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A year-round satellite sea-ice thickness 
record from CryoSat-2

Jack C. Landy1,2 ✉, Geoffrey J. Dawson2, Michel Tsamados3, Mitchell Bushuk4, 
Julienne C. Stroeve3,5, Stephen E. L. Howell6, Thomas Krumpen7, David G. Babb5, 
Alexander S. Komarov8, Harry D. B. S. Heorton3, H. Jakob Belter7 & Yevgeny Aksenov9

Arctic sea ice is diminishing with climate warming1 at a rate unmatched for at least 
1,000 years2. As the receding ice pack raises commercial interest in the Arctic3, it has 
become more variable and mobile4, which increases safety risks to maritime users5. 
Satellite observations of sea-ice thickness are currently unavailable during the crucial 
melt period from May to September, when they would be most valuable for 
applications such as seasonal forecasting6, owing to major challenges in the 
processing of altimetry data7. Here we use deep learning and numerical simulations of 
the CryoSat-2 radar altimeter response to overcome these challenges and generate a 
pan-Arctic sea-ice thickness dataset for the Arctic melt period. CryoSat-2 observations 
capture the spatial and the temporal patterns of ice melting rates recorded by 
independent sensors and match the time series of sea-ice volume modelled by the 
Pan-Arctic Ice Ocean Modelling and Assimilation System reanalysis8. Between 2011 
and 2020, Arctic sea-ice thickness was 1.87 ± 0.10 m at the start of the melting season 
in May and 0.82 ± 0.11 m by the end of the melting season in August. Our year-round 
sea-ice thickness record unlocks opportunities for understanding Arctic climate 
feedbacks on different timescales. For instance, sea-ice volume observations from the 
early summer may extend the lead time of skilful August–October sea-ice forecasts by 
several months, at the peak of the Arctic shipping season.

Sea-ice thickness (SIT) is an essential climate variable that shapes almost 
every physical and biogeochemical process operating at the Arctic 
air–ice–ocean interface. It guides human activities, as a platform for 
local Inuit communities to travel3 and as a barrier and a key risk param-
eter for marine shipping9; it affects the amount of sunlight reaching 
ice-associated or under-ice primary producers10, which make up the 
base of the entire Arctic food chain, particularly during summer months; 
and it helps to regulate the Arctic Ocean’s biogeochemistry, including 
greenhouse gas fluxes11. Regional SIT anomalies tend to have a longer 
‘memory’ (months) than sea-ice extent (SIE) anomalies (days), dictating 
where thicker-than-usual sea ice can survive summer melting or where 
thinner-than-usual sea ice melts away earlier in the season12,13. Conse-
quently, SIT observations—particularly from the early summer6—have 
the potential to extend operational sea-ice forecasts by many months14.

Pan-Arctic maps of winter SIT have been produced from a satellite radar 
and laser altimetry record spanning 1993 to the present15–18, revealing 
that the sea-ice cover has been rapidly thinning in response to climate 
warming19. However, meltwater ponds accumulating on Arctic sea ice 
between May and September have prevented researchers from gener-
ating valid SIT observations in the summer months from any satellite 
sensor. This includes the European Space Agency (ESA) radar altimeter 

CryoSat-2, which has collected observations all year round since the 
mission was launched in 2010, but conventional algorithms have only 
enabled SIT to be derived for the winter months of October to April17. 
Melt ponds complicate the interpretation of CryoSat-2 radar data, so 
it is difficult to differentiate between sea-ice and the open-water leads 
that develop between sea-ice floes20. Furthermore, melt ponds bias the 
height measurement of the sea-ice surface elevation above the water level 
(that is, the ice freeboard), which is critical for estimating its thickness7.

Summer SIT observations have been acquired on airborne campaigns 
and from in situ instruments such as moored sonar that record the 
sea-ice draft. These datasets have suggested that sea ice in the Arctic 
outflow region of Fram Strait has thinned by up to 50% since 200021 
with a 25% decrease in the modal thickness of multi-year ice (MYI)22, 
reflecting a strong decline in the age of sea ice surviving the summer 
melt in the Arctic Basin. However, airborne and in situ observations give 
only limited snapshots of the ice thickness for a single day or location.

Summer sea-ice thickness from CryoSat-2
In a recent study, deep learning was applied to CryoSat-2 radar returns to 
accurately distinguish sea-ice floes from leads, based on local variations 
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in the radar echo response, for the months of May to September7. The 
sea-ice radar freeboard was then determined from the elevation differ-
ence between altimeter measurements of sea-ice floes and the sea level at 
leads. CryoSat-2 radar freeboard measurements capture the patterns and 
timing of summer sea-ice melting rates observed by independent airborne 
and in situ ‘ground truth’ sensors; however, they underestimate the thick-
ness of the thickest, roughest sea ice resident in the Central Arctic7. This 
is caused by an electromagnetic (EM) range bias on the CryoSat-2 radar 
measurement associated with meltwater ponds lying at the sea-ice surface.

Radar altimetry measurements of sea-ice freeboard rely on accu-
rate detection of the mean level of ice floe surfaces. If the principal 
scattering horizon of the radar is not located at the same height as the 

mean ice floe surface height, the altimeter range measurement will be 
biased. Arctic sea-ice floe echoes are generally specular in the summer 
months20 causing the waveform peak power to be referenced to the 
surface of reflecting ponds. Melt-pond surfaces typically lie below  
the mean elevation of the surrounding sea ice23 causing a positive EM 
range bias over ice floes, which corresponds to an underestimation of 
the sea-ice freeboard. This positive EM range bias is larger over rougher 
sea ice7, equivalent to the well understood sea-state bias over open 
ocean where Ku-band radar altimeter pulses are reflected more effec-
tively by wave troughs than their crests24.

Here we model the CryoSat-2 radar response over melt-pond-covered 
sea ice and perform a set of simulations to characterize the EM range 
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Fig. 1 | Arctic SIT measured over the entire year at biweekly (twice per 
month) intervals by CryoSat-2 in 2016. Observations for the cold-season 
months of October–April are obtained from the LARM algorithm41. 
Observations for the melting season months of May–September are obtained 

from the method presented here (Methods). The black contours represent  
the SIE (15% ice concentration edge) and greyed-out areas represent missing 
data. Maps produced using MATLAB code from ref. 42.
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bias (Methods). The simulations confirm that the radar range is increas-
ingly overestimated as the sea-ice surface gets rougher, accounting 
for the observed underestimation of CryoSat-2 freeboard over rough 
sea ice in the Central Arctic7. We use auxiliary satellite estimates for 
the sea-ice surface roughness and melt-pond coverage during Arctic 
summer months to obtain a quantitative prediction for the EM range 
bias for every CryoSat-2 freeboard observation. The bias correction 
uncertainty is assessed through Monte Carlo error analysis. Estimates 
of snow loading on the sea ice (from snow depth and density) using a 
Lagrangian snow evolution scheme SnowModel-LG25,26 are then used 
to convert the CryoSat-2 summer radar freeboards to SIT.

