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A model is developed for the calculation of the spatial properties of the noise field produced in a 
stratified ocean by the action of wind at the surface. The random noise sources are represented by 
correlated monopoles distribute d over an infinite plane located an arbitrary depth below the surface. 
Wave-theoretical methods are applied to derive expressions for the intensity and spatial correlation of the 
noise field. A normal-mode representation of the noise field is used to reduce these expressions to forms 
which allow physical interpretation and are suitable for numerical computation. Examples are given of 
intensity profiles and spatial correlation in the vertical for three generic sound-speed profiles. The results 
show that the sound-speed profile and the presence of the bottom can be important in determining the 
spatial properties of the noise field. An example is given of a calculation of the horizontal spatial 
correlation using the fast field program (FFP). 

PACS numbers: 43.30.Nb, 43.30.Cq 

INTRODUCTION 

Detection of acoustic signals in the ocean is always 
performed against a noise background. Arrays of sen- 
sors may provide some discrimination against noise, 
the degree of discrimination being expressed by the ar- 
ray gain. The array gain, defined as the ratio of the 
signal to noise of the array output to the signal to noise 
of the output of a single element, can be shown to de- 
pend on the spatial correlation of the noise field. z In a d- 
dition, recently developed optimal array processing 
techniques •"s require knowledge of the spatial correla- 
tion of the noise field. 

One of the major components of the ambient noise 
field in the ocean is produced by the action of the wind 
at the surface. Previous theoretical studies of the spat- 
ial structure of surface generated noise have been car- 
ried out with deep water applications in mind. 4'• Thus, 
the ocean has been modeled as a homogeneous half- 
space which allows straight-line propagation without re- 
fleetion, greatly simplifying the calculation. Such mod- 
els are of doubtful validity in shallow water where the 
acoustic field interacts strongly with the bottom. Cox 6 
has pointed out that the assumption that noise arrives 
only from above the horizontal is counter to experi- 
mental evidence. He shows how the spatial structure of 
the noise field is related to.a plane-wave directivity 
function in terms of a sum of angular harmonics. The 
coefficients of the harmonics can in turn be related to 

deep water experimental results. We note however that 
in deep or shallow water the sound speed is not constant 
in depth, a fact which may have a profound effect on the 
noise field, as it does on the signal field. Since the 
ocean is horizontally stratified it is quite possible that 
the acoustic field cannot be expressed in terms of the 
same weighted set of plane waves (same directivity 
function) at each of the hydrophones of an array, partic- 
ularly a large aperture vertical array. 

In this paper, using wave theory, we develop a model 
of surface generated noise in which the ocean is strati- 
fied in depth. The acoustic properties of the ocean bot- 
tom are included, as are the statistical properties of 
the surface. In Sec. I we derive a general expression 
based on wave theory for the cross-spectral density of 
surface generated noise. In Sec. II we apply this form- 
alism using a normal-mode representation of the 
Green's function for the problem. This allows us to 
gain some physical insight into how the noise is spatial- 
ly distributed. Section III presents some numerical re- 
suits for realistic ocean environments. In Appendix A 
we show that the results derived in Sec. I reduce to 

earlier results 4 when the appropriate limits are taken. 
Finally, Appendix B presents some purely analytic re- 
suits for an idealized waveguide. 

I. DERIVATION OF THE SPATIAL PROPERTIES OF 

SURFACE GENERATED NOISE 

The model geometry is shown in Fig. 1. The figure 
illustrates a simple case, with a layer of water overly- 
ing a semi-infinite bottom, the density and sound speed 
of the water and the bottom given by pz, cx(z) and 
Pc, c•.(z), respectively. The theory to be presented be- 
low is also applicable to more complex environments. 
For example, attenuation in the water and the bottom 
can be included as can a layered bottom with finite rig- 
idity. Figure 1 is merely meant to suggest that the en- 
vironment must be stratified in depth, thus ensuring 
separability of the wave equation. In the development 
below, we drop the subscripts distinguishing the sound 
speeds in the water and bottom and denote the sound 
speed anywhere in the medium by c(z). 

