2

ε,µΛ1/2∂αV
)

= A1 +A2, with

(4.22) A1,α =
(
Λ1/2∂αV1, aΛ1/2∂αV1

)
, A2,α =

(
Λ1/2∂αV2, Gε,µΛ1/2∂αV2

)
.

Upper and lower bound for A1 are easy to find:

(4.23) c0|V1|2Hk+1/2 ≤
∑

α∈Nd,|α|≤k

A1,α ≤ (g + |a − g|∞)|V1|2Hk+1/2 .
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Remark now that A2,α =
(
Λ1/2∂αV2, (G(ζ)+µ)Λ1/2∂αV2

)
+ε2|Λ3/2∂αV2|22, so that

using Prop. 3.8 (and assuming that µ is large enough), one obtains

(4.24)
1

C
|V2|2Hk+1 ≤

∑

α∈Nd,|α|≤k

A2,α − ε2|V2|2Hk+3/2 ≤ C|V2|2Hk+1 ,

where C = C
(
B,µ, |ζ|Hm0+1/2

)
, and B is as in Notation 3.5.

The lemma follows therefore from (4.21) and (4.22)-(4.24). �

Before adressing the heart of the proof, let us recall some useful nonlinear esti-
mates.

Lemma 4.10. Let k ∈ N and α ∈ Nd such that |α| = k. Let a ∈ H∞(Rd) and
v ∈ H∞(Rd)d and define ∇v as in (4.13). Then:
i. For all s ≥ 0, and u ∈ H∞(Rd), one has

∣∣[Λ1/2∂α, a]u
∣∣
Hs ≤ Cst (|a|1,∞|u|Hk−1/2+s + |a|Hk+1/2+s |u|∞) ;

ii. For all s ≥ 0, and u ∈ H∞(Rd), one has
∣∣[Λ1/2∂α,∇v]u

∣∣
Hs ≤ Cst (|v|2,∞|u|Hk+1/2+s + |v|Hk+3/2+s |u|1,∞) .

Proof. The first point of the lemma is the classical Kato-Ponce estimate [24]. The
second one is a consequence of this estimate since one has

[Λ1/2∂α,∇v]u = [Λ1/2∂α,v] · ∇Xu+
1

2
[Λ1/2∂α,∇X · v]u.

�

Lemma 4.11. Let T > 0 and U be an admissible reference state satisfying (4.10).
Then, for all k ∈ N, the solution V to (4.12) satisfies

Ek+1/2,ε(V (t)) ≤ e2νktEk+1/2,ε(V0) +

∫ t

0

e2νk(t−t′)Ek+1/2,ε(H(t′))dt′

+

∫ t

0

e2νk(t−t′)
(
|ζ(t′)|2Hk+3/2 + |v(t′)|2Hk+2 + |a(t′) − g|2Hk+1

)
Em0+3/2(V (t′))dt′

+ ε2
∫ t

0

e2νk(t−t′)
(
|a(t′) − g|2Hk+3/2 + |v(t′)|2Hk+5/2

)
Em0+3/2(V (t′))dt′,

where the constant νk is as in the statement of Prop. 4.5.

Proof. Throughout this proof, we write s0 := m0 − 1/2 > d/2. We proceed as in
the proof of Lemma 4.6. One computes

d

dt
e−2νtEk+1/2,ε(V ) = −2νe−2νtEk+1/2,ε(V )

+ 2e−2νt
∑

α

(
Λ1/2∂α(∂t +Mε)V, S

2
ε,µΛ1/2∂αV

)

− 2e−2νt
∑

α

(
Λ1/2∂αM1,ε,µV, S

2
ε,µΛ1/2∂αV

)

− 2e−2νt
∑

α

(
Λ1/2∂αM0,µV, S

2
ε,µΛ1/2∂αV

)

+ e−2νt
∑

α

(
Λ1/2∂αV, [∂t, S

2
ε,µ]Λ1/2∂αV

)
,(4.25)
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where the sums are taken over all α ∈ Nd, |α| ≤ k.
Estimate of

(
Λ1/2∂αM1,ε,µV,S

2
ε,µΛ1/2∂αV

)
. From the definition of M1,ε,µ and

Sε,µ, one computes easily
(
Λ1/2∂αM1,ε,µV, S

2
ε,µΛ1/2∂αV

)
=
(
Λ1/2∂α(∇vV1), aΛ1/2∂αV1

)

+
(
Λ1/2∂α(∇vV2), Gε,µΛ1/2∂αV2

)

+
[(

Λ1/2∂α(aV1), Gε,µΛ1/2∂αV2

)
−
(
Λ1/2∂αGε,µV2, aΛ1/2∂αV1

)]

:= I1 + I2 + I3.(4.26)

• Estimate of I1. Using the fact that the operator ∇v is anti-adjoint, one finds

I1 = −
(
aΛ1/2∂αV1, [∇v,Λ

1/2∂α]V1

)
− 1

2

(
Λ1/2∂αV1, [∇v, a]Λ1/2∂αV1

)
.

Using Lemma 4.10 one can control the first term of the r.h.s. and remarking that
[∇v, a] = v · ∇Xa, one can control also the second one:

|I1| ≤ Cst |aΛ1/2∂αV1|2 (|v|Hs0+2 |V1|Hk+1/2 + |v|Hk+3/2 |V1|H1+s0 )

+ Cst |v|Hs0 |a − g|Hs0+1 |V1|2Hk+1/2 .