This approach enables us to create a pan-Arctic all-year, decade-long 
and gap-free SIT record for 2011–2020 (available with this paper). By 
doing so, we take steps towards a goal of the future European Union 
CRISTAL (Copernicus Polar Ice and Snow Topography Altimeter) mis-
sion to provide ‘meaningful’ SIT observations in summer27. The thickest 
pan-Arctic average SIT of 2.01 m was recorded in May 2015 whereas the 
thinnest SIT of 0.52 m was recorded in October 2011. The interannual 
variability of SIT across our 2011–2020 record is smallest at 0.08 m 
in January and largest at 0.18 m in July. In Fig. 1, we show, for exam-
ple, biweekly (twice per month) 80-km resolution maps of SIT meas-
ured by CryoSat-2 over 2016. The record bridges two data-processing 

algorithms, for winter and summer months, but the spatial SIT distri-
butions are generally consistent across the transitions from April to 
May and from September to October. For instance, in 2016, sea ice was 
thinner than usual in the Pacific sector of the Arctic, with a significant 
negative SIT anomaly appearing in February, growing to around 1 m 
by June (30% thinner than the 2011–2020 mean; Extended Data Fig. 6), 
and culminating in 7 weeks early ice-edge retreat in the Beaufort Sea28.

Validating the ice thickness record
We have validated the satellite SIT observations against available air-
borne electromagnetic (AEM) sounding, upward-looking sonar (ULS) 
and acoustic Doppler current profiler (ADCP) observations acquired 
over the Arctic summer months. CryoSat-2 SIT can explain 80% of the 
variance (r2) in coinciding helicopter-based AEM ice thickness obser-
vations collected during the 2011 TransArc campaign of the Alfred 
Wegener Institute (AWI) RV Polarstern icebreaker, verifying the gradient 
of SIT from the Central Arctic to the sea-ice edge recorded during Tran-
sArc (Extended Data Fig. 2). The distribution of SIT north of Greenland 
recorded by AEM during AWI IceBird campaigns from 2016 to 2018 
is captured by CryoSat-2, although the satellite still underestimates 
the thickness of the roughest sea ice29 in coastal areas (Extended Data 
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Fig. 2 | Time series of SIV derived from CryoSat-2 compared with reanalysed 
predictions of ice volume from PIOMAS. a, SIV from CryoSat-2 is presented 
with uncertainty envelopes for the entire Arctic and separated into zones of 
predominantly FYI and MYI (using the NSIDC sea-ice-age dataset43). The 
CryoSat-2 SIV uncertainties are derived from the total ice thickness uncertainty 

(Methods) multiplied by the ice area. b–d, Scatterplots of the SIV anomalies, 
for total (b), first-year (c) and multi-year (d) ice after removing the 
climatological seasonal cycle of ice volume from the CryoSat-2 and the PIOMAS 
time series.
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Fig. 3). This bias must be taken into account if the observations are 
used, for instance, in future data-assimilation experiments.

CryoSat-2 can likewise capture the timing and magnitude of ice melt-
ing rates recorded by ULS sensors on mooring arrays at the Beaufort 
Gyre Exploration Program (BGEP) between 2011 and 2018 (Extended 
Data Fig. 4) and ULS and ADCP sensors in the Laptev Sea between 2010 
and 2015 (Extended Data Fig. 5). The satellite observations can explain 
71% and 54% of the variance (r2) in the ice draft measured by BGEP and 
the Laptev Sea arrays, respectively. Furthermore, after removing the 
climatological mean seasonal cycles of ice draft from the three long 
time series in the Beaufort Sea, the anomaly correlation coefficients 
between ULS and CryoSat-2 observations are 0.45, 0.51 and 0.37 for 
moorings A, B and D, respectively. This suggests that CryoSat-2 sum-
mer observations can capture a significant portion of the interannual 
variability in SIT recorded by moored ULS sensors.

Seasonal variability in sea-ice volume
Our SIT observations allow us to quantify sea-ice volume (SIV) through-
out the melt season by integrating CryoSat-2 SIT with ice concentration 
observations from the Ocean and Sea Ice Satellite Application Facility 
(OSI SAF) (Methods). SIV anomalies are then obtained from the time 
series of pan-Arctic total SIV, by removing the 2010–2020 climato-
logical seasonal cycle, and decomposed into the contributions from 
sea-ice concentration (SIC) and SIT anomalies (Extended Data Fig. 7). 
This analysis demonstrates that SIT anomalies provide the dominant 
contribution to SIV interannual variability, around five times higher 
than the absolute contribution from ice concentration anomalies. 
The correlations between SIV anomalies and the anomalies of SIT, SIC 
and their correlated component are 0.97, 0.27 and 0.21, respectively.

We use the Pan-Arctic Ice Ocean Modeling and Assimilation Sys-
tem (PIOMAS) SIV reanalysis system, which assimilates SIC and 
sea-surface-temperature data8,30, as a benchmark for indirectly assess-
ing our observations. SIV derived from CryoSat-2 shows remarkable 
consistency with PIOMAS (Fig. 2a); the PIOMAS SIV is generally within 
the observation uncertainty bounds, at the pan-Arctic scale and when 
separated into zones of predominantly first-year ice (FYI) and MYI. The 
strong correspondence between SIV time series from CryoSat-2 and 

PIOMAS are supported by r2 values and root-mean-square errors of 0.95 
(FYI, 0.96; MYI, 0.83) and 2,350 km3 (FYI, 1,190 km3; MYI, 1,200 km3), 
respectively.

SIV is typically higher from PIOMAS than from CryoSat-2 around 
the September minimum. However, both the observations and rea-
nalysis capture a reduction in MYI volume following the record Arctic 
SIE minimum in 2012 and rebound in 2014 following reduced ice melt 
and strong ice convergence during summer 201331. The anomaly cor-
relation coefficient between PIOMAS and CryoSat-2 is 0.43 (FYI, 0.43; 
MYI, 0.63) after removing the climatological mean seasonal cycles of 
SIV from both time series. Although CryoSat-2 SIT generally replicates 
the seasonal cycle and magnitude of SIV from PIOMAS, the interan-
nual variations in ice volume between datasets are not identical and 
appear to agree better for MYI than for FYI (Fig. 2b–d). This could point 
to errors in the satellite observations of SIT and/or limitations in the 
model-based reanalysis system.

Covariance between ice volume and extent
To further evaluate the year-round satellite SIT record and verify that 
SIT anomalies persist through time rather than being obscured by 
uncertainties (biases or random noise), we perform a lagged corre-
lation analysis between pan-Arctic SIV derived from CryoSat-2 and 
future pan-Arctic SIE from OSISAF (Fig. 3). Figure 3a shows correlation 
coefficients between pan-Arctic total SIV and SIE, separated by a lag 
time between 0 and 365 days, based on the full record of data between 
October 2010 and July 2020. (It is noted that sea ice within the National 
Snow and Ice Data Center (NSIDC) Multisensor Analyzed Sea Ice Extent 
(MASIE) Central Arctic region (Extended Data Fig. 9) is excluded from 
this analysis because the region has been perennially ice covered over 
our study period.) Time series for these correlations therefore corre-
spond to 9–11 years of CryoSat-2 data, depending on the target day, and 
generally do not show statistically significant trends over such short 
records. For robustness, we repeat the same analysis but detrend the 
SIV and the SIE time series before calculating correlations (Extended 
Data Fig. 8); however, the major features of Fig. 3 remain. We compare 
to a reference analysis of lagged correlations between pan-Arctic total 
SIE and future SIE in Fig. 3b.
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Fig. 3 | Lag correlation plots between pan-Arctic SIV and SIE. a,b, 
Correlations between SIV and future SIE (a) and correlations between SIE and 
future SIE (b). The black lines mark correlations with a statistical significance of 
P = 0.1 and stippling marks where SIV > SIE correlations are higher than SIE > SIE 
for a or vice versa for b. The dotted line in a marks the correlations with a 
significance of P = 0.1 between PIOMAS SIV and future OSISAF SIE. The grey 
lines mark lead times for each month as contours. The lagged correlation can 