Consider an infinite plane parallel to the surface and 
located below the surface at depth z'. Assume that at 
each point in the plane there is a monopole source of 
strength s(r', t), where r' is the radial vector in the 
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FIG. 1. The model geometry showing the source plane, at 
depth z, below the surface, and the two field points (rl,z l) aud 
(•'2,Z2). 

source plane and t is the time variable. Let the func- 
tion s(r', t) be a random variable. These monopoles will 
couple into the water column as dipoles because of the 
pressure release surface; this effect is automatically 
incorporated in the wave-theoretic treatment used. We 
use monopole sources because they represent the basic 
fluctuating volume source ? and more complicated 
sources can be considered to be a sum of these sources 

appropriately distributed in space. Therefore, the 
source function is s(r', t)6(z- z') so that the field (vel- 
ocity potential) in the water column 4,(r,z, t) satisfies 
the wave equation 

(V • ' 1 •.•) - ß =-s(r', 
where 5(z) is the Dirac delta function. 

We represent • and s by their Fourier transforms 

(i, (r, z, t) = (2•r) "/2 f_• dwq•(r,z)exp(-•wt), (2) 
s(r', t)=(2•) "/2 f_• a•o$•(r')exp(-i•ot), (3) 

where w denotes angular frequency. 

Inserting Eqs. (2) and (3) into Eq. (1), we obtain, after 
some manipulation, 

(V • +k2)qo• =-S•(r')O(z- z'); k--- w/c(z). (4) 

Equation (4) has the solution 

r';z z') (5) 
where G(r,r';z,z'), the Green's function of the prob- 
lem, satisfies the Helmholtz equation 

(v • +k")G(r,r';z,z')= - (1/r)O"(r- r')O(z- z') (6) 

and the appropriate boundary conditions. Equation (5) 
simply states that the total velocity potential is obtained 
by summin• over all source contributions. We note 
here that $• is the spectral strength of the noise 
sources and {hat the total field is given by integrating 
over all frequencies as stated in E q. (2). In order to 

simplify notation, we shall usually drop the subscript 

The cross-spectral density is a measure of the spatial 
coherence of the noise field. To obtain the cross-spec- 
tral density we form the product of q•(r•, z•) and 
q•*(r•., z•.) and take the ensemble average ((p* is the com- 
plex conjugate of (p). Thus, 

< 

= f f d•'r' d•'r"( $(r')S*(r")) 
x G(r•, r';z•,z')C*(r•.,r"; z•.,z'), (•) 

where the angie brackets indicate an average taken over 
the random function S. It will be convenient to use a 

transverse Fourier representation of the Green's func- 
tion a which we write as 

C(r,r';z,z') 

= f a'ng(n; z z') exp[ir/- (r- r')] (8) 2• ' ' 

where g(q; z, z') satisfies the equation 

d2g+ [k2(z) -•/2]g=- 6(z z (9) dz •' Y• ' 

which follows from Eq. (6). 

Using this Fourier representation, we can express the 
cross-spectral density function of the noise field as 

< • (r•, z•)tp* (r2, z2 )> 

= ff d•'r ' d•-r,,(S(r,)$(r,,)) 

x (2n) • d2n d2n 'g(n; z,, z')g*(n'; z2, z') 
x exp[i; l ß (r•- r')] exp[-i;l'. (r•. - r")] . (10) 

Now let R =rx- to. and p=r'-r", and assume that the 
spatial coherence of the noise sources, (S(r')S(r")), de- 
pends only on p. We denote (S(r')S(r")> as q2N(p). Sub- 
stituting for r• and r' in Eq. (10), the integrations over 
r" and q' can be performed, resulting in 

C•(R, z•, z 2 ) -- <q (r•, z• )qo* (r 2 , z 2 )> 

X g*(rl;z•.,z')exp[i•.(R-p)], (11) 

where w is used as a subscript to remind us that the 
cross-spectral density function depends on frequency. 
Since g and g* depend on the magnitude of q, but not its 
direction [see E q. (9)], we can perform the integration 
over the azimuthal angie associated with r/, with the re- 
suit that the cross-spectral density function takes the 
form 