Using Hölder’s inequality and Lemma 4.8, one obtains therefore

(4.27) |I1| ≤ DkEk+1/2,ε(V ) + Em0+1/2(V )|v|2Hk+3/2 ,

where, throughout this proof, Dk is a positive constant which depends on the same
parameters as νk in the statement of Prop. 4.5.
• Estimate of I2. Using the fact that the operators ∇v and Gε,µ are respectively
anti- and self-adjoint, one computes

I2 =
(
Gε,µΛ1/2∂αV2, [Λ

1/2∂α,∇v]V2

)
− 1

2

(
Λ1/2∂αV2, [∇v, Gε,µ]Λ1/2∂αV2

)

:= I21 + I22.(4.28)

By Prop. 3.8 we have

|I21| ≤ C
(
B,µ, |ζ|Hm0+1/2

)
|V2|Hk+1

∣∣[Λ1/2∂α,∇v]V2

∣∣
H1/2

+ ε2|V2|Hk+3/2

∣∣[Λ1/2∂α,∇v]V2

∣∣
H1 ;

we then use Lemmas 4.8 and 4.10, as well as Hölder’s inequality to find

(4.29) |I21| ≤ DkEk+1/2,ε(V ) + Em0+1/2(V )
(
|v|2Hk+2 + ε2|v|2Hk+5/2

)
.

To control I22, one uses successively Prop. 3.18 and Lemma 4.8 to find

(4.30) |I22| ≤ DkEk+1/2,ε(V ).

From (4.28), (4.29) and (4.30), we obtain finally

(4.31) |I2| ≤ DkEk+1/2,ε(V ) + Em0+1/2(V )
(
|v|2Hk+2 + ε2|v|2Hk+5/2

)
.

• Estimate of I3. One has

I3 =
(
aΛ1/2∂αV1, [Gε,µ,Λ

1/2∂α]V2

)
+
(
[Λ1/2∂α, a]V1, Gε,µΛ1/2∂αV2

)

:= I31 + I32.(4.32)

Using Cauchy-Schwartz inequality and Prop. 3.15, we obtain

|I31| ≤ |aΛ1/2∂αV1|2M(q0 + 1/2)
(
|V2|Hk+1/2 + |ζ|Hk+3/2 |V2|Hm0+3/2

)
,
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where q0 is the same as in Prop. 3.15.
It is then easy to deduce that

(4.33) |I31| ≤ DkEk+1/2,ε(V ) + |ζ|2Hk+3/2Em0+3/2(V ).

For I32, we proceed as for I21 and find

(4.34) |I32| ≤ DkEk+1/2,ε(V ) +
(
|a − g|2Hk+1 + ε2|a − g|2Hk+3/2

)
Em0+1/2(V ).

From (4.32), (4.33) and (4.34), we have therefore
(4.35)
|I3| ≤ DkEk+1/2,ε(V ) +

(
|ζ|2Hk+3/2 + |a − g|2Hk+1 + ε2|a − g|2Hk+3/2

)
Em0+3/2(V ).

Finally, from (4.26), (4.27), (4.31) and (4.35) one obtains the estimate:
∑

|α|≤k

(
Λ1/2∂αM1,ε,µV, S

2
ε,µΛ1/2∂αV

)
≤ DkEk+1/2,ε(V )

+
(
|ζ|2Hk+3/2 + |v|2Hk+2 + |a − g|2Hk+1

)
Em0+3/2(V )

+ ε2
(
|a − g|2Hk+3/2 + |v|2Hk+5/2

)
Em0+3/2(V ).(4.36)

Estimate of
(
Λ1/2∂αM0,µV,S

2
ε,µΛ1/2∂αV

)
. Without any particular difficulty,

this term is bounded from above by

(4.37) DkEk+1/2,ε(V ) +
(
|v|2Hk+3/2 + ε2|v|2Hk+5/2

)
Em0+3/2(V ).

Estimate of
(
Λ1/2∂αV, [∂t,S

2
ε,µ]Λ1/2∂αV

)
. Remark that this term can be de-

composed into
(
Λ1/2∂αV1, ∂taΛ1/2∂αV1

)
+
(
Λ1/2∂αV2, [∂t, G(ζ)]Λ1/2∂αV2

)
; the first

term of this decomposition is easy to bound; for the second, we use Prop. 3.19, so
that finally

(4.38)
∑

|α|≤k

(
Λ1/2∂αV, [∂t, S

2
ε,µ]Λ1/2∂αV

)
≤ DkEk+1/2,ε(V ).

End of the proof. From (4.25), (4.36), (4.38) and (4.38), we obtain, as in the
proof of Lemma 4.6,

d

dt
e−2νtEk+1/2,ε(V ) ≤ (1 +Dk − 2ν)Ek+1/2,ε(V ) + e−2νtEk+1/2,ε((∂t +Mε))

+ e−2νt
(
|ζ|2Hk+3/2 + |v|2Hk+2 + |a − g|2Hk+1

)
Em0+3/2(V )

+ e−2νt
(
ε2
(
|a − g|2Hk+3/2 + |v|2Hk+5/2

))
Em0+3/2(V ).

When (1 +Dk − 2ν) is negative, the estimate of the lemma follows easily from this
expression. �

We can now prove the well-posedness of (4.9). In order to do this, we show that
the sequence (V ε)ε∈(0,1), where V ε denotes the solution to (4.12), converges to a
solution of (4.9) when ε→ 0.
Let us first prove that (V ε)ε is a Cauchy sequence. Let 0 < ε2 < ε1 < 1 and write
W = V ε1 − V ε2 . One has

{
Mε1

W = Hε1,ε2

W |t=0 = 0,
with Hε1,ε2 :=

(
−(ε21 − ε22)Λ

2V ε2
2

0

)
.