be identified on the plot where SIV/SIE at any lead month on the y axis intersects 
with future SIE for any target month on the x axis. c, Mean (with standard 
deviation envelope) correlation for September SIE including two regions of 
predictability where SIV offers improvements over SIE. The two vertical lines 
mark the dates when correlations fall below P = 0.1. The same plot for 
detrended SIV and SIE time series is shown in Extended Data Fig. 8.
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Figure 3 illustrates statistically significant (P < 0.1) positive correla-
tions between summer ( June–September) SIE and earlier ice volume 
and extent, starting from lead times between May and July. The lead 
times for significant correlations increase over summer, matching 
the structure revealed by numerous idealized and operational model 
sea-ice prediction experiments6,12,13,32. Our observational results there-
fore confirm the existence of a spring predictability barrier, as sug-
gested by previous modelling studies14,33. Intense sea-ice dynamics 
and new ice growth in late winter can weaken the link between winter 
SIT anomalies and summer SIE28, so that predictability is subdued until 
melt onset14. Strong correlations between SIV and future SIE develop 
only when the sea-ice-albedo feedback acts to enhance existing SIT 
anomalies at the onset of the Arctic melt season34.

Future implications for forecasting
For target months in the Arctic summer, SIE co-varies strongly with 
future SIE at short lead times of around 0–45 days (Fig. 3b), whereas 
SIV takes over as the dominant source of skill for predicting ice extent 
between August and December over lead times of 45–300 days (Fig. 3a). 
For instance, SIV is the dominant source of skill for predicting Sep-
tember SIE at lead times of 25–140 days (Fig. 3c), which is generally 
consistent with operational sea-ice forecasting systems12. SIT anomalies 
in our year-round CryoSat-2 dataset must be larger than the observa-
tion uncertainties, because strong correlations between SIV and SIE 
bridge the transitions between conventional winter and new summer 
processing algorithms. As there are significant (P < 0.1) correlations 
between SIE in September and SIV over 3.5 months earlier, in mid-May, 
compared with only 2 months earlier in late June for SIE (Fig. 3c), new 
summer SIT observations may also be valuable in future to extend the 
lead time of Arctic sea-ice forecasts.

Our results further reveal the re-emergence of SIV as a potential 
source of skilful ice extent predictability in autumn months (Fig. 3a). The 
lead times for this re-emergence region are between 100 and 310 days, 
suggesting that October–December SIE can be accurately forecast from 
SIV measured by CryoSat-2 as early as the preceding January–February, 
but not after July–August. Correlations between SIV and SIE are more 
uncertain for this re-emergence region (Extended Data Fig. 10) and 
weaker—but still present—when time series are detrended (Extended 
Data Fig. 8). The skill is mainly sourced from the Beaufort, Chukchi and 
East Siberian seas where the sea ice can be less dynamic than in other 
regions (Extended Data Fig. 9). These results offer the exciting potential 
for SIT observations to enhance future sea-ice forecasts by bridging 
the spring and summer. For instance, CryoSat-2 SIV extends the lead 
time for skilful ice extent predictability in autumn by several months 
compared with using PIOMAS reanalysed SIV (Fig. 3a).

Autumn SIE predictions at lead times of up to around 200 days 
(Fig. 3a) can be explained by the persistence of early melt season SIT 
anomalies, whereas the correlations at lead times of less than 100 days 
are obscured by new ice formation in October and November. However, 
the skilful SIE forecasts at lead times of up to 280–310 days can only 
be explained by re-emergence of winter SIT anomalies in the following 
autumn. This could potentially occur through sequential hand-off from 
winter SIT anomalies to spring SIE anomalies to summer upper ocean 
heat anomalies to autumn SIE anomalies33,35. So-called growth-to-melt 
season re-emergence represents the exchange of anomalies between 
sea-ice area and thickness12. The two properties co-vary during summer 
but not in winter35, with positive regional winter SIT anomalies slowing 
down sea-ice retreat in the following spring and creating positive sum-
mer SIE anomalies, or vice versa36. A shorter open-water season limits 
solar heating of the upper ocean, which extends this predictability 
regime through the melt-to-growth re-emergence mechanism35. Our 
observational results reinforce modelling studies that find SIV is a 
better predictor than SIE for July–November ice extent 6–10 months 
in advance12.

Next steps
The pan-Arctic summer SIT product presented here could benefit from 
a number of improvements. Dedicated airborne campaigns to simul-
taneously measure the Ku-band radar response, surface roughness, 
freeboard and thickness of melt-pond-covered sea ice are required to 
better understand the EM radar range bias. The evolutions of FYI and 
MYI densities with summer brine drainage and meltwater flushing are 
poorly understood37. Gap-free and consistent satellite data products for 
Arctic summer melt-pond fraction and surface roughness are needed 
to improve the application of freeboard bias corrections. Finally, a 
greater emphasis on collecting SIT validation datasets during the Arctic 
summer—especially in the shoulder months of May and September—is 
essential for evaluating satellite products.

Future near-real time summer altimetry SIT observations could 
improve the safety of Arctic shipping through integration into the Polar 
Operational Limit Assessment Risk Index System (POLARIS)38 that has 
been developed under the International Maritime Organization’s Polar 
Code. Quantifying SIT, compared with qualitatively characterizing ‘ice 
conditions’ within the code, offers the critical information required to 
guide go or no-go decisions for Arctic vessels5 and make future projec-
tions of Arctic navigation risks9. ‘Missing’ summer SIT observations 
have also impacted many fields of Arctic research beyond seasonal 
sea-ice forecasting. For instance, SIT is needed to close the energy 
budget of the Arctic Ocean during summer months39; to determine 
pelagic and sympagic primary productivity during the active summer 
bloom10; to reconcile the greenhouse gas balance of the Arctic11; and to 
validate and improve the representation of sea ice in global coupled cli-
mate models40. Our freely available summer SIT dataset opens research 
opportunities in all areas of Arctic-system science.
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Methods

CryoSat-2 sea-ice radar freeboards
SIT observations are derived from the ESA CryoSat-2 radar altimeter44 
following the processing chain illustrated in Extended Data Fig. 1. The 
first step of this method, documenting a record of sea-ice radar free-
board measurements obtained from CryoSat-2 over the Arctic sum-
mer ‘melt season’ months of May–September 2011–2020, has already 
been published7. The algorithm to obtain radar freeboard involved 
several steps. (1) Fitting the SAMOSA+ (Synthetic Aperture Radar 
Altimetry MOde Studies and Applications +) analytical radar echo 
model45 to observed waveforms to retrack the ice or ocean surface 
elevation. Model fitting was performed using the ESA Grid Processing 
On Demand (GPOD) SARvatore and SARInvatore services. (2) Classifica-
tion of radar waveforms into returns from sea-ice floes and leads using 
a one-dimensional convolutional neural network (CNN). The CNN was 
trained using CryoSat-2 samples selected over known surface types 
(sea-ice floes or leads) identified in coincident satellite optical and SAR 
imagery, as described in ref. 7. (3) Finding the height difference between 
ice floe elevations and sea level. (4) Sampling the CryoSat-2 along-track 
radar freeboards to biweekly, 80-km-resolution grids through inverse 
distance- and time-weighted linear interpolation.