Co•(R, zx,z2)=2•q 2 dpN(p) rl dog(rl;zx,z') 

x g*(w;z,,z')ao(nla-pl), (12) 

where Jo is the Bessel function of zero order. Another 
form for Cw, which is particularly simple, can be ob- 
tained by expressing N(p) by its Fourier transform 
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N(p) = •-• d•'•l_P(•)e ' •'•. (13) 
Then the integration over p in Eq. (11) can be per- 
formed, giving 

C•(R, z•,z•.) =2•rq •' f d•'•l.P(•)g(•l; z•,z') 
x •(ff; %,z')e •ø'• . (14) 

Equation (12) can be put into a form which will be useful 
for later calculations by decomposing the Bessel func- 
tion into a sum of Hankel functions 

where the superscripts denote the HaZel function of 

first and second kind. Using the relation -•(-z) 
=H•(z) and noting that g and g* are even in q we can ex- 
tend the integration over q from -• to •. Equation (12) 
becomes 

x g(•;z•,z')f(O; %,z'). (16) 

From the expressions for the cross-spectral density 
function of the noise field [Eqs. (12), (14), and (16)], 
we can immediately m•e some comments about its 
structure. In any horizontal plane, it is independent of 
absolute position and depends only on the horizontal 
vector R connecting the field points. In the ve•ical, the 
spatial coherence depends not only on separation dis- 
tance but also on the absolute depth of the field points. 
Hence, in general, the noise is not spatially stationary 
in the vertical. 

An important special case is that of uncorrelated 
noise sources. E qualion (16) is an expression for the 
cross-spectral density function of the noise field as a 
function of the spatial coherence of the noise sources 
N(p). For uncorrelated noise sources, it has been 
shown that • 

N(p): 2•( p)/•p. (• 7) 

Using Eq. (17) tn Eq. (16) we get 

x g(•;z•,z')g*(v; %,z'). (18) 

When we set R = 0 and z• =% :z tn the expression for 
C•, we obtain a quantity proportional to t•e intensity o• 
the noise field at a point. Equation (16) t•en reduces to 

c(o.z.z) 
x z. z,) I 

or alternatively, from Eq. (14), 

f z, z') I . 
T•e expressions given by Eqs. (18), (19), and (20) will 
be useful later. We also mention for clarity in nora- 

enclature that the correlation function of the noise field 

is given by 

(* (r,, z•, t)** (r•., z•., t + r)> 

: f_: C• (R,z,,z2)exp(-iw•')dw , (21) 
where z is a time delay. 

In this paper, we are mainly concerned with the dis- 
tribution of noise in a stratified ocean, and in particular 
in situations where the acoustic properties of the ocean 
bottom have a profound effect on the acoustic field. 
Nevertheless, the model should also handle situations 
where the bottom is not important, for example, the 
deep ocean. In Appendix A we show that the above theo- 
retical results reduce to earlier work 4 where the ocean 

was modeled as a semi-infinite isovelocity half-space. 

II. NORMAL-MODE REPRESENTATION OF THE 
NOISE FIELD 

In this section we apply the results of Sec. I to a 
stratified medium, that is a medium in which the sound 
velocity and density of the medium are functions of 
depth z only. The Green's function can be expressed in 
several equivalent ways; in this section we use a nor- 
mal-mode representation in which the Green's function 
is expanded in terms of the normal modes of the sys- 
tem. If the medium is finite in depth with appropriate 
conditions given at the boundary, the normal modes will 
be discrete and the propagating modes will be finite in 
number. However, if the medium is infinite in depth, 
there will, in general, exist a finite number of discrete 
modes and an infinite set of continuous modes. The 

Green's function expansion will then consist of a dis- 
crete sum plus an integral over the continuous modes. 

For simplicity, we restrict ourselves to that part of 
the noise field which can be represented by a discrete 
set of normal modes. From the above discussion we 

see that this will be a complete description for the 
pressure- release/rigid waveguide discussed in Appen- 
dix B, but not for more realistic ocean models. The 
latter usually consist of a layer of water and several 
sedimentary layers overlying a semi-infinite basement. 
However, by making the acoustic impedance of the 
basement very high, we can minimize the importance 
of the continuous modes. 