Remark now that, as a first consequence of Lemma 4.11, for all k ∈ N, there exists
Mk > 0 such that |V ε

2 |Hk+1
T

≤ Mk, for all ε ∈ (0, 1). Applying Lemma 4.11 to W
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yields therefore

Ek+1/2,ε1
(W (t)) ≤ (ε21 − ε22)C(U, T )Mk+1 +

∫ T

0

e2ν(t−t′)C(U)Em0+1/2(W (t′))dt′.

From a Gronwall type argument, we deduce

sup
t∈[0,T ]

Ek+1/2,ε1
(W (t)) → 0 as ε1 → 0,

and it follows therefore from Lemma 4.8 that (V ε)ε is a Cauchy-sequence in
C([0, T ], Hk+1/2(Rd) × Hk+1(Rd)). The sequence is therefore convergent in this
space, and the limit solves (4.9). The estimate given in the proposition is simply
obtained by taking ε = 0 in Lemmas 4.8 and 4.11.

4.3. Tame estimates for the water-waves equations. In this section, we give
our main result concerning the linearized water-waves equations: the Cauchy prob-
lem

(4.39)

{
LU = G,
U |t=0 = U0

is well-posed, and the solution U satisfies tame estimates. We first need to introduce
two scales of Banach spaces, namely Ea and Fa in which the estimates can be
written simply, and in which a Nash-Moser scheme can be constructed.

Definition 4.12. Let T > 0 and a ∈ R. Define the Banach spaces Ea and Fa as

Ea :=

2⋂

j=0

Cj
(
[0, T ], Ha+2−j(Rd)2

)
,

Fa :=
( 1⋂

j=0

Cj
(
[0, T ], Ha+1−j(Rd)2

) )
×Ha+2(Rd)2,

and endow them with the norms

|f |Ea :=

2∑

j=0

|∂j
t f |Ha+2−j

T
, |(g, h)|Fa :=

1∑

j=0

|∂j
t g|Ha+1−j

T
+ |h|Ha+2 .

Notation 4.13. An admissible reference state U = (ζ, ψ)T does not necessarily
belong to the Banach scale Ea because ψ|t=0

is not necessarily in a Sobolev space

(though its gradient is). However, we abusively use the notation |U |Ea to denote
the quantity

|U |Ea = |U − U |t=0
|Ea + |∇xU |t=0

|Ha+1 .

Proposition 4.14. Let m0 = ⌈d+1
2 ⌉, T > 0 and U be an admissible reference state

satisfying (4.10). Let also G ∈ C1([0, T ] ×H∞(Rd)2) and U0 ∈ H∞(Rd)2.
Then there is a unique solution U ∈ C2([0, T ], H∞(Rd)2) to (4.39). Moreover, for
all a ∈ R, a ≥ m0 + 1, the following estimate holds,

|U |Ea ≤ C
(
k,B, |U |Eq0+1/2

, T
) [

|(G,U0)|Fa+3/2
+ |(G,U0)|Fm0+1 |U |Ea+5/2

]
,

for some q0 ∈ N depending only on d.
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Proof. Denote U0 = (U01, U02)
T and let V0 := (U01, U02 − Z|t=0U01)

T and H :=
(G1, G2 − ZG1)

T . Prop. 4.5 asserts that there exists a unique solution V ∈
C1([0, T ], H∞(Rd)2) to the Cauchy problem (4.9). Owing to Prop. 4.2, we know
that U := (V1, V2 + ZV1)

T solves the Cauchy problem (4.39). We now proceed to
derive tame estimates on U from the energy estimate (4.11).
Taking k = m0 + 1 in (4.11), one obtains by a simple Gronwall argument that

(4.40) |V |
H

m0+3/2

T ×H
m0+2

T

≤ C
(
B, |U |Eq0+1/2

, T
)
×
(
|U0|Hm0+2 + |G|

H
m0+2

T

)
,

for some q0 depending only on d. Plugging this expression into (4.11)k+2, and
estimating the quantities |H(t)|Hk+5/2×Hk+3 and

(
|ζ|Hk+7/2 + |v|Hk+4 + |a− g|Hk/3

)

which appear in (4.11) in terms of U , U0 and G by standard tame estimates, one
obtains (taking a larger q0 if necessary),

|V |
H

k+5/2
T ×Hk+3

T

≤ C
(
k,B, |U |Eq0+1/2

, T
)

×
[
|(G,U0)|Fk+2

+ |(G,U0)|Fm0+1 |U |Ek+3

]
,

from which it is easy to deduce (using the formula U = (V1, V2 + ZV1)
T ),

(4.41)
|U |

H
k+5/2
T

≤ C
(
k,B, |U |Eq0+1/2

, T
) [

|(G,U0)|Fk+2
+ |(G,U0)|Fm0+1 |U |Ek+3

]
.

In order to obtain a control of U in Ek+1/2 we still need to control ∂tU and ∂2
tU

in Hk+3/2 and Hk+1/2 respectively.
Since ∂tU = −dUF · U + G one has |∂tU |

H
k+3/2
T

≤ |dUF · U |
H

k+3/2
T

+ |G|
H

k+3/2
T

;

from the expression of dUF given in (4.4) and the tame estimates of Prop. 3.25,
one deduces

|∂tU |
H

k+3/2
T

≤ C
(
k,B, |U |Eq0+1/2

)(
|U |

H
k+5/2
T

+ |U |
H

m0+1/2

T

|U |
H

k+5/2
T

)
+ |G|

H
k+3/2
T

,

which, together with (4.41), yields
(4.42)

|∂tU |
H

k+3/2
T

≤ C
(
k,B, |U |Eq0+1/2

, T
) [

|(G,U0)|Fk+2
+ |(G,U0)|Fm0+1 |U |Ek+3

]
.