Hereafter, this section describes new techniques, building on ref. 7,  
to (1) characterize and correct for the EM range bias on CryoSat-2 radar 
freeboard observations, (2) convert freeboards to estimates of SIT 
with associated uncertainties, (3) reconcile summer and winter SIT 
records, (4) validate SIT observations, and (5) perform lagged correla-
tion analyses between SIE and SIV.

Characterization of the EM range bias
Ideally, we would correct for the EM range bias over melt-pond-covered 
sea-ice floes at the radar waveform retracking step. However it would 
be extremely challenging—potentially impossible—to invert for the EM 
range bias correction solely from the shape of a CryoSat-2 waveform. 
Consequently, we estimate the EM bias separately then apply it as a 
correction to the biweekly 80-km radar freeboard product derived in 
ref. 7. The radar range bias is quantified by comparing a set of numerical 
waveform simulations from sea-ice surfaces with the Facet-Based Echo 
Model (FBEM)41,46, which integrates melt ponds, to solutions from the 
SAMOSA+ analytical echo model used for waveform retracking. Full 
details of the rationale for this approach, the waveform simulations 
and the bias quantification are given in Supplementary Section A and 
refs. 47–52.

We simulate the backscattered CryoSat-2 radar response with the 
FBEM from random sea-ice surfaces generated with a prescribed rough-
ness height standard deviation σ and randomly distributed melt-pond 
coverage fp. Melt ponds are distributed by accumulating water on the 
topography below a threshold elevation until the coverage equals fp, 
with all pond surfaces sitting at the same elevation. Relevant param-
eters for modelling the sea-ice surface backscattering coefficients 
are obtained from the literature, including ‘radar scale’ (millimetre to 
centimetre) melt-pond surface roughness parameters based on field 
observations of melt-pond wave spectra53. Melt-pond surface rough-
ness varies as a function of the wind speed U10, so we run simulations 
with FBEM covering a wind speed range from 5 m s−1 to 7 m s−1 to char-
acterize the uncertainty of this parameter. A look-up table of altimeter 
echoes is generated from the average of 100 model outputs for each 
combination of σ from 0 cm to 60 cm in 2-cm intervals and fp from 
0 to 0.6 in 0.02 intervals. As each model run is based on a randomly 
generated surface, we have to average 100 model outputs to accurately 
characterize the echo for a certain combination of σ and fp.

The numerical FBEM simulations from pond-covered sea ice are 
assumed to represent ‘true’ radar echoes for certain combinations of σ 
and fp, and then used as a reference for evaluating the SAMOSA+ retrack-
ing algorithm applied in our CryoSat-2 radar freeboard processing 

scheme7. We find the best-fit SAMOSA+ model solution for each FBEM 
echo in the look-up table, with the EM range bias then defined as the 
two-way travel time difference between echo retracking points. This 
produces a theoretical quantitative estimate for the EM range bias as 
a two-dimensional function of σ and fp, which can then be applied as a 
correction on the CryoSat-2-derived radar freeboard.

Auxiliary estimates for the sea-ice surface roughness and melt-pond 
coverage during Arctic summer months are required to apply the 
theoretical range bias correction. At the time of writing, there is no 
consistent pan-Arctic gap-free dataset available for either parameter 
covering the study period from 2011 to 2020. We obtain pan-Arctic 
sea-ice surface roughness observations for summer months by propa-
gating CryoSat-2 estimates of σ from the 25-km gridded Lognormal 
Altimeter Retracker Model (LARM) dataset41 forwards and backwards 
from winter months, based on observations of the sea-ice drift. These 
roughness observations are assumed to represent the standard devia-
tion of the snow–sea-ice interface. Daily observations of sea-ice drift 
are obtained from the NSIDC Polar Pathfinder dataset (https://nsidc.
org/data/nsidc-0116/versions/4)43. A single estimate of σ is derived 
for each biweekly 80-km CryoSat-2 freeboard grid, between May and 
September, by sampling the inverse-time-weighted average of evolved 
Lagrangian April and October σ fields at each grid point. We estimate 
uncertainty on the roughness from the root sum square of the meas-
urement uncertainty and the absolute difference between forwards 
and backwards predictions.

Remotely sensed observations of melt-pond fraction are obtained 
from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) sen-
sor through the University of Bremen (https://seaice.uni-bremen.de/
melt-ponds/). This is a daily 12.5-km pan-Arctic product based on the 
version 1.5 algorithm of ref. 54 and covering the period between 2017 
and 2020. As cloud cover can heavily obscure the coverage of daily 
observations and only the final four years of our freeboard record had 
coinciding measurements of fp, we calculate a seasonal climatology of 
the fp observations that we could then apply to all years of our study, 
2011–2020. Biweekly 80-km melt-pond fraction fields are obtained from 
the average of all cloud-free OLCI pixels between 2017 and 2020 within 
each two-week summer window and 80-km grid cell. The fp climatol-
ogy captures the expected seasonal cycle of melt-pond formation, 
growth and drainage23, and regional patterns in coverage reflecting 
the pan-Arctic differences between sea-ice types55. However, it does not 
account for interannual variations in fp within the same region, which 
can be significant56, and represent an uncertainty on our observations. 
We estimate the uncertainty on our melt-pond climatology from the 
root sum square of the fp pixel standard deviation and the interannual 
variability of fp between years of the 2017–2020 record.

The EM range bias correction Δhr is calculated from inputs of σ from 
CryoSat-2 and fp from Sentinel-3 OLCI, and then added to the CryoSat-2 
radar freeboard estimates. This correction is not applicable when a sig-
nificant snowpack is present on the sea-ice surface, so that melt-pond 
coverage would be limited. Therefore, we do not apply the correction 
when snow depth (see below) hs > 60 cm and reduce the correction 
linearly as a function of snow depth between 0 cm and 60 cm (that is, 
Δhr × (1 − hs/60)).

Uncertainty on the bias correction is assessed through Monte Carlo 
error analysis. For each value of the EM range bias, we have estimates 
for the uncertainties of three input parameters: σ, fp, and the radar-scale 
melt-pond roughness induced by variable wind speed U10. We recalcu-
late the bias 1,000 times but each time including randomly selected 
errors from the error distributions of σ, fp and U10, obtaining the total 
uncertainty from the standard deviation of these 1,000 iterations. We 
assume that σ and fp have Gaussian-distributed errors with standard 
deviations equal to the parameter uncertainties, but that radar-scale 
melt-pond roughness values are equally likely over the modelled 
range of U10 between 5 m s−1 and 7 m s−1. The final uncertainty of the 
bias-corrected CryoSat-2 radar freeboard is obtained from the root sum 

https://nsidc.org/data/nsidc-0116/versions/4
https://nsidc.org/data/nsidc-0116/versions/4
https://seaice.uni-bremen.de/melt-ponds/
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square of the uncertainty on the EM bias correction and the measured 
freeboard variability within each 80-km grid cell. The uncertainty is 
highest (up to around 40% of the corrected freeboard) between July 
and August when the EM range bias correction is largest.