The Green's function g(t/; z,z') can be written in terms 
of the normal modes as follows s' 

g(•/; z, z')= Ps(Z ') •, V,,(z•')Vr,(z) (22) 2•r •/ - k2. ' 

where U.(z) and k, are the normalized mode amplitude 
function and the wavenumber of the nth mode and are 

solutions of the eigenvalue problem defined by the equa- 
tion 

d•'Un(z) 
dz:• + [k•'(z)- k•.]U,,(z)=O, (23) 

with the appropriate boundary conditions. In Eq. (22) 
ps(z') is the density of the medium at the depth z' and 
k(z)=w/c(z) with c(z) being the sound speed. 
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We assume that k. is a complex number of'the form 

k,=•,+ia, (24) 

with •, c•,>• 0; c•,, the imaginary part of k, is the 
modal attenuation coefficient. It is interesting to note 
that we must include attenuation in the system to obtain 
a finite cross-spectral density function. This is be- 
cause sound trapped by the layered medium (represent- 
ed by the discrete modes) suffers cylindrical spreading 
while the amount of energy radiated by the noise 
sources increases as the square of the range from the 
field points. Hence, the contribution to the intensity of 
distant sources increases with range and the total in- 
tensity diverges. Any amount of attenuation in the sys- 
tem will cause the intensity to decay exponentially with 
range and ensure convergence. It is important to note 
that the resulting cross-spectral density functions and 
intensities will depend on the attenuation chosen. 

We now insert the Green's function of Eq. (22) into the 
expression for the cross'- spectral density function 
[Eq. (16)] and evaluate the • integral. From Eq. (22) 
we see that the integral of Eq. (16) has simple poles at 

= (25) 

of which the poles at +k, and -k• are in the upper half- 
plane. Using standard methods of complex integration 
we close the contour in the upper half-plane with a 
semicircle of large radius and evaluate the residues of 
the integral. The result is 

f ' 4 dpX(p) 

- l)-n2' 

(26) 

where 

= 

The quantity f• is a measure of the coherence be- 
tween the normal modes which m•e up the noise field. 
For example, if f• vanishes for n • m, then the noise 
field reduces to an incoherent sum over the normal 

modes. Writing f• in terms of the complex k•'s and 
assuming that g• >> •, gm >> •, we get 

{1/(g • •) fornz•n ' (28) f• = 1/4{•g• for n = m. 
We see that the n= m terms in the sum of gq. (26) be- 

come infinite in the absence of attenuation. This is due 

to the contributions of distant sources, as discussed 
•ove. The n • m terms remain finite because they are 
products of different modes with rapidly oscillating 
phases which give negligible contribution from distant 
sources. Equation (28) also indicates that if the attenua- 
tion coefficients • are much smaller than the smallest 
separation between eigenvalues, then the noise field can 
be approximated by an incoherent sum of modes. This 
is often the case in shallow water. We can further sim- 

plify g q. (26) by approximating k• by its real part 

Then Eq. (26) reduces to 
2 t 

C,(R q p(z ) ' 8 f dpN(p) 

x ffo(lR- pl) n O•nKn ' 
(29) 

where we have neglected the n•m terms. Finally, when 
the noise sources are completely uncorrelated, the 
cross-spectral density takes the simple form 

Cw(R, Zl, z•.) 

- 2k •' .• o•n/( • 

From gq. (29) and gq. (30) it is obvious that the 
structure of the noise field is highly dependent on the 
attenuation; in shallow water the attenuation is usually 
dominated by the acoustic interaction with the bottom 
sediments. 

In Appendix B we evaluate the cross-spectral density 
function for a case which can be done analytically: an 
isovelocity waveguide bounded above by a pressure-re- 
lease surface and below by a rigid bottom. Though it is 
not very descriptive of a real ocean environment, the 
analytic calculations are helpful in understanding how 
surface noise is distributed in a waveguide. 