Finally, one has ∂2
tU = −d2

UF · (∂tU,U) − dUF · ∂tU + ∂tG. One can compute

d2
UF from the expression of dUF given in (4.4) and prove that it is a tame bilinear

mapping using Prop. 3.25. Using (4.41) and (4.42) we can then obtain a tame
estimate on ∂2

tU (we do not detail the proof since it does not raise any particular
difficulty). Namely,
(4.43)

|∂2
tU |

H
k+1/2
T

≤ C
(
k,B, |U |Eq0+1/2

, T
) [

|(G,U0)|Fk+2
+ |(G,U0)|Fm0+1 |U |Ek+3

]
.

The proposition is then a consequence of (4.41), (4.42) and (4.43) for all a = k+1/2,
k ∈ N, k ≥ m0 + 1. By interpolation, we deduce it for all a ∈ R, a ≥ m0 + 1. �

4.4. On the Lévy condition a ≥ c0 > 0. As seen in Prop. 4.4, the Lévy condition
(4.10), namely a ≥ c0 > 0, is equivalent to the traditional Taylor criterion. Early
works [27, 10, 38] assume smallness conditions on U which imply that this criterion
holds. One of Wu’s key results [36, 37] is that, both for 1D or 2D surface waves,
one has indeed a = a(U) ≥ c0 > 0 as soon as the reference state U solves the
water-wave equations (4.1). We investigate in this section if this result extends to
the present case of finite depth. We first set some notations.
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Let Γb := {(X, b(X)), X ∈ Rd} be the lower boundary of the fluid domain. One
can define the mapping n on Γb as

n :
Γb → Sd

σ 7→ −n−(σ),

so that n(σ) is the inward unit normal vector to Γb at σ ∈ Γb. This mapping is
regular and its derivative dσn at σ is a linear map from TσΓb into Tn(σ)S

d. Since

Tn(σ)S
d = TσΓb by construction, dσn is an endomorphism of TσΓb. By definition,

the second fundamental form of Γb is defined as

(4.44) IIb(σ)(p, q) = (dσnp, q)
Rd+1 , ∀p, q ∈ TσΓb,

and where (·, ·)Rd+1 denotes the usual scalar product of Rd+1.

In the next proposition, we show that the Lévy condition (4.10) is satisfied
provided that a certain smallness condition holds on the second fundamental form
evaluated at the bottom values of the velocity field.

Proposition 4.15. Let T > 0 and U = (ζ, ψ)T be an admissible reference state,
and denote by φ the velocity potential associated to ψ. Assume that for some t0 ∈
[0, T ], U solves the water-waves equations (4.1), and that

(4.45) IIb(∇X,yφ|Γb

,∇X,yφ|Γb

) ≤ g√
1 + |∇Xb|2

.

Then there exists c0 > 0 such that a(t0, ·) ≥ c0 on Rd.

Remark 4.16. i. The velocity potential φ associated to ψ is found solving the
Laplace equation (1.7) in the fluid domain, with Dirichlet condition ψ at the sur-
face and homogeneous Neumann boundary condition at the bottom. This latter
condition ensures that for all σ ∈ Γb, ∇X,yφ(σ) lives in TσΓb, so that the expression
IIb(∇X,yφ|Γb

,∇X,yφ|Γb

) makes sense.

ii. If the bottom is flat, then IIb = 0 everywhere, and criterion (4.45) is always
satisfied. Thus, in the case of flat bottoms, Wu’s result remains true: the gener-
alized Taylor’s sign condition −∂n+P |(·, ζ(t0, ·)) ≥ c0 > 0 holds provided that the
reference state U solves the water-waves equations (1.11) at time t0.
iii. By continuity arguments, Wu’s result can also be extended to “nearly flat”
bottoms: no smallness condition on the reference state U is required for the gener-
alized Taylor’s sign condition to hold, provided that the bottom parameterization
b is flat enough (how flat depending on U).
iv. In 1D, the criterion given in the proposition reads simply

b′′(∂xφ)2 ≤ g,

and is therefore always satisfied in the regions where the bottom surface is concave.
v. As we will see later, Taylor’s sign criterion a(0, ·) is a sufficient condition for
the well-posedness of the water-waves equations for small times. This condition
is almost necessary, but the criterion given in Lemma 4.15 gives only a sufficient
condition for Taylor’s sign condition to be satisfied. Its interest lies in its simple
geometric form. It is for instance obvious that this sufficient condition is fulfilled
for flat or nearly flat bottoms, which is far from transparent if one works directly
with Taylor’s sign condition.
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Proof. Recall that a(t0, ·) = g+(∂tZ)(t0, ·)+(v ·∇XZ)(t0, ·), where Z = Z(U) and
v = v(U) are given by (4.5) and (4.6). Since U (and its derivatives involved in Z
and v) vanishes at infinity, so do (∂tZ)(t0, ·) and (v · ∇XZ)(t0, ·); the acceleration
of gravity g being strictly positive, one deduces that there exists c1 > 0 and R > 0
such that a(t0, X) ≥ c1 whenever |X | > R, which is precisely the property we want
to prove. The remaining of the proof consists therefore in showing that there exists
c2 > 0 such that a(t0, X) ≥ c2 on the ball |X | ≤ R.
We know by Prop. 4.4 that a(t0, ·) = −∂n+P |{y=ζ(t0,X)}, where −P = ∂tφ +
1
2 |∇X,yφ|2 + gy. Prop. 4.4 also asserts that P = 0 on the surface; it follows that P
solves the boundary value problem

{ −∆P = ∆
(

1
2 |∇X,yφ|2

)
,

P |{y=ζ(t0,X)} = 0, ∂n−P |Γb
= −∂n−

(
1
2 |∇X,yφ|2

)
|Γb

− ∂n−(gy).