SIT and uncertainty
Snow load (depth and density) estimates are obtained from the Lagran-
gian snow evolution scheme SnowModel-LG25,26. This scheme uses the 
Modern-Era Retrospective analysis for Research and Applications Ver-
sion 2 (MERRA2) atmospheric reanalysis and NSIDC Polar Pathfinder 
ice-motion observations to simulate the accumulation of snow on Arctic 
sea ice between September and April, while also modelling snowpack 
metamorphism and melt between May and August. Snow carryover 
between accumulation seasons is minimal and the snow melting season 
is around 6 weeks in length25. Snow melt occurs between May and July 
but is most rapid in June, reflecting the transition from a negative to 
positive Arctic surface-energy balance, before the snow accumulates 
again slowly from September. SnowModel-LG can reproduce the tim-
ing of snow melt from in situ observations but has difficulty predicting 
rates of melt26. We assume relatively high constant uncertainties in 
snow depth and density of 10 cm and 50 kg m−3, respectively (or 50% 
if the depth or density are below these values). These uncertainties 
are based on the comparisons between SnowModel-LG data and those 
from independent datasets, including Operation IceBridge, ice mass 
balance buoys, snow buoys and MagnaProbes26.

CryoSat-2 radar freeboards show clear unrealistic thickening 
between April and May7 resulting from the radar signal attenuating 
within the melting snowpack57 rather than penetrating to the snow–
ice interface. This probably results from increasing moisture content 
within the snowpack causing scattering and absorption of the CryoSat-2 
Ku-band EM wave. The depth of radar penetration into the snow will vary 
between regions, years and potentially from observation to observation 
along the satellite track, depending on the snow geophysical properties 
(roughness, microstructure, density, volume and salinity) and atmos-
pheric conditions (temperature, moisture content and so on)57–60. As 
we cannot predict these variations in the penetration depth, as a first 
approximation we assume the Ku-band radar penetrates a constant 
90% of the snow cover wherever snow is present between May and Sep-
tember, which produces a largely consistent transition in derived SIT 
between April and May, and between September and October. However, 
the assumed Ku-band radar penetration depth into snow during the 
Arctic melting season does impact the estimated SIT (Supplementary 
Section B) and should therefore be the subject of further study.

Sea-ice thickness hi is obtained from the hydrostatic equation, 
accounting for snow loading above the radar penetration depth fraction 
δp and for the different densities of snow and sea ice below it as follows

h
h ρ h ρ h ρ δ h ρ

ρ ρ
=

− − −

−
(1)s

i
s w f w s p s w

i w

where hf is the sea-ice freeboard, ρw, ρs and ρi are the densities of ocean 
water, snow and sea ice, respectively, and hs is the snow depth. δp is the 
mean radar penetration expressed as a fraction of the snow depth, 
which here we assume is equal to 0.9. We apply the following function 
adapted from ref. 61 to correct for delayed radar wave propagation 
through the snowpack and convert from bias-corrected measured 
radar freeboard hrf to bias-corrected sea-ice freeboard

h h δ h ρ= + ((1 + 0.51 /1, 000) − 1) (2)f rf p s s
1.5

(It is noted that we use the term ‘measured’ radar freeboard because 
we are not assuming that the measured radar freeboard coincides with 
the actual radar freeboard of the snow–ice interface).

The ocean water density ρw is assumed to be 1,024 kg m−3. The sea-ice 
density is assumed to be 917 kg m−3 and 882 kg m−3 for FYI and MYI, 

respectively, following ref. 62. We use the NSIDC weekly 12.5-km 
sea-ice-age product V4 (https://nsidc.org/data/nsidc-0611) to differ-
entiate between zones of FYI and MYI. Constant sea-ice-type-dependent 
densities are used here to maintain consistency with CryoSat-2 SIT 
processing in cold-season months63; however, we can expect ice densi-
ties to vary significantly over the course of the summer melting season37 
and between regions62. Uncertainty on the sea-ice density is assumed 
to be 35.7 kg m−3 for FYI and 23.0 kg m−3 for MYI, multiplied by N1/  
with N the number of individual CryoSat-2 freeboard observations in 
an 80-km grid cell, following previous studies63. Snow depths and den-
sities are from SnowModel-LG.

An example for the annual Arctic Ocean SIT evolution in 2016 is shown 
in Fig. 1, incorporating cold-season observations from the LARM algo-
rithm41 and melt-season observations from our method described 
here. The SIT data for winter months (October–April) are an updated 
ESA Baseline-D version of the Baseline-C dataset (available at https://
data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01257). The 
LARM algorithm accounts for variable sea-ice surface roughness and 
backscattering properties46, to derive radar freeboard for Arctic winter 
months41. We discuss the consistency between winter and summer SIT 
records below.

Uncertainty on the SIT is estimated from the individual uncertainties 
ε on four parameters: hf, hs, ρs and ρi, at the 80-km grid scale of the 
thickness observations. Assuming uncertainties between these vari-
ables are uncorrelated at 80-km scale, the total random thickness error 
εh i

 is determined by Gaussian propagation of uncertainty as:
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where the partial derivatives of equation (3) are used as weights for the 
variances of individual parameters to obtain their contribution to the 
ice thickness uncertainty:
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Median ice thickness uncertainty for summer months is estimated to 
be 33% of the thickness for FYI and 40% for MYI. Of this, the freeboard 
uncertainty dominates, contributing 80–90% of the total thickness 
uncertainty, with the snow depth then sea-ice density uncertainties 
contributing most of the remaining 10–20%.

Reconciling summer and winter CryoSat-2 SIT records
The algorithms for generating SIT observations from CryoSat-2 vary 
between summer (May–September) and winter (October–April) condi-
tions. We use many of the same steps in both processing algorithms, 
including the same SnowModel-LG snow depth and density product, the 
same constant sea-ice densities for FYI and MYI, and the same method 
for uncertainty propagation; however, other steps are necessarily dif-
ferent. To evaluate the consistency between these datasets, we examine 
the transitions in ice thickness and thickness anomalies across the 
‘shoulder’ months of April–May and September–October. Figure 2 
illustrates that SIV from CryoSat-2 typically varies smoothly across 
the shoulder months. Only in a few years (2014 at mooring B and 2017 
at mooring D) does the CryoSat-2 time series of sea-ice draft appear to 
jump between April and May in the Beaufort Sea (Extended Data Fig. 4). 

https://nsidc.org/data/nsidc-0611
https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01257
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The patterns of SIT shown in Fig. 1 do not change appreciably across the 
shoulder months, with the exception of new thin sea ice in the marginal 
ice zone at the end of September, which appears to be overestimated 
compared with the same locations in early October. Thin-ice retrieval 
is a known limitation of the summer radar freeboard algorithm7.

Importantly, SIT anomalies persist from winter to summer and back 
to winter months at the same locations, which we would not expect 
to see if uncertainty exceeded the CryoSat-2 ice thickness signal. For 
instance, a negative SIT anomaly appears in the Pacific sector of the 
Arctic in February 2016, grows to >1 m (about 30% thinner than the 
2011–2020 average) by May–June, before sea ice in the Beaufort Sea 
broke up and melted away completely 7 weeks earlier than usual in 
August (Extended Data Fig. 6). Reference 28 showed that anomalously 
high sea-ice export and divergence promoted the formation of thin 
ice between February and April that preconditioned sea ice in the 
Beaufort Sea for early break up and only the second ice-free Beaufort 
Sea on record. This a perfect example of the regional ‘growth-to-melt 
season re-emergence’ discussed in the main text and now measurable 
by our summer CryoSat-2 thickness product. By contrast, a positive 
SIT anomaly appears in the Kara Sea in June (Extended Data Fig. 6) and 
persists through summer into the following sea-ice growth season, lead-
ing to >1-m-thicker sea ice than usual in this region by the end of 2016.