III. NUMERICAL RESULTS AND EXAMPLES 

In this section we present sample calculations which 
exhibit some of the properties of the spatial correlation 
and intensity of the noise field. Most of the calculations 
were made using the normal-mode representation of th• 
noise field presented in Sec. II, but we emphasize that 
the model presented here is not bound to a specific rep- 
resentation; any wave-theoretical representation can be 
used. As an example, we will also give some results 
calculated by a modification of the fast field program •ø 
(FFP), where the function g(•;z,z') is calculated di- 
rectly and E qs. (18) and (19) are used. 

First we present three cases which illustrate the ef- 
fect of sound-speed profile and frequency on the intens- 
ity and spatial coherence of the noise field. In all three 
cases the water depth is 50 m and the bottom consists 
of 20 m of sediment overlying a hard basement. The 
sound speed, density, and attenuation coefficient of the 
sedimentary layer are characteristic of sand-silt- 
clay. • The noise sources are assumed to be uncorre- 
lated and located 0.5 m below the surface; they are 
equivalent to sources at the surface with cos9 direction- 
ality. 

The three sound-speed profiles: isovelocity, down- 
ward refracting, and upward refracting are shown in 
Fig. 2. The corresponding noise intensities are shown 
in Figs. 3, 4, and 5 as functions of depth for the fre- 
quencies 200, 400, and 800 Hz. The results for the iso- 
velocity and downward-refracting cases are qualiatively 
similar. Both cases show decreasing noise intensity as 
a function of depth, with a faster rate of decrease for 
the higher frequencies. The intensity decrease is 
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FIG. 2. Isovelocity, downward-refracting, and upward-re- 
fracting sound-speed profiles used in the calculations. 
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FIG. 4. Noise intensity as a function of depth for the down- 
ward-refracting profile shown in Fig. 2(b) and for the frequen- 
cies 200, 400, and 800 Hz. 

caused by the frequency-dependent attenuation of the 
system. For the downward-refracting profile the atten- 
uation, which is dominated by the bottom, is greater, 
resulting in a more rapid decrease. The peak in intens- 
ity which appears at all three frequencies in the up- 
ward-refracting case is caused by the low-order modes, 
which are the dominant contributors to the intensity. 
The low-order modes are trapped in the upper part of 
the water column and hardly interact with the bottom. 
Thus, their attenuations are very small and contribu- 
tions from distant sources are important. The domin- 
ant low-order modes are strongest in the upper part of 
the water column, resulting in the observed peak. 

For the noise intensity plots shown in Figs. 3, 4, and 
5 no absolute levels are given. The model does not pre- 
dict the levels of the noise sources, expressed by q2 in 
Eq. (11), which we expect to be dependent on frequency. 
For the purposes of these calculations q2 has been set 
equal to unity in all cases. 

Figures 6, 7, and 8 show the spatial correlation func- 
tion for the same cases as above. (For a single fre- 
quency and zero time delay the spatial correlation func- 
tion is equal to the real part of the cross-spectral dens- 
ity.) For comparison the results for surface sources 
having cos0 directionality in a semi-infinite homogen- 

IO 

'• 20 

c• 30 

4o 

5o 

INTENSITY (dB) 

I I • I I I •"• I I I 
200 Hz 400 Hz 800 Hz 

FIG. 3. Noise intensity as a function of depth for the isovelo- 
city profile shown in Fig. 2(a) and for the frequencies 200, 
400, and 800 Hz. 

eous medium (Cron and Sherman 4 and Appendix A) are 
also shown. Again the upward-refracting case is the 
most interesting. In this case, as mentioned above, a 
few low-order modes dominate the noise field, result- 
ing in high values of coherence throughout the water 
column. In the isovelocity and downward-refracting 
cases many modes contribute to the noise field and the 
coherence is much closer to the Cron and Sherman re- 

suits. 