The next lemma makes the link between the Neumann condition at the bottom and
the second fundamental form IIb (recall that by assumption, ∇X,yφ|Γb

(σ) belongs
to TσΓb).

Lemma 4.17. The velocity potential φ being defined as above, one has

−∂n−

(1
2
|∇X,yφ|2

)∣∣∣
Γb

= −IIb(∇X,yφ|Γb
,∇X,yφ|Γb

).

Proof. Step 1. Geometric tools. The first step consists in reparameterizing the
fluid domain Ω in the neighborhood of Γb. For η > 0 small enough, one can define
the mapping

Ψ :
Γb × (0, η) → ω ⊂ Ω

(σ, z) 7→ σ + zn(σ);

if η small enough, Ψ is a C∞-parameterization of its range ω. We now want to
define the gradient in these new coordinates. Let us denote by ∇Γb

the gradient on
the submanifold Γb and introduce ∇Γb(z) defined as

(4.46) ∇Γb(z) := (Id+ zdσn)−1∇Γb
.

One can prove ([5], see also [15] for the 1D case) that for any function w defined
on ω one has

(4.47) ∇X,yw(X, y) =
∂w̃

∂z
(P (X, y), ϕ(X, y))n(P (X, y)) + (∇Γb(ϕ(X,y)))(P (X, y)),

where w̃ := w◦Ψ, P (X, y) denotes the orthogonal projection of (X, y) on Γb (which
is unique if η is small enough) and ϕ(X, y) := |(X, y) − P (X, y)|. From (4.47), it
follows in particular that

(4.48) ∂n−w|Γb
= −∂nw|Γb

= −∂zw̃|z=0,

and that the tangential component of ∇X,yw|Γb
is exactly ∇Γb

w.
Step 2. We now use the tools introduced above to prove the result. According to
(4.48) and with the same notations as in the first step, one finds ∂n−∇X,yφ|Γb

=

−∂z∇̃X,yφ|z=0. By definition, one also has ∇̃X,yφ = ∇X,yφ ◦ Ψ, so that using

(4.47), one obtains

∂

∂z

(
∇̃X,yφ

)
|z=0(σ) =

∂

∂z

(∂φ̃
∂z

(σ, z)
)
|z=0n(σ) +

∂

∂z
(∇Γb(z)φ̃)|z=0(σ).
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Using (4.46), this yields

(4.49)
∂

∂z

(
∇̃X,yφ

)
|z=0(σ) =

∂

∂z

(∂φ̃
∂z

(σ, z)
)
|z=0n(σ) − dσn∇Γb

φ̃.

Since by (4.48) we have −∂n−

(
1
2 |∇X,yφ|2

)
|Γb

= ∇X,yφ|Γb
· ∂

∂z

(
∇̃X,yφ

) ∣∣∣
z=0

and

because by assumption ∇X,yφ|Γb
is tangent to Γb, it follows from (4.49) that

−∂n−

(
1
2 |∇X,yφ|2

)
|Γb

= −∇X,yφ|Γb
· dσn∇X,yφ|Γb

, which is the result claimed in
the lemma. �

Remarking that −∂n−(gy) =
g√

1 + |∇xb|2
, the assumption made in the state-

ment of the proposition ensures that ∂n−P |Γb
≥ 0. Now, remark that P is sub-

harmonic because ∆(1
2 |∇X,yφ|2) =

∑d+1
j=1 |∇X,y∂jφ|2 ≥ 0; whenever P reaches its

minimum, it is therefore necessarily on the boundary of the fluid domain Ω and at
such a point the outward normal derivative is strictly negative. From the obser-
vation made above, P cannot reach its minimum on Γb. Its minimum is therefore
reached on the surface, where P vanishes identically. Hence, P is positive in the
fluid domain. Moreover, any point of the surface being a minimum for the subhar-
monic function P , one has ∂n+P < 0 everywhere on the surface.
As said above, one has a(t0, X) = −∂n+P (X, ζ(t0, X)). It follows that one has

a(t0, X) > 0 everywhere on Rd. By a continuity argument, there exists c2 > 0 such
that a(t0, X) ≥ c2 for all X in the ball |X | ≤ R. Taking c0 = min{c1, c2} concludes
the proof of the proposition. �

5. The nonlinear equations

In this section, we construct a solution to the water-wave equations. The crucial
step is the tame estimate on the linearized equation proved in the previous section.
The iterative scheme we use here is of Nash Moser type. We first state a Nash-Moser
implicit function theorem in Section 5.1 and then use it to solve the water-waves
equations in 5.2.

5.1. A simple Nash-Moser implicit function theorem. For the sake of sim-
plicity, we do not use an optimal form of the Nash-Moser theorem. A very simple
version of this result can be found in [31]; for the sake of completeness, we repro-
duce here this result.
Let Ea and Fa, a ≥ 0 be two scales of Banach spaces and denote E∞ = ∩a≥0Ea,
F∞ = ∩a≥0Fa. Assume also that there exist some smoothing operators (Sθ)θ>1 :
E∞ → E∞ satisfying for every V ∈ E∞, θ > 1 and s and t ≥ 0,

(5.50)

{
|SθV |Es ≤ Cs,tθ

s−t|V |Et if s ≥ t;
|V − SθV |Es ≤ Cs,tθ

s−t|V |Et if s ≤ t.

We also assume that |V |Es ≤ |V |Et whenever s ≤ t.