Validation against independent datasets
Gridded CryoSat-2 SIT observations are validated against independ-
ent measurements of SIT from AEM induction datasets22,64 from the 
Central Arctic Ocean and Lincoln Sea, and sea-ice draft from mooring 
ULS arrays in the Beaufort and Laptev seas, and in Fram Strait. All vali-
dations are presented here.

AEM data. The AEM dataset includes observations from the AWI RV 
Polarstern ARK-XXVI/3 TransArc campaign in 201164 (available from htt-
ps://doi.org/10.1594/PANGAEA.937197) and the IceBird campaigns from 
2016 to 201822. For the TransArc campaign, the sensor was attached 
to a helicopter and collected ice thickness observations over small 
surveys around RV Polarstern in the Central Arctic Ocean (Extended 
Data Fig. 2) between August and September. In the IceBird campaigns, 
the sensor was towed by a fixed-wing aircraft and collected ice thick-
ness observations over large surveys covering the coast of Northern 
Greenland and the Fram Strait in late July and August (Extended Data 
Fig. 3). The AEM sensor estimates SIT by measuring the electrical con-
ductivity difference between ice and ocean water and is estimated to 
have an uncertainty of ±0.1 m over level ice65 but the accuracy can be 
reduced in the presence of melt ponds66. The airborne observations 
have a footprint on the scale of tens of metres, so we average them to 
80 km before comparing with CryoSat-2.

The CryoSat-2 observations in August–September 2011 match very 
closely to the AEM data acquired on TransArc. They can explain 80% 
of the variance in the AEM data, with a mean difference of −16 cm 
(CryoSat-2 minus AEM) and a root-mean-square error of only 13 cm 
(Extended Data Fig. 2). Satellite data mostly capture the range in average 
thickness between the Central Arctic MYI pack ice in August (1–1.5 m) 
and the decayed and melting FYI closer to the margins in September 
(<1 m). However, the slope between CryoSat-2 and air EM SIT measure-
ments is 0.72, so CryoSat-2 does not quite match the full dynamic range 
of thickness acquired by the helicopter.

The CryoSat-2 observations from 2016 to 2018 underestimate the 
AEM SIT observations collected on IceBird campaigns, with a median 
difference of 28 cm (Extended Data Fig. 3). However, by calculating the 
CryoSat-2 SIT without correcting for the roughness-induced EM range 
bias, the median difference increases to 82 cm. The EM range bias for 
CryoSat-2 is highest over the roughest sea ice in the Lincoln Sea and 
above Northern Greenland, so it is most crucial to apply a correction in 
this region. There is a clear relationship between the mean CryoSat-2 
and AEM ice thickness difference and the distance from the nearest 

coastline (Extended Data Fig. 3c). CryoSat-2 underestimates the AEM 
ice thickness most severely within 150 km of the coast, whereas there 
is a very low mean difference at distances >150 km from the coastline. 
This suggests there is still a roughness bias remaining for the heavily 
deformed sea ice in coastal locations29.

ULS data. The BGEP moorings have been maintained in the Beaufort 
Sea since 2003, monitoring freshwater and heat content in the Arctic 
Ocean, including the solid freshwater flux through observations of 
sea-ice draft. ULS ice draft observations from moorings A, B and D 
are available at https://www.whoi.edu/beaufortgyre for the period 
between 2011 and 2018 coinciding with our CryoSat-2 SIT observations. 
Furthermore, ULS and ADCP ice draft observations have been acquired 
at five moorings operated by AWI on the opposite side of the Arctic, in 
the Laptev Sea, and are publicly available at https://doi.org/10.1594/
PANGAEA.899275 and https://doi.org/10.1594/PANGAEA.912927. Four 
of these moorings are located far enough away from the coast, with 
data acquired between 2010 and 2016, to be compared with CryoSat-2 
SIT observations67. Each ULS ice draft observation is estimated to have 
an uncertainty of ±0.05–0.10 m (ref. 68) whereas each ADCP ice draft is 
estimated to have a much higher uncertainty of around ±0.95 m (ref. 69); 
however, the uncertainties are reduced by averaging data over time. 
Finally, ULS ice draft observations have been acquired at four moorings 
in Fram Strait from 1990 to 2018 and monthly averages are publicly 
available at https://doi.org/10.21334/npolar.2021.5b717274. The com-
parisons with CryoSat-2 enable us to validate the magnitude and timing 
of sea-ice melting rates obtained from our new year-round SIT product.

The sea-ice drafts are obtained from CryoSat-2 thickness data by 
removing the ice freeboard. Satellite-derived ice drafts from a radius 
of 150 km around each mooring are compared against a 31-day rolling 
average of daily measurements of the mean ice draft from the mooring 
ULS and ADCP sensors in Extended Data Figs. 4 and 5.

The mean bias and standard deviation on the bias are –16 ± 32 cm, 
–19 ± 34 cm and –27 ± 42 cm, for BGEP moorings A, B and D, respec-
tively (CryoSat-2 minus ULS). Notably, the slope of the CryoSat-2-ULS 
comparison of 0.69 is very similar to the slope on the CryoSat-2-AEM 
comparisons made for TransArc (Extended Data Fig. 2). The corre-
lations between the CryoSat-2 and ULS observations are 0.87, 0.84 
and 0.85 for moorings A, B and D, respectively. If we just use a simple 
sea-ice-density-dependent freeboard-to-draft conversion, and a rela-
tively high sea-ice density of 930 kg m−3, without correcting for the EM 
range bias on freeboards or for snow loading, the correlation is only 
0.66 and mean difference is −26 ± 50 cm (ref. 7). By accounting for the 
range bias and snow loading in the ice freeboard-to-draft conversion, 
in this study, the correlation is improved by 30%, offset is reduced by 
23% and variability reduced by 28%. The validity of our corrections for 
the EM range bias and snow loading are strongly supported by these 
improved validation statistics.

The mean bias and standard deviation on the bias is −6 ± 40 cm for 
the Laptev Sea moorings (CryoSat-2 minus ULS/ADCP). The average 
correlation between the CryoSat-2 and ULS/ADCP observations is 0.74. 
It is notable that mooring observations from the central Laptev Sea 
(Kotelny, Outer Shelf and 1893) match the CryoSat-2 SIT observations 
better than those from the western Laptev Sea (Vilk) (Extended Data 
Fig. 5). The central sites are less influenced by dynamics and sea-ice 
deformation, meaning that the ice cover is consistent and the higher 
uncertainty ADCP observations therefore have less impact. A previ-
ous comparison of these observations with a different CryoSat-2 SIT 
product for only winter months found greater mismatch when the 
mean and modal ice drafts were very different67, which is a sign of strong 
ice deformation. This is the case for Vilk1 and Vilk3 in 2016 when the 
seasonal cycle of SIT had a very unusual shape (Extended Data Fig. 5).

The mean bias is +11 cm for the Fram Strait moorings (CryoSat-2 minus 
ULS) when including all valid observations from winter and summer 
months. However, the CryoSat-2 ice draft estimates are not available 
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when SICs are below 70%, which is often the case over the Fram Strait 
moorings during summer. Therefore, we cannot reliably use the Fram 
Strait ULS data for validating the new CryoSat-2 summer SIT product.

Sea-ice volume
Before estimating SIV from the CryoSat-2 summer ice thickness observa-
tions, we fill spatial gaps in the thickness fields (where no valid CryoSat-2 
freeboard observations are available) by two methods. Within the mar-
ginal ice zone, which is here defined as the area with SIC >15% and <60%, 
grid cells missing valid freeboard observations but containing strongly 
specular radar returns are assumed to characterize mainly thin, heavily 
pond-covered and decayed sea-ice floes20. These grid cells are defined 
where the backscatter coefficient is >40 dB, the range integrated power 
peakiness7 is >25 or the pulse peakiness is >0.3. To these cells, we assign a 
thickness from the 5th percentile of the pan-Arctic ice thickness distribu-
tion for that time interval and an uncertainty of 50%. We use this method 
because the thickness in these marginal grid cells cannot be reliably 
interpolated from adjacent cells that may contain much thicker ice. 
However, only a small number of gaps are filled in this way, for instance, 
four or five grid cells per biweekly time slice in 2016. Remaining gaps 
within the main ice pack (ice concentrations >60%) are filled by linear 
interpolation from up to eight adjacent grid cells. (It is noted that the 
data product provided with this paper includes two thickness fields 
both omitting and including these gap-filled grid cells.)

SIV is then obtained from the ice thickness grids multiplied by 
SIC from the OSI SAF ‘OSI-450’ climate data record (available from 
https://osi-saf.eumetsat.int/products/osi-45070) and the grid-cell area. 
CryoSat-2-derived SIV is compared with the Applied Physics Laboratory 
Version 2.1 reprocessed PIOMAS ice volume data8,30, using the NSIDC 
Sea Ice Age, Version 4 dataset43 to separate zones of predominantly FYI 
and MYI. The domains are matched by comparing gridded SIV observa-
tions to the native PIOMAS grid and removing all non-overlapping data. 
SIV anomalies, SIV′, are obtained from the time series of pan-Arctic SIV 
by removing the 2010–2020 climatological seasonal cycle. The SIV 
anomalies are decomposed as follows

∫ ASIV′ = (SIC′SIT + SICSIT′ + SIC′SIT′) d (5)
A

where bars represent the climatology, primes represent the anomalies 
of SIC and SIT, and A represents the area. We confirm that SIT anomalies 
provide approximately five times the absolute contribution to the inter-
annual variability of SIV than SIC anomalies do (Extended Data Fig. 7).

Lagged correlation analysis with SIV and SIE
We calculate the lagged Pearson product moment correlation coef-
ficient between 9–11-year time series of biweekly CryoSat-2 SIV and 
future daily pan-Arctic SIE from OSI-450, up to a maximum lead time 
of 365 days. Only the SIV observations from outside the NSIDC MASIE 
Central Arctic region71 are used for these calculations because the Cen-
tral Arctic was perennially sea-ice covered over our study period. (It is 
important to note that this region should be included in a similar analy-
sis if the Central Arctic sea-ice coverage varies between seasons, for 
instance, in a model analysis of future SIV and SIE fields.) We compare 
this to lagged correlations between biweekly SIE and future daily SIE. 
Only 1 of the 24 biweekly (that is, twice monthly for a year) pan-Arctic SIV 
fields, and 6 of the 24 SIE fields, exhibit statistically significant (P < 0.05) 
trends over the 2011–2020 study period. Therefore, we show correla-
tions without detrending in the main text but repeat the same analysis 
with detrended time series in Extended Data Fig. 8. The given P values 
for correlations are based on an F test. Although SIE is available daily, 
SIV is available at biweekly intervals, so correlations can be obtained 
for only select lead day–target day pairs. To visualize the correlation 
maps, we use a two-dimensional median filter (with a radius of 21 days) 
to interpolate between gaps. Correlation maps for eight regions based 
on the MASIE definitions71 are also shown in Extended Data Fig. 9.

Significant correlations can be obtained between the ‘radar freeboard 
volume’ (the original uncorrected CryoSat-2 radar freeboards multiplied 
by the sea-ice area) and the future pan-Arctic SIE. However, replacing 
corrected SIV (Fig. 3a) with uncorrected radar freeboard volume results 
in approximately half the increase in lead time of skilful September 
sea-ice forecasts, versus the reference forecast using SIE (Fig. 3b). This 
emphasizes the importance of the freeboard-to-thickness conversion 
in summer (freeboard bias correction and impact of snow load) and in 
winter (impact of snow load only) for improving seasonal predictions.

A bootstrapping approach is used to assess the robustness of cor-
relations. The correlations cover a period of 9–11 years depending 
on the availability of CryoSat-2 observations for a certain target day 
and lead time. Therefore, the above analysis is repeated 100 times but 
randomly sampling all but one year of the 9–11-year time series, with 
replacement, to determine the standard deviation (variability) of the 
correlations. In Extended Data Fig. 10, the variability of the 100 recal-
culated correlation coefficients provides a measure of the robustness 
of the patterns identified in Fig. 3. Extended Data Fig. 10 also shows the 
same bootstrapping analysis for the detrended correlation maps in 
Extended Data Fig. 8. For the regions of SIE correlations at lead times 
of up to 3 months, using either SIV or SIE, the standard deviations of the 
bootstrapped correlations are generally <0.06 (and <0.04 for target 
days in September). However, the re-emergence region of sea-ice cor-
relations for SIV leading SIE, at 100–280 days for target days in Octo-
ber–November, produces standard deviations on the bootstrapped 
correlations of 0.06–0.10 (Extended Data Fig. 10). We require a longer 
consistent time series of SIT observations to more robustly validate this 
re-emergence region of correlations based on SIV anomalies.

Data availability
ESA Level-2 Baseline-D CryoSat-2 observations for May–September 
2011–2020 from the ESA GPOD SARvatore and SARInvatore services 
were publicly available online for the initial manuscript submission but 
have since been removed. Please contact the corresponding author 
directly for access to these data. The dataset of samples for training and 
testing the CNN classification algorithm for CryoSat-2 is available from 
https://doi.org/10.1016/j.rse.2021.1127447. Daily observations of sea-ice 
drift are available from the NSIDC Polar Pathfinder dataset at https://
nsidc.org/data/nsidc-0116/versions/443. Remotely sensed observations 
of melt-pond fraction are available from the Sentinel-3 OLCI sensor 
through the University of Bremen at https://seaice.uni-bremen.de/
melt-ponds/54. Snow depth and density estimates from SnowModel-LG 
are available from NSIDC at https://doi.org/10.5067/27A0P5M6LZBI25. 
Weekly 12.5-km estimates of the sea-ice age are available from the Ver-
sion 4 product at NSIDC at https://nsidc.org/data/nsidc-061143. The 
Airborne EM dataset includes observations from the AWI RV Polarstern 
ARK-XXVI/3 TransArc campaign in 201164, available from https://doi.
org/10.1594/PANGAEA.937197, and the IceBird campaigns from 2016 
to 201822. Daily ULS sea-ice draft observations from BGEP moorings A, 
B and D are available from https://www.whoi.edu/beaufortgyre for the 
period between 2011 and 2018. Daily ULS and ADCP ice draft observa-
tions from five moorings in the Laptev Sea for 2010 to 2016 are publicly 
available from https://doi.org/10.1594/PANGAEA.899275 and https://
doi.org/10.1594/PANGAEA.912927. Monthly ULS ice draft observations 
from four moorings in Fram Strait between 2010 and 2018 are publicly 
available from https://doi.org/10.21334/npolar.2021.5b717274. SIC 
is available from the OSISAF ‘OSI-450’ climate data record at https://
osi-saf.eumetsat.int/products/osi-45070. Reanalysed model estimates 
of SIV are available from the Applied Physics Laboratory Version 2.1 
reprocessed PIOMAS8,30 at http://psc.apl.uw.edu/research/projects/
arctic-sea-ice-volume-anomaly/data/model_grid. The final pan-Arctic 
CryoSat-2 SIT data spanning October 2010 to July 2020 are available 
from the British Antarctic Survey Polar Data Centre at https://doi.
org/10.5285/D8C66670-57AD-44FC-8FEF-942A46734ECB.
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Code availability
The MATLAB FBEM for simulating the backscattered SAR altimeter 
waveform from snow-covered sea ice, including an option for simulat-
ing waveforms from melt-pond-covered sea ice, is publicly available at 
https://doi.org/10.5281/zenodo.6554740. The look-up table for the EM 
bias correction is available at https://doi.org/10.5281/zenodo.6558485. 
The code for converting CryoSat-2 radar freeboards to thickness is 
available at https://doi.org/10.5281/zenodo.6558483.
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Extended Data Fig. 1 | Flow diagram of the CryoSat-2 summer sea ice thickness processing chain. CryoSat-2 data and auxiliary data products are shown in blue. 
Key processing steps are shown in orange.



Extended Data Fig. 2 | CryoSat-2 sea ice thickness validation against 
airborne observations from the 2011 TransArc campaign of the AWI 
Polarstern Icebreaker. (a) Comparison of CryoSat-2 sea ice thickness 
observations with airborne EM thickness measurements. The AEM data were 
averaged to 80-km scale before comparing with CryoSat-2. The technique for 
deriving CryoSat-2 ice thickness uncertainties is described within the Methods 

section. (b) Map and dates of AEM sea ice thickness data collection overlaid on 
the CryoSat-2-derived sea ice thickness field for Aug 15th–Sept 15th 2011. 
Information on the SIT data available from TransArc can be found here https://
doi.org/10.1594/PANGAEA.937197. Map in panel b produced using MATLAB 
code from ref. 42.
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Extended Data Fig. 3 | CryoSat-2 sea ice thickness validation against 
airborne observations from the AWI IceBird Program 2016–2018. (a) Map  
of the airborne EM observations used for sea ice thickness validation. Three 
annotations in the Beaufort Sea mark the locations of the BGEP Moorings  
(see Extended Data Fig. 4). (b) Comparison of CryoSat-2 sea ice thickness 

observations with coinciding AEM measurements. The airborne data were 
averaged to 80-km scale before comparing with CryoSat-2. (c) Mean ice 
thickness difference between CryoSat-2 and the AEM as a function of the 
distance of observations from the coast. Map in panel a produced using 
MATLAB code from ref. 42.



Extended Data Fig. 4 | Comparison of sea ice draft measured by the 
Beaufort Gyre Exploration Program (BGEP) Mooring Upward-Looking 
Sonar (ULS) sensors with ice draft estimates by CryoSat-2 in a 150 km radius 
surrounding each mooring. CryoSat-2 draft observations in winter (green 
points) use the LARM sea ice product (Landy, et al., 2020) and in summer  

(blue points) use the processing algorithm presented here. BGEP Mooring A is 
located at approximately 75N 150W, Mooring B at 78N 150W, and Mooring D at 
74N 140W and are shown in Extended Data Fig. 3a. Information on the BGEP 
mooring ULS data can be found here https://www2.whoi.edu/site/beaufortgyre/ 
data/mooring-data/.
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Extended Data Fig. 5 | Comparison of sea ice draft measured by moored 
Upward Looking Sonar (ULS) and Acoustic Doppler Current Profiler 
(ADCP) sensors in the Laptev Sea with ice draft estimates by CryoSat-2 in a 
150 km radius surrounding each mooring. CryoSat-2 draft observations in 
winter (green points) use the LARM sea ice product (Landy, et al., 2020) and in 

summer (blue points) use the processing algorithm presented here. Locations 
and information for the ULS and ADCP sensors on Laptev Sea moorings can be 
found here https://doi.org/10.1594/PANGAEA.899275 and https://doi.org/ 
10.1594/PANGAEA.912927 respectively.

https://doi.org/10.1594/PANGAEA.899275
https://doi.org/10.1594/PANGAEA.912927
https://doi.org/10.1594/PANGAEA.912927


Extended Data Fig. 6 | Arctic sea ice thickness anomalies [m] measured over 
the entire year at biweekly intervals by CryoSat-2 in 2016, compared to the 
2011–2020 average. Observations for October–April are obtained from the 
LARM algorithm (Landy, et al., 2020). Observations for May–September are 

obtained from the new method presented here. Black contours represent the 
sea ice extent (15% ice concentration edge). Maps produced using MATLAB 
code from ref. 42.
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Extended Data Fig. 7 | Sea ice volume anomaly decomposition. In black, the 
SIV anomaly after removing the climatological seasonal cycle of SIV obtained 
from the 2010–2020 time series of SIV from CryoSat-2 SIT and OSISAF SIC. In 
red, blue, and purple are the contributions of SIC anomalies, SIT anomalies, and 
their correlated component, respectively, to the time series of SIV anomalies. 

The correlations between the anomalies of SIV with respective anomalies of 
SIT, SIC, and their correlated component, are 0.97, 0.27, and 0.21. SIT anomalies 
provide the dominant contribution to SIV interannual variability compared to 
SIC anomalies.
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Extended Data Fig. 8 | Reproduction of the lag correlation plots in Fig. 3 of 
the main paper but with SIE and SIV time series linearly detrended before 
calculating the correlations. (a) Correlations between SIV and later SIE and 
(b) correlations between SIE and later SIE. Black lines mark correlations with a 
statistical significance of p = 0.1 and stippling marks where SIE->SIV 

correlations are higher than SIE->SIE for (a) or vice versa for (b). The grey  
lines mark lead times for each month as contours. (c) Mean (with standard 
deviation envelope) correlation for September SIE including two regions of 
predictability where SIV offers improvements over SIE.
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Extended Data Fig. 9 | Lag correlation plots between SIE and earlier SIV for 
different regions of the Arctic. The black lines mark correlations with a 
statistical significance of p = 0.1 and regions are defined by the NSIDC MASIE 

system, as displayed on the map. The Central Arctic Ocean region, referred to 
in the main text, is shown in white between the marginal Arctic seas. Map in the 
bottom-right panel produced using MATLAB code from ref. 42.
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Extended Data Fig. 10 | Standard deviations on bootstrapped correlation 
coefficients between SIV leading SIE and SIE leading SIE. Correlations are 
recalculated 100 times but each time randomly sampling N minus 1 of the 
9–11-year time series available from, CryoSat-2, with replacement, so that one 
pair of observations is excluded from the calculation. The variability of the 100 

recalculated correlation coefficients provides a measure of the robustness of 
the patterns identified in Fig. 3 of the main text (top row) and Extended Data 
Fig. 7 (bottom row), i.e., with and without detrending time series, respectively. 
Black lines show contours of p = 0.1 from the correlation plots in Fig. 3 in the 
main text (top row) and Extended Data Fig. 7 (bottom row).
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