Finally, we give a calculation of the spatial correla- 
tion in the horizontal direction. We have assumed an 

isovelocity water layer 100 m thick with a sound speed 
of 1500 m/s and a single semi-infinite bottom of unit 
density, sound speed of 1600 m/s, and an attenuation 
coefficient of 1 dB/k. Figure 9 shows the horizontal 
spatial correlation at 100 Hz along with the Cron and 
Sherman result for comparison. For this environment 
the model spectrum consists of a discrete part and a 
continuous part, both of which contribute to the noise 
field. The correlation was calculated using a combina- 
tion of the normal-model and FFP methods. Thus, Eq. 
(26) was used for the discrete normal-mode part and a 
modification of Eq. (18)was used for the continuous- 
mode part. In Fig. 10 we have plotted the discrete and 
the continuous contributions separately, both normal- 
ized, to illustrate the differences between the two con- 
tributions. The continuous part, while more coherent 

INTENSITY (dB) 

_E 20 / - 

40 - 

200 Hz 400 Hz 800 Hz 

FIG. 5. Noise intensity as a function of depth for the upward- 
refracting profile shown in Fig. 2(c) and for the frequencies 
200, 400, and 800 Hz. 
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FIG. 6. Vertical spatial correlation functions for the isovelo- 
city profile shown in Fig. 2(a) as a function of D/X, where D is 
the receiver separation, X the acoustic wavelength, and with 
one receiver fixed at 20-m depth. Three frequencies are 
shown: --- 200 Hz; ... 400 Hz; and ..... 800 Hz. Also 
shown is the result for a semi-infinite homogeneous medium 
calculated from Eq. (A22): . 
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SPATIAL CORRELATION 

FIG. 7. Vertical spatial correlation functions for the down- 
ward-refracting profile shown in Fig. 2(b) as a function of 
where D is the receiver separation, X the acoustic wavelength, 
and with one receiver fixed at 40 m. Three frequencies are 
shown: --- 200 Hz; .. ß 400 Hz; and ..... 800 Hz. Also 
shown is the result for a semi-infinite homogeneous medium 
calculated from Eq. (A22): •. 
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FIG. 8. Vertical spatial correlation functions for the upward- 
refractirg profile shown in Fig. 2(c) as a function of D/X, 
where D is the receiver separation, ), the acoustic wavelength, 
and with one receiver fixed at 10 m. Three frequencies are 
shown: ---200Hz; ... 400 I-Iz; and ß ß 800Hz. Also 
shown is the result for a semi-infinite homogeneous medium 
calculated from Eq. (A22): •. 

for small receiver separations (relative to a wave- 
length), quickly becomes less coherent than the discrete 
part, the latter maintaining some degree of coherence 
over several wavelengths. 

The relative importance of the discrete and continuous 
parts of the normal-mode spectrum is dependent on the 
total loss of the system. For low loss the discrete 

1.0 

-i.00 I I I I 1.0 2.0 5.0 4.0 

O/X 

FIG. 9. Horizontal correlation function (solid line) for an iso- 
velocity water layer overlying an isovelocity semi-infinite bot- 
tom as a function of D/X, where D is the receiver separation 
and X is the acoustic wavelength. The dashed line is the result 
for a semi-infinite, homogeneous medium [Eq. (A18) with m 
--1]. 
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D/X 

FIG. 10. The horizontal spatial correlation for the same case 
as Fig. 9 showing the discrete (---) and continuous ( ) con- 
tributions, both normalized. 

modes dominate, as they can be propagated very large 
distances from a very large area. In high-loss cases 
the continuous modes tend to dominate since they are 

important near the source while the long-range contri- 
butions of the discrete modes are severely attenuated. 

IV. SUMMARY 

We have presented a model of surface generated noise 
in the ocean in which the random noise sources are rep- 

resented by correlated monopoles distributed over an 
infinite plane parallel to, and located on arbitrary depth 
below, the ocean surface. Expressions have been de- 
rived for the intensity and spatial coherence of the noise 
field in a stratified medium based on a wave-theoretical 
treatment. Examples have been given which demon- 
strate that environmental factors, such as the sound- 
speed profile and the presence of the bottom, can be 
important in determining the spatial properties of the 
noise field. We have also shown that for an isovelocity, 
semi-infinite fluid medium our results are identical to 
those of previous investigators. 
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APPENDIX A: SPATIAL COHERENCE IN A 
HOMOGENEOUS SEMI-INFINITE SPACE 

In this appendix we show analytically that the theory 
developed in Sec. I reduces to earlier work 4 where the 
ocean was modeled as a semi-infinite space. For this 
problem, the Green's function is 

1 e ikR 1 e ikR' 
C(rx,r,;zx,z,)= - (A1) 4n R 4•r R' ' 

where 

R=[ [r• - r'[" +(z•-z')2] •/" , (A2) 
and 

n'= [ Jr, - r' I + (z, + z 
and k =w/c, where w is the angular frequency of the 
source and c is the speed of sound in the medium. The 
Green's function in E q. (A 1) is just that of a point 
source and its image, with the negative sign to satisfy 
the boundary condition at the surface, 

G(r•, r'; 0, z ') = 0. 

To obtain g(•; zx, z') we note that x= 

1 e • 

4• R 

8• 3 _• • • ' 

(A3) 

(A4) 

whe re 

•), = (k2 _ •)2)1/2 for k 2 >•)2 , 
= i('q 2 - k 2 )•/2 for k 2 < •2. 

Thus it follows from E q. (8) that 

g(•; zx, z ') 

= •(exp(in, lz•-z'[)-exp(in.lz•+z'•)) •5) 4• 

Similarly we have that 

-i (exp(-i•; [z a - z'[ )- exp(-{.: • % + z'[ )) (A6) 
We are concerned with the case z•,z• >z'. Then, from 
gqs. (As)and (A6), 

g(•; zx, z ')g* (•; z•, z') 

= 1 exp[i(•sz• - •z•)] sin(n,z') sin(•}z') (A7) 
4• • 

Inserting Eq. (AT) in Eq. (12) we obtain the expression 
•r the cross-spectral density function 

C•(R, z•,z•) 

2• 2 a o 

exp[i(n,z, 
If k is real, the integral inside the large parentheses 
can be written 

• Jo(• [R- pJ )exp[i(z•- z=)(k •- •=)•/= ] 
sin = [ z '(k 

x k=_v 

+ Jo(. IR- pl) exp[-(z, 

x sinh=[z'("=- k=)•/=]. 

(^8) 

(A9) 

We now must make some assumption about N(p). 
Cron and Sherman 4 have calculated the correlation func- 
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tion for a homogeneous half-space with noise sources 
having costa0 directionality distributed uniformly over 
the surface. Liggett and Jacobson s have shown that 
cos'•9 directionality is equivalent to assuming omnidi- 
rectional sources with a correlation function given by 

N(p) = 2'•m l (kp)-'•J,•(kp) , (•1o) 

for m >• 1. Inserting Eq. (A10) in Eq. (A8), the angular 
part of the p integration can be performed, resulting in 
the expression 

(fo C•(R;zx,z,.)=q"2'•mlk -'• F,•(O)JoO7R)exp[iZ(k"-•7") •/" ] k " - rf' rl drl 

+ F•(n)Jo(nR)exp[-(zx +zz)(r/z- kz) •/z ] sinh •' [ z '(n' - •')•/•] a•) T] 2 -- k2 T] , (All) 

where Z =z•- z•.. F,•(•7) is known, and is given by •3 

Fm(rl) = Jm(kP)Jo(rlp ) p•-m dp 

= { 0 for k<•/, [2'•(k•'-V•')]m-•k-•[r(m)] -• for k •V. (A12) 

Thus, using Eq. (A12), Eq. (All)becomes 

C•(R;z•,z•)=qe2mk -e= (k e - •e)•-•jo(VR ) 

x exp[iZ(k • - Vz) •/z ] 

x sinZ[ z'(kz- •z)•/z] 3) kz_• z •. (A1 
To compare with Cron and Sherman's results, we let 

z'-0 and t•e the normalized function •(R;z•,ze). 
Thus (Re denotes the real part) 

•(R;z•,zz) 

•e[c•(•; z•, •)] }•/•. (•4) • nm •e[cJo;• z•)]•e[c•(0;• •)] 
Then we must evaluate the integral 

ß •(•, z) = (• - • )•-•o(•) cos[z(• - •)•/• ]• d•. 
•o 

First consider the case when z• =z•. Then we have 

This is a standard integral and is given by TM 

/.(•, 0) = •'-•'•-'(m - ])•.(•). (•]•) 

Therefore, 

c•(s; z•, z•) = •"m• •. (•)/(•)', (• 

which is just the correlation function of the surface, Eq. 
(• ]0). 

Next, let R =0. Then Eq. (A15) reduces to 

/.(o,z)= (•-,')'-•cos[z(•'-,')•/']v• v , (•]9) 

which, after changing to the variable •, where • 
= (k z - •z)•/z, becomes 

fo k 1,.(0, Z) = •'"' - x cos(Z•) d•. (A20) 

For m = 1, the integral is easily calculated. The result 
is 

h(O,Z)=kZ '• sin(kZ)+Z-•[cos(kZ)- 1 ]. (A21) 

Thus, we have, for m = 1, 

C-•(O,Z) =2(kZ) -• sin(kZ)+ 2(kZ)'•'[cos(kZ)- 1 ]. (A22) 

For m > 1 we note that 

a2m -2 

Im(0, z)=(-1) •-• az2. m h(0, z); (A23) 
so for m >• 1 ß 

C• (0, Z) = (- • )• -• 2• -•'•' •' •-' oZ2m_ • I•(0,•). (A24) 
The results expressed by Eqs. (A18), (A22), and (A24) 
are in agreement with those of Cron and Sherman. 

A comment is in order about the significance of the 
second integral in the large parentheses of E q. (A 11). 
Because of the source correlation function chosen [ see 
Eq. (A 10)1, the second integral vanishes. We could 
have taken the sources to be completely uncorrelated by 
using the N(p) given by Eq. (17); then each source would 
be equivalent to an independent dipole. The first term 
of Eq. (All) would then give Cron and Sherman's re- 
sults, while the second term, which can easily be cal- 
culated, would be negligible except near the surface. 
The second term therefore is the contribution of the 

nearfield of the dipoles. 

APPENDIX B: A SIMPLE NORMAL-MODE EXAMPLE 

As an illustration of the normal-mode representation 
of the noise field we consider an isovelocity waveguide 
of depth H bounded above by a pressure-release sur- 
face and below by a rigid bottom. The boundary condi- 
tions for this problem are 

V,(0) =0 

and 

(Bla) 

dU" (z ) I =0, (Blb) dz ,-$ 

where the functions U,(z)satisfy Eq. (23). The solution 
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of E qs. (23) and (B1) is 

U.z): (2/H) x/z sin(X,z), 
with 

k z =k z z 

where 

(B2) 

(B3) 

2n- 1 •) Xn= • , n:1,2,3, .... (B4) 
We introduce attenuation into the system by letting the 

wavenumber k :o•/c be complex: 

k = K + i½ (B5) 

with ½, the plane-wave attenuation coefficient, taken to 
be a small positive number. Equation (B3) indicates 
that the modal wavenumber k. must also be complex. 
Thus, we let 

k, = •, +ion,,. (B6) 

The modal attenuation coefficient •, can be shown by a 
similar method to that of the Appendix of Ref. 15, to be 
given by 

•.= -- •(z)l V.(z) dz , (B7) 

for the general case of a depth-dependent sound velocity 
profile c(z)=•/•. In the case considered here, c(z)=c 
a constant, so Eq. (B7) reduces to 

a, = ½•/•,. (B8) 

Substituting (B2) and (B8) into Eq. (30) we obtain the 
simple result 

C•(R zz, z2) = 2 •. , E,sin2(•,. z sin(•,zz , 2,q p s(z )/½•SH2 ') ) 

x sinOt. z2)Jo(•.R). (B9) 

We note that the attenuation coefficient ½ appears in 
Eq. (B9) just as a scaling factor and does not affect the 
form of the cross-spectral density function. This is a 
result of the simple example chosen. In general, the 
factor (a.•.) 'x, which weighs each term in the sum will 
not be a constant, but will depend on n. 
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