Theorem 5.1. Let Φ : E∞ → F∞ and assume that there exists U ∈ E∞, an
integer m > 0, a real number δ and constants C1, C2 and (Ca)a≥m such that for
any U, V,W ∈ E∞,

(5.51) |U − U |E3m < δ ⇒





∀a ≥ m, |Φ(U)|Fa ≤ Ca(1 + |U |Ea+m)
|dUΦ · V |F2m ≤ C1|V |E3m

|d2
UΦ · (V,W )|F2m ≤ C2|V |E3m |W |E3m .
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Moreover, one assumes that for every U ∈ E∞ such that |U−U |3m < δ, there exists
an operator Ψ(U) : F∞ → E∞ satisfying for any ϕ ∈ F∞, dUΦ · Ψ(U)ϕ = ϕ and

(5.52) ∀a ≥ m, |Ψ(U)ϕ|Ea ≤ Ca

(
|ϕ|Fa+m + |U |Ea+m |ϕ|F2m

)
.

Then if |Φ(U)|F2m is sufficiently small (with respect to some upper bound of 1/δ,
|U |M and (Ca)a≤M where M depends only on m), there exists a function U ∈ E∞
such that Φ(U) = 0.

Remark 5.2. The proof of [31] shows in fact that M ≥ 3m and that for all a ≥M ,
assuming that U ∈ Ea instead of U ∈ E∞ ensures the existence of a solution U ∈ Ea

instead of E∞.

5.2. Resolution of the water-waves equations. We are now ready to state the
main theorem of this paper (recall that IIb denotes the second fundamental form
of the bottom, as defined in (4.44)):

Theorem 5.3. Let b ∈ C∞
b (Rd), ζ0 ∈ Hs+1(Rd) and ψ0 be such that ∇Xψ0 ∈

Hs(Rd)d, with s > M (M depending only on d). Assume moreover that

min{ζ0 − b,−b} ≥ 2h0 on Rd for some h0 > 0,

and
IIb(V0|{y=b(X)}

, V0|{y=b(X)}
) ≤ g√

1 + |∇Xb|2
,

where V0 is the velocity field associated to ψ0.
Then there exists T > 0 and a unique solution (ζ, ψ) to the water-waves equations
(1.11) with initial conditions (ζ0, ψ0) and such that (ζ, ψ−ψ0) ∈ C1

(
[0, T ], Hs(Rd)×

Hs(Rd)
)
.

Remark 5.4. i. The initial velocity field V0 associated to ψ0 is given by the ex-
pression V0 = ∇X,yφ0, where φ0 is the velocity potential found solving the Laplace
equation (1.7) in the fluid domain {(X, y) ∈ Rd+1, b(X) < y < ζ0(X)} with Dirich-
let condition ψ0 at the surface and homogeneous boundary condition at the bottom.
ii. In the case of flat bottoms, IIb = 0 everywhere and the assumption on IIb made
in the theorem is always satisfied. For uneven bottoms, the smallness assumption
made on IIb is weaker than the smallness assumptions made, in the case of 1D
surface waves, by Yosihara [38].
iii. One can replace the assumption on IIb by the (sharper) assumption that
a(U)|t=0 ≥ c0 > 0 on Rd, where a is defined in (4.7) and U = U0 − tF(U0),
with U0 = (ζ0, ψ0)

T and F defined as in (4.3).
iv. It is physically reasonable to assume that the velocity decays at infinity, but
it would be too restrictive to suppose that the velocity potential also does. This is
why we take ψ0 such that ∇xψ0 ∈ Hs(Rd)d, and not simply ψ0 ∈ Hs+1(Rd).

Proof. The result is obtained as a consequence of the Nash-Moser Theorem 5.1.
We work here with the scale of Banach spaces (Ea)a and (Fa)a given in Def. 4.12.
It is classical that E∞ is equipped with a family of smoothing operators (Sθ)θ>0

satisfying (5.50). Direct use of Nash-Moser’s theorem would restrict us to the case
of small initial data U0. To avoid this, we proceed as in [21] (p. 195), exploiting
the fact that the water-wave equations are solvable at t = 0. Given any initial
condition U0 = (ζ0, ψ0) such that (ζ0,∇Xψ0) ∈ H∞(Rd)1+d, one can find U ∈
C3([0, T ], H∞(Rd)2) ⊂ E∞ such that

U |t=0 = 0,
[
∂tU + F(U + U0)

]
|t=0 = 0,

[
∂2

tU + ∂t

(
F(U + U0)

)]
|t=0 = 0.
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We then define G as G = ∂tU + F(U + U0) and introduce the mapping Φ:

Φ :
E∞ → F∞
U 7→ (∂tU + F(U + U0), U |t=0) ,

so that Φ(U) = (G, 0). Clearly, if Φ(U) = 0, then U + U0 furnishes a solution to
the Cauchy problem (1.11) with initial condition (ζ0, ψ0).
Let us check that the assumptions of Th. 5.1 are satisfied. One has, for all a ≥ 0,

|Φ(U)|Fa = |∂tU + F(U + U0)|Ha+1
T

+
∣∣∂2

tU + dU+U0F · ∂tU
∣∣
Ha

T

+ |U |t=0|Ha+2

≤ |U |Ea + |F(U + U0)|Ha+1
T

+ |dU+U0F · ∂tU |Ha
T
.

From the explicit expression of F given by (4.3) and the tame estimates on the
Dirichlet-Neumann operator and its derivatives given in Th. 3.6 and Prop. 3.25, it
is easy to deduce that for all a ≥ m0 + 1/2,

(5.53) |Φ(U)|Fa ≤ C
(
a,B, |ζ0|Ha+2 , |∇Xψ0|Ha+1 , |U |E2m0+1/2

,
)(

1 + |U |Ea

)

(note the above estimate only involves the gradient of ψ0, which is made possible
by Th. 3.6 – see Remark 3.7).
Taking m ≥ m0 and some δ > 0, the condition |U −U |E3m ≤ δ implies that |U |E3m

and hence |U |E2m0+1/2
remains bounded. Defining Ca as the supremum of all the

constants which appear in (5.53) when U remains in the ball |U −U |E3m ≤ δ gives
therefore the first condition of (5.51).
For all H,H1, H2 ∈ E∞, one has

(5.54) dUΦ ·H = (∂tH + dU+U0F ·H,H |t=0) ,

and
d2

UΦ · (H1, H2) =
(
d2

U+U0
F · (H1, H2), 0

)
;

checking that the last two conditions of (5.51) are satisfied is thus obtained in the
same way as for the first one, using Prop. 3.25.
We now turn to check condition (5.52). From the expression of dUΦ given in (5.54),
it is obvious that the right inverse Ψ(U) must be defined as

∀(G, V0) ∈ F∞, Ψ(U)(G, V0) = V, where

{
∂tV + dU+U0F · V = G
V |t=0 = V0.

In order to deduce the estimate (5.52) from Prop. 4.14, we must show that for
all U ∈ E∞ in the ball |U − U |E3m < δ, U + U0 is an admissible reference state
satisfying (4.10) uniformly, i.e. that there exists h0 > 0 and c0 > 0 such that

(5.55) ∀U ∈ E∞, |U − U |E3m < δ, U1 + ζ0 − b ≥ h0 on [0, T ]× Rd,

and

(5.56) ∀U ∈ E∞, |U − U |E3m < δ, a(U + U0) ≥ c0 on [0, T ]× Rd,

where a(u) is as defined in (4.7).

Lemma 5.5. Under the assumptions of the theorem, there exists δ0 > 0 such that
if 0 < δ < δ0, then (5.55) and (5.56) are satisfied (for a possibly smaller T > 0).

Proof. To prove (5.55), write U1(t)+ζ0−b =

∫ t

0

∂tU1(t
′)dt′+U1|t=0+ζ0−b, so that

using the assumption made on the initial data, U1(t) + ζ0 − b ≥ 2h0 −T |∂tU1|L∞
T
−

|(U1 − U1)|t=0|, where we used the fact that U |t=0 = 0. Sobolev embeddings then
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yield U1(t) − b ≥ 2h0 − Cst T |U |E3m − Cst δ, from which it is easy to conclude.
To prove (5.56), remark that a(U(t) + U0) = a(U(t) + U0) − a(U(t) + U0) +∫ t

0

∂t

(
a(U(t′) + U0)

)
dt′ + a(U0 +U |t=0). It follows that a(U(t) +U0) ≥ a(U |t=0 +

U0) − C(|U0|E3m , |U |E3m)(T + δ). Since by construction, U + U0 solves the water-
waves equations (1.11) at time t = 0, we deduce from Props. 4.4 and 4.15 that
there exists c0 > 0 such that a(U |t=0 + U0) ≥ 2c0. The end of the proof is then
straightforward. �

This lemma shows that the estimate (5.52) assumed in Th. 5.1 is a consequence
of Prop. 4.14 (taking a larger m if necessary). We can therefore use Th. 5.1, which
asserts that one can solve the equation Φ(U) = 0 provided that |Φ(U)|F2m ≤ M0

for some M0 > 0. Now, recall that Φ(U) = (G, 0) and that, by construction,
G|t=0 = ∂tG|t=0 = 0. One has therefore

∣∣Φ(U)
∣∣
F2m

=
∣∣G
∣∣
H2m+1

T

+
∣∣∂tG

∣∣
H2m

T

≤ T
( ∣∣∂tG

∣∣
H2m+1

T

+
∣∣∂2

tG
∣∣
H2m

T

)

which, taking a smaller T if necessary, is smaller than M0.
We have therefore proved the existence of a solution U ∈ E∞ to Φ(U) = 0, i.e. a
solution to the water-waves equations (1.11); the case of finitely regular solutions
is handled as in Remark 5.2.
We now turn to prove uniqueness. Let U1 and U2 be two solutions in Ea+m, for
some a ≥ m0 +1/2, m being as above. The difference U = U2 −U1 solves therefore
{
∂tU + dU1+U0F · U = G,
U |t=0 = 0,

with G := −
∫ 1

0

(1−t)d2
U0+U1+t(U2−U1)F·(U,U)dt.

Using Prop. 3.25, it is easy to obtain that for all s ≥ 2m0 + 1/2, one has |G|Hs ≤
Cs|U |Hm0+1/2 , where the constant Cs depends on the norm of U1 and U2 in Es.
Proceeding as in the proof of Prop. 4.14, one obtains the estimate

|U |Ha
T
≤ Ca+mC(T )

∫ t

0

|U(t)|Hm0+1/2dt,

for some integer m > 0. Bounding |U(t)|Hm0+1/2 from above by |U(t)|Ha and using
a classical Gronwall argument yields U = 0, whence the uniqueness. �

Appendix A. Proof of Lemma 2.8

Owing to Lemma 2.5, the nonconstant coefficients of P̃ are of the form (up to a
multiplicative constant)

A = ∂is, i = 1, . . . , d+ 1, B =
1

∂eys
or C =

∂is∂js

∂eys
, with 1 ≤ i, j ≤ d.

It is clear that one can write A = A1 +A2, with A1 = ∂is1 and A2 = ∂is2, so that

‖A1‖k,∞ ≤ ‖s1‖k+1,∞, ‖A2‖k,2 ≤ ‖s2‖k+1,2.

Similarly, one can write B = B1 +B2 and C = C1 + C2 with

B1 =
1

∂eys1
, B2 =

−∂eys2
∂eys1∂eys

,

and

C1 =
∂is1∂js1
∂eys1

, C2 =
(∂is2∂js2 + ∂is1∂js2 + ∂is2∂js1)∂eys1 − ∂eys2∂is1∂js1

∂eys1∂eys
.
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It follows easily that

‖B1‖k,∞ ≤ C
( 1

c0
, ‖s1‖k+1,∞

)
, ‖C1‖k,∞ ≤ C

( 1

c0
, ‖s1‖k+1,∞

)
,

which achieves the proof of the first estimate of the Lemma.
We now turn to estimate the Sobolev norms of B2 and C2. Remark that they are
both of the form f2

g1+g2
, with f2, g2 ∈ Hk(S), g1 ∈ Ck

b (S) and

(A.1) ‖f2, g2‖k,2 ≤ C(‖s1‖k+1,∞, ‖s2‖1,∞)‖s2‖k+1,2, ‖g1‖k,∞ ≤ C(‖s1‖k+1,∞).

Let us denote g := g1 + g2. For all α ∈ Nd+1, |α| = k, one can show by induction

that ∂α

(
f2
g

)
is a sum of terms of the form

(A.2) I =
1

g1+|α| ∂
βf2

|α|−|β|∏

n=0

∏

Jn∈Nd+1,|Jn|=n

(∂Jng)rJn ,

where β ∈ Nd+1, rJn ∈ N satisfy the relation

(A.3) |β| +
|α|−|β|∑

n=0

n
∑

Jn∈Nd+1,|Jn|=n

rJn = k,

Decomposing g into g = g1 + g2, one obtains the following estimate

(A.4) ‖I‖2 ≤ C
( 1

c0
, ‖g1‖k,∞, ‖g2‖∞

)∥∥∥∂βf2

|α|−|β|∏

n=1

∏

Jn∈Nd+1,|Jn|=n

(∂Jng2)
r′

Jn

∥∥∥
2
,

where the r′Jn
are such that 0 ≤ r′Jn

≤ rJn .
Let l be defined as

(A.5) l := |β| +
|α|−|β|∑

n=1

n
∑

Jn∈Nd+1,|Jn|=n

r′Jn
,

so that by (A.3), one has 0 ≤ l ≤ k.
• If l = 0, then necessarily

∂βf2

|α|−|β|∏

n=1

∏

Jn∈Nd+1,|Jn|=n

(∂Jng2)
r′

Jn = f2,

and therefore

(A.6) ‖I‖2 ≤ C
( 1

c0
, ‖g1‖k,∞, ‖g2‖∞

)
‖f2‖2.

• If l ≥ 1, then remark that

1

2l/|β| +

|α|−|β|∑

n=1

∑

Jn∈Nd+1,|Jn|=n

r′Jn

2l/n
=

1

2
.

Denoting by J the L2-norm which appears in (A.4) and using Young’s inequality,
one has therefore

J ≤ ‖∂βf2‖2l/|β|

|α|−|β|∏

n=1

∏

Jn∈Nd+1,|Jn|=n

‖∂Jng2‖
r′

Jn

2l/n.
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Recalling that for all φ ∈ D(S), one has

‖∂γφ‖2l/|γ| ≤ Cst ‖φ‖1−|γ|/l
∞ ‖φ‖|γ|/l

l,2 , γ ∈ Nd+1, 0 ≤ |γ| ≤ l;

and using (A.5), it follows that

J ≤ C (‖g2‖∞) ‖f2‖1−|β|/l
∞ ‖g2‖1−|β|/l

l,2 ‖f2‖|β|/l
l,2 .

Plugging the estimates (A.1) into this inequality and using (A.4) and (A.6), one
obtains the second estimate of the lemma.
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[1] S. Alinhac, P. Gérard, Opérateurs pseudo-diffrentiels et thorme de Nash-Moser, Savoirs
Actuels. InterEditions, Paris; Editions du Centre National de la Recherche Scientifique
(CNRS), Meudon, 1991. 190 pp.

[2] J. Bona, T. Colin, D. Lannes, Long wave approximations for water-waves, Arch. Ration.
Mech. Anal., to appear.

[3] T. Beale, T. Hou, J. Lowengrub Growth rates for the linearized motion of fluid interfaces
away from equilibrium, Comm. Pure Appl. Math. 46 (1993), no. 9, 1269–1301.

[4] G. Birkhoff, Helmholtz and Taylor instability. 1962 Proc. Sympos. Appl. Math., Vol. XIII
pp. 55–76 American Mathematical Society, Providence, R.I.

[5] G. Carbou, Penalization method for viscous incompressible flow around a porous thin layer,
Nonlinear Anal. Real World Appl. 5 (2004), no. 5, 815–855.
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Abstract. We prove that the water-wave equations (i.e. the inviscid Euler
equations with free surface) are well-posed locally in time in Sobolev spaces for
a fluid layer of finite depth, either in dimension 2 or 3 under a stability condi-

tion on the linearized equations. This condition appears naturally as the Lévy
condition one has to impose on these nonstricly hyperbolic equations to insure
well-posedness; it coincides with the generalized Taylor criterion exhibited in
earlier works. Similarly to what happens in infinite depth, we show that this
condition always holds for flat bottoms. For uneven bottoms, we prove that
it is satisfied provided that a smallness condition on the second fundamental
form of the bottom surface evaluated on the initial velocity field is satisfied.
We work here with a formulation of the water-waves equations in terms of the
velocity potential at the free surface and of the elevation of the free surface,
and in Eulerian variables. This formulation involves a Dirichlet-Neumann op-
erator which we study in detail: sharp tame estimates, symbol, commutators
and shape derivatives. This allows to give a tame estimate on the linearized
water-waves equations and to conclude with a Nash-Moser iterative scheme.
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