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ABSTRACT

VOLUME 15

A solution for a concentrated line front translating at speed U is given. It is shown that the frequency is
near-inertial if U » ¢,, where ¢, is the long internal wave speed of the first baroclinic mode. Each mode has
a characteristic frequency w, associated with it. The spectra contain a near-inertial primary peak, composed
of the higher modes, whose blue shift increases with depth. They also contain secondary peaks at higher
internal wave frequencies if U is only slightly larger than c,. The flow field is intermittent, and involves a
continuous interchange of energy between the surface layer and the stratified interior. The dominant period
of this intermittency is the beating period of the first mode with a purely inertial oscillation. Short periods
of apparent subinertial motion are also generated. Several features of the solution are in agreement with

observation.

1. Introduction

The passage of storms and their associated fronts
can generate large inertial oscillations in the surface
layer and in the thermocline. Aspects of this phenom-
enon have been demonstrated in several models.
Geisler (1970) constructed a two-layer analytical
model of the response to a moving storm, and showed
that the nature of the solution depends on the relative
magnitudes of its speed of translation U and the long
internal wave speed ¢,. For common oceanographic
parameter values the baroclinic modes satisfy U
> ¢, for which the equations of motion are hyperbolic
and the solution has a spreading wake that decays
with the downstream distance approximately as x'/2.
The barotropic mode satisfies U < ¢,, for which the
system is elliptic and gives a symmetric response with
no wake. The corresponding problem in a stratified
ocean was studied numerically by Price (1983). Gill
(1984) studied the adjustment of a current in the
surface layer, left behind by a rapidly propagating
storm, through the radiation of inertio-gravity waves.
Rubenstein (1983) numerically studied the vertical
propagation in a stratified fluid forced by a wind
stress periodic in space and impulsive in time.

The purpose of this note is to give a simple solution
for the flow field due to a moving front in the form
of a concentrated (delta-function) line source, and
examine the behavior of the resulting scale, spectra,
amplitude, and vertical propagation. The major results
are that the spectra may have multiple peaks, the
blue shift of the primary peak increases with depth,
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and that the flow field is intermittent due to a beating
phenomenon. It will be seen that the present simple
model contains many of the features of solutions of
Gill (1984) and Rubenstein (1983), although their
models do not consider propagating storms. Some
aspects of the solution are then compared to obser-
vations near the coast of British Columbia.

2. Solution for a concentrated front

Consider a front aligned in the y-direction and
moving in the x-direction at speed U. The ocean has
a stratified interior with buoyancy frequency Mz), a
surface mixed layer of thickness # where N(z) = 0,
and a flat bottom at z = —D. For long fronts the
response can be assumed independent of y, and the
linearized inviscid equations of motion are

ty=fo = —pe+F )

v+fu=G

et w, =0 > 1)
p.— N*w/g=0

p:t+pg=0 p,

where the variables have their usual meaning. The
stress is assumed to enter the ocean as a body force
in the mixed layer. Consequently (F, G) = (+*/h, 7%/
h) in the surface layer, and (F, G) = (0, 0) below.
Boundary conditions are

w=0 at z=0,-D. 2
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Solutions to (1)-(2) can be found by expanding the
variables in terms of the normal modes ¢,(z) of the
system:

Lvo)

(, v, p) = 2 (Un, Vn, D)n,
n=0

® . © (3)
w= 2 w,.f ¢ndz, P = 2 pabn:.
n=0 -D n=0
The eigenfunctions satisfy
Pn 1
(va) t i =0 )

subject to ¢,, = 0 at z = 0, —D, where ¢, represent
the long internal wave speed of the mode. The modal
coeflicients satisfy

Uny _'ﬁ)n t Dux = Tnx

Ve + fity = 7,7 (5)
Pu + Ciltlyy = 0
where the forcing coefficients are given by
0
(rd 7?) = (7, ) / [ o= ®
The equation for u, alone obtained from (5) is
Ou + [ = Colthpex = o + fro- (7)

A coordinate system fixed with the front is now
adopted. After the initial transients have died away,
the field is steady in the moving frame of reference;
this would happen in a time in which the gravity
waves have crossed the width of the storm, typically
several hours. The equations of motion in the moving
coordinate system can be written by replacing d, with
—Ud, in (7). Equation (7) then gives

—Urie + fr?
Unx + KPthy = ~U2+c,,2_ 8)
where
kn J1U &)

(= U

For typical oceanographic parameters the barotropic
mode satisfies U < ¢,, for which (8) has solutions
that decay exponentially away from the source. The
baroclinic modes on the other hand satisfy U > ¢,
for which (8) has trigometric solution behind the
front. The field in this case is required to vanish
ahead of the front because it moves faster than the
speed of propagation of information, namely the
group velocity ¢, of short wavelengths. Equation (8)
can be solved given the spatial distribution of the
forcing function. For our purposes we shall choose
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the simplest realistic form. A front is characterized
by a sudden shift in the direction of the wind, with
no large change in the magnitude (Thompson and
Huggett, 1981a). A common pattern for a warm front
propagating eastward would be a northeastward stress
ahead of the front and an eastward stress behind it.
Assuming that 7* and 77 are of similar magnitude,
the ratio of the two forcing terms in the numerator
of (8) is R = U/fAx, where Ax is the thickness of the
front. Typical values are U ~ 500 cm s™', f ~ 107
s7! and Ax ~ 10 km, giving R ~ 5. The forcing
term involving 7”7 is therefore neglected in (8).
If 7* drops by 7, across the front, then

7 = —7o0(X) (10)
where 8(x) is the Dirac delta function. Therefore
Thx = —Tond(X) (11)
where, by (6),
0
Ton = To/f ¢n2dZ. (12)
-D
Equation (8) then becomes
Urgnd
U + K2ty = U—;"E—(c’:—l . (13)

Baroclinic solution

In this case U > c¢,, and k, is real. The solution of
(13) satisfying the radiation boundary condition of
u,=0forx>0is

Uron [sink,,x f cosk,xd(x)dx

T U2 = 6k

- cosk,,xf sink,,x&(x)dx:] . (14)

which simplifies to
T sink,,x
f(l - an/UZ)I/Z ’

Barotropic solution

U, = x<0. (15)

In this case U < ¢, and (13) is rewritten as
_ UTooa(X)
U 2. 6'02 ’
_ Sl
(1 = Uy
The solution to (16) is

Uoxx — Koto (16)
where

Ko

UToo

= Kox + —Kox +—_—
Uy = Ae Be\ KD — o)

X [e"“" fx e~ K%§(x)dx — e Kox f e""’"&(x)dx] .
(17)
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Since 1, is bounded at x = *oo, the constants must
be 4 = B = 0. Equation (17) then reduces to

le()()e_KOIxl
o= 2fco(1 — U¥ep?)'??

Equations (15) and (18) constitute the baroclinic and
barotropic contributions to the velocity field, and the
complete solution is obtained in the next section by
summing over a large number of modes. The series
(15) converges slowly, the convergence being faster
for thicker mixed layers. It is clear that the barotropic
contribution (18) is small since ¢y > U. The charac-
teristics of the flow field are therefore dominated by
the baroclinic contribution (15).

Note in (15) that the wake due to a /ine source
does not decay, whereas that due to a point source is
in the form of a Bessel function which decays away
from the source (Geisler, 1970). This'is because the
wake due to a point source widens downstream, and
its strength consequently diminishes roughly as x'/2,

From (9) and (15) the wavelength for a mode is
found to be .

M= 51 = QU = N = GO,
The wavelength that gives exactly the inertial period
in the fixed frame is A\; = 27nU/f, which will be
referred to as the “inertial wavelength”. Equation
(19) shows that A\, = X\, for ¢, <€ U. The exact period
of the mode in the fixed frame is

M2
u f

where t; = 2x/f is the inertial period. The frequency
of a mode is therefore

all x.  (18)

(19)

(1 = e2/U)' = 11 = e A

=

S
(l - cn2/U2)l/2
which is near-inertial only if ¢, < U. Since ¢, increases
with N and D, the blueshift for a particular mode
increases with an increase of the stratification or
depth. .

Equation (20) can be derived more simply as
follows (J. P. McCreary, private communication,
1984). The allowed frequencies are the points of
intersection of the gravity wave dispersion relation
w2 = % + ¢,2k* with the straight line Uk — w, = 0,
the latter representing the transformation Ud, + 9,
= (. Elimination of k gives (20).

The limiting cases of the solution for slow and fast
propagation speeds are of interest. For U — 0, all
modes behave like the barotropic mode (18), which
reduces to u, = Urq, exp(—f|xl/c,)/2/c,. In the opposite
extreme of a very fast storm, all modes (including
the barotropic) behave according to (15). Then it
follows from (9), (15), and (3) that the velocity field
is :

(20)

Wy =
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u=—f"'sin(fx/U) Z Tondn
n=0
which gives
To . X
= — — sin|— <
u Th sm(U) , x<0 (21)

in the surface layer, and u = 0 below. The frequency
of the oscillations is then almost exactly inertial. A
more realistic fast storm is, however, one for which
U » ¢, for the baroclinic modes but U < ¢,. For this
case it is easy to show that

u= —f—l sm(fx/ﬁ) Ozo: T0n®ns

n=1

which gives

_ nll= WD) . (fx
= ——————fh sm(U), x<0 (22)

in the surface layer, and the smaller slab-like com-
pensating value of u = 74 sin( fx/U)/ fD below.

It is shown in the next section that several inter-
esting features can be illustrated by evaluating the
velocity field due to a line source. The characteristics
of the solution will be valid as long as the front is
thin compared to the relevant length scale, namely
\:. This criterion is easily satisfied for typical ocean-
ographic parameters, in which A; is several hundred
kilometers. Besides, the solution due to a distributed
forcing function in (8) (including a nonzero %) can
be constructed easily by replacing —7¢,0(x) in (14)
and (17) by a general distribution X(x) =
- f Tny/ U.

3. Evaluation of solution

The following parameters appropriate for a conti-
nental shelf are assumed for the numerical evaluation
of the standard case discussed in the paper:

D=250m
h=25m
N=10"2¢"!
U=150cms™
70 = 1 dyn cm™
f=10"%"!

The mode shapes ¢,(z) are generated by solving
the eigenvalue problem (4). The first three eigenvalues
are found tobe ¢; = 78 em s™!, ¢; = 39 cm 57! and
¢3 = 26 cm s~'. The barotropic mode is taken to be
do = 1 and ¢ = VgD = 5000 cm s™'. Modal
coeflicients u, are found from (15) and (18), and 50
modes are summed in (3) to obtain the velocity field
u(x, z).

Figure 1 shows the contour plot of u, where the
concentrated front is at x = 0. The horizontal axis
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FIG. 1. Contours of u due to a concentrated front located at x = 0 and moving at U = 150 cm s™'. Contour interval is 0.4 cm s™'.

L
ti

Negative region is shaded. The horizontal axis is either (distance)/(inertial wavelength) in the moving frame, or (time)/(inertial period)
in the fixed frame. Note the upward phase propagation associated with downward energy propagation, the dominant 5.8¢; periodicity,

and clear evidence of the first mode in the range 3¢; < ¢t < 5¢;.

represents the distance in the moving coordinate
system, or the time in the fixed coordinate system.
Notice that the frequency near the bottom is higher
than that in the mixed layer. The constant phase
lines therefore gradually lean over and produce an
upward phase propagation throughout the water col-
umn up to 5¢;. This is associated with a downward
energy propagation from the mixed layer. Beyond 5i;
there is some downward phase propagation in the
bottom half, signifying a bottom reflection of energy.

The frequency shifts for the first three baroclinic
modes are found from (20) to be 17.1%, 3.65% and
1.55% above inertial, respectively. Initially ail the
modes are nearly in phase in the mixed layer. The
first mode, however, oscillates at a rate 17.1% higher
than the inertially oscillating high order modes, and
therefore becomes 90° out of phase in a time
(7/2(w; — f) Gill, 1984. The first mode then makes
its presence felt completely below the mixed layer,
and the energy in the mixed layer decreases by an
amount corresponding to its energy. Such outfluxes
of energy cause the loss of mixed layer energy evident
in Fig. 1.

In a time 2#/(w; — f) = 5.8t;, the first mode again
becomes in phase with the higher modes in the mixed
layer; a new set of contour lines then re-emerge out
of the mixed layer as the first mode starts to become
out of phase once again. The energy therefore oscillates
with a period 5.8¢; due to a constant interchange of
energy (upward and downward) between the mixed
layer and the deeper water (Gill, 1984). This phenom-
enon seems to be partly responsible for the observed

intermittency of inertial oscillations, although other
mechanisms like random forcing (Kundu, 1984) can
also cause intermittency. Rubenstein (1983) also no-
ticed this continuous interchange of energy between
the mixed layer and the stratified interior. [Rubenstein
did not study a propagating front problem, but the
surface forcing by a stationary wind impulsive in
time and periodic in space with wavenumber k. It
can be shown that his numerical solutions should be
formally same as ours if his (1 + ¢,2k?/f2) is replaced
by our (1 — ¢,/U?»™.]

The 5.8¢; periodicity not only occurs in the ampli-
tudes but also in the phases of the oscillations; the
“phase” here is defined as () in u = u cos(fi + 6).
This is shown in a plot of the amplitude and phase
of the solution at three depths (Fig. 2), found by
complex demodulation at the inertial frequency. The
generally upward trend of the phase signifies that the
frequency is superinertial. The mean slope of the
phase gives the “blue shift” to be 0.4% in the mixed
layer, 2.2% at 90 m, and much higher at the bottom,
where it is difficult to estimate because of the severe
oscillation of the phase. The blue shift therefore
increases with depth, a conclusion previously reached
by Kundu et al. (1983) in a coastal model, and can
also be seen in the hurricane caiculations of Price
(1983). The reason for this is the fact that the higher
frequencies (lower modes) disperse earlier from the
mixed layer.

Amplitudes in Fig. 2 show that up to ¢t = 10¢; the
subsurface maxima occur later than the surface min-
ima, the time lag increasing with depth. This is due
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FiG. 2. Amplitude and phase at inertial frequency at three depths found by complex demodulation. The speed of
the front is U = 150 cm s™'. Note the dominant 5.8¢; periodicity of both the amplitude and phase, and the generally
increasing trend of the phase signifying superinertial frequency. The frequency increases with depth. The time axis
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starts at # = ¢; because of the loss of record length by the demodulation filter.

to a downward propagation of energy from the surface
at a finite group speed. The vertical group speed
estimated from the time lag at the bottom is 0.5 cm
s~!, which agrees with the expression for vertical
group speed found from the dispersion relation

(@ — fz)élz
Coz = wkN

on substitution of w = 1.17fand k = fJU.

The superposition of the 5.8¢; periodicity on the
mean trend of the phase means that the latter some-
times increases (segment BC in Fig. 2) and sometimes
decreases (segment AB) with time. This feature is
also seen in the solution of Gill (1984; his Fig. 7).
The interval of time corresponding to these apparent
subinertial frequencies corresponding to AB are, how-
ever, no more than two inertial periods long, and do
not generate a subinertial spectral peak, as will be
seen later. It is nevertheless curious that short apparent

subinertial motions are generated although all the -

modes have frequencies w, > f. Such occasional
subinertial frequencies are frequently observed in
current measurements (Kundu, 1976b; Thomson and
Huggett, 1981a).

On the other hand, the intervals such as BC add
up to a large fraction of the time series, and additional
spectral peaks are therefore expected. In other words,
the spectra should have multiple peaks, and this is
indeed the case (Fig. 3). The spectra at all three
depths have a double peak, one corresponding to the

mean trend of the phase and the other corresponding
to time segments such as BC. Close inspection of Fig.
3 shows that the second peak at all three depths
occurs at w/f = 1.17, which corresponds exactly to
that of the first mode. Bottom reflection has therefore
established a standing first mode in the vertical, a
fact especially evident in the subsurface flow between
t = 3t; and ¢ = 5¢. A similar feature can also be
noticed in Rubenstein’s calculations. )

The peaks due to the higher modes (w; = 1.036f,
w3 = 1.015f, - « +) are not visible in Fig. 3, since they
fall too close to one another. In fact, the blue-shifted
primary peak is due to the second and higher modes
which contribute significantly to the solution. The
very high-order modes, with frequencies practically
coincident with f, make a negligible contribution to
the solution; that is why the primary peak is blue
shifted.

It is apparent that the secondary peak corresponding
to the first mode can be moved closer to the primary
peak simply by increasing U. This is seen in Fig. 4a,
which shows the bottom spectrum for U = 500 cm
s”!. In this case w; = 1.012f, and this is where the
spectral peak in Fig. 4a occurs. This case satisfies
U » ¢, for the baroclinic modes, and U < ¢;. Such
a limiting case has been examined in the previous
section, for which the velocity field is given by (22)
in the surface mixed layer and an oppositely directed
slab motion underneath. The contours of u (not
shown) are now nearly vertical lines, showing little
lags in phase or energy propagation. There is, however,



AUGUST 1985 PIJUSH K. KUNDU AND RICHARD E. THOMSON 1081
10°% 1.0 - U=150¢cm/s 10°x6 - @
f U=100 cm/s
05 surface
o, 3 W,
y\ 2
v
0 - )
. T T Al N"
2 £
gy oz £ 0 T T T T ,
T z
z z 2
@ a = 500
é 0.1 -2=90m U= 500 cm/s
2 2
& L SERE
g o . . . ~ a
] g @
04 ~ o] T Y ¥ ¥ -
0.8 10 12 14 16
w/f
0.2 4 bottom
FIG. 4. Effect of changing the translation speed of front on the
spectral characteristics. The bottom spectra are shown for U = 100
J and U = 500 cm s~'. Note that the spectral peaks corresponding to
0 0'8 10 T2 e 6 w, and w, are distinguishable for the slower front.

w/f

FIG. 3. High resolution spectra at three depths for a front moving
at U = 150 cm s™'. The record length is 40z, the bandwidth is
0.004f, and the degree of freedom is 4. The secondary peak
coincides with the first mode frequency w, = 1.17f.

a slow decrease of the surface amplitudes and an
increase in the subsurface amplitudes (Fig. 5).

In the opposite extreme of a slow front, with U
slightly larger than ¢,, the spectral peaks corresponding
to the first few modes are far apart and hence should
be distinguishable. This is indeed the case, as a
calculation with U = 100 cm s™! shows (Fig. 4b).
Equation (20) now gives w; = 1.60f and w, = 1.086f,
and the spectral peaks corresponding to each of these
are visible in Fig. 4b. Obviously peaks corresponding
to more modes would be visible by taking U further
close to ¢;. Note that noninertial internal waves
(corresponding to the lower modes) are generated by
slowly moving storms. These would contain a higher
proportion of energy if the ocean has a thermocline,
since then the convergence of the series (3) is faster.
A calculation assuming that N(z) has a thermocline
indeed showed that the noninertial spectral peaks
generated by slow storms were dominant.

4. Comparison with data

For comparison a front-forced event observed near
the coast of British Columbia by Thomson and
Huggett (1981a) will be reexamined. About 2-4
months of current meter data were collected at 10
stations during the summer of 1977. We will only

concern ourselves with the measurements in the
surface layer, less than 25 m deep. The tides are
removed by harmonic analysis, and the inertial oscil-
lations are extracted by bandpass filtering around the
inertial frequency. Two events of large inertial oscil-
lations are observed during the period of measure-
ments, one starting June 20 and the other starting
August 21.

4 - U= 500cm/s

=
S ———

AMPLITUDE {cm/s)
N
i

O L L] L) T ¥ L] 1 ¥ 1 L}
1 1 21
L X
t or X

FiIG. 5. Amplitude at inertial frequency due to a fast storm
propagating at U = 500 cm s™'. Note the depth independence of
subsurface flow, and the lack of time lag for energy propagation.
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Detailed maps of the positions of the northeastward
propagating low pressure centers and the associated
warm and cold fronts, compiled from meteorological
observations, are given in the data report by Thomson
and Huggett (1981b). A unique opportunity of closely
tracking the position of the fronts was obtained in
this experiment because of the existence of six shore
based anemometer stations encircling the region of
observation, shown by triangles in Fig. 6. The passage
of the warm front caused a sudden veering of the
wind from southeasterly to southwesterly. A map of
the time lag of this veering during a mid-August
event is given in Fig. 6. The front is seen to be fairly
parallel to the coast, and travels northeastward at a
speed of U ~ 30 km h™' = 830 cm s™'. Since this is
several] times a typical ¢; for shelf water (¢, ~ 50~
100 cm s™"), the expected wavelength of the oceanic
response is, from (19), A =~ 2 w#U/f ~ 500 km, and
the expected frequency is near-inertial as observed.

We shall now see whether this estimate- of the
wavelength agrees with the current meter data. The

Start: Oh Aug. 1977

—
50 km

FiG. 6. Time lag of observed front propagation, determined by
the time of rapid veering of winds from southeasterly to southwes-
terly. The data are based on six shorebased anemometer stations
marked by closed triangles. Lags are in hours relative to 0000
GMT 22 August 1977.
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phase differences between the currents during the
mid-August event are estimated from a calculation
of the complex correlation coefficient defined as
(Kundu, 1976a)

_ wHOwA0))
(WHOW(O) H wiwaAD)'

where 1 and 2 refer to the two stations, w = u + iv
is the complex velocity, the asterisk denotes complex
conjugation, and angle brackets denotes time average.
The magnitude of r gives the overall measure of
correlation, and the phase angle of r gives the average
counterclockwise angle of the second vector with
respect to the first, the averaging process being
weighted according to the magnitude of the instan-
taneous vectors. Although some of the currents are
separated by several hundred kilometers, the corre-
lations among all the currents are found to be high
(larger than 0.5)—a surprising fact considering that
most other observations report a lack of horizontal
coherence of inertial oscillations for distances exceed-
ing tens of kilometers.

Figure 7 shows a map of the phase difference of
all the currents with respect to station QO3. The
wave propagation is northeastward, and an estimate
of the wavelength is A ~ 450 km. (A similar conclu-
sion was also reached by a complex EOF analysis, in
which the first mode accounted for 71% of the energy
because of the high correlation.) This is not very far
from the theoretical estimate of A ~ 500 km. The
good agreement confirms that the inertial oscillations
were indeed the wake of the moving front.

A similar calculation was performed for a second
inertial event starting 20 June. In this case the
currents were even more highly correlated in the
horizontal, r being as high as 0.98 for separations of
order 100 km. The phase difference between the
observed currents resulted in an estimate of A ~ 700
km, but the theoretical estimate was 2z U/ f ~ 250
km. The agreement during this event was therefore
less satisfactory.

Several other features of the solution are also in
agreement with existing observations of inertial oscil-
lations, most of which are forced by winds associated
with fronts and storms. The upward phase motion in
the stratified interior has been observed by Kundu
(1976b), Pollard (1980) and Hamilton (1984). The
multiple (“split”) spectral peak associated with inertial
oscillations have appeared in the observations of
Kundu (1976b) and of Fu (1981; see especially his
Figs. 13 and 14). The nature of the contours of u(z,
) and v(z, ¢) in the Baltic Sea observations of Krauss
(1981) suggests a clear separation of the n = 1 mode;
a split spectrum might have resulted in this case if it
were computed. Short periods of slightly subinertial
frequency oscillation have been observed by Kundu
(1976b), and Thomson and Huggett (1981a). The
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FIG. 7. Phase difference of inertial currents with respect to station
QO3. The phase angle is that of the complex correlation coefficient;
positive angle means that the average current is counterclockwise
of that of QO3.

increase of the blue shift with depth has been observed
by Millot and Crépon (1981). Intermittencies of 5-
15 days duration has appeared in all observations.

5. Summary and remarks

Flow field due to a moving front in the form of a
concentrated line source has been found. The solution
for the velocity is found in terms of the vertical
normal modes of the system, assuming that the ocean
is inviscid, stratified, and has a flat bottom. The
baroclinic solution is contained entirely behind the
front, and is given by

_ Ton SINK,X k. = §iY
S =cHUH? (1= HUBHT

The assumption that the front is concentrated is a
good one since its thickness is much smaller than A,
the characteristic scale of the flow field. Perhaps the
most attractive aspect of the solution is its algebraic

U, =
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simplicity. Yet it contains features that illustrate the
essential nature of such flow fields, and agree with
the more complicated existing solutions of inertio-
gravity waves. These features are:

1) The frequency is near-inertial only if U > c¢,.

2) Downward energy propagation is associated with
an upward phase propagation.

3) There is a continuous interchange of energy
between the surface mixed layer and the stratified
interior predominantly with a periodicity of 2#/(w,
— f), which is the beating period of the first mode
with a purely inertial oscillation (Gill, 1984).

4) The energy interchange results in an intermit-
tency of the inertial oscillations, a universally observed
fact.

5) The spectra contain multiple peaks due to the
different modes. For slow storms with U slightly
larger than ¢, the peaks due to the lower modes are
widely separated and distinguishable. The lowest ones
of these may be noninertial waves. “Split” inertial
peaks are frequently observed (Fu, 1981; Kundu,
1976b). Fast storms with U > c, generate oscillations
that are almost exactly inertial, with little lag in the
phase and energy propagation.

6) The blue shift of the primary peak increases with
depth, which agrees with the observations of Millot
and Crépon (1981) and the calculations of Kundu et
al. (1983) and Price (1983).

7) The oscillations appear to be subinertial for
short (~2t¢;) periods of time, although all modes have
w, > f. Such oscillations have frequently been observed
(Kundu, 1976b; Thomson and Huggett, 1981a).

The current meter data taken off the coast of
British Columbia have been analyzed. During two
events forced by propagating fronts the surface inertial
currents have been found to be horizontally correlated,
although these currents were separated by as much
as 400 km. A wavelength was estimated from the
phase difference between the currents, and the relation
X = Ut; was found to be satisfied for one event and
differed by a factor of 3 for the other everit.

It has recently been shown (Kundu, 1984) that
much larger inertial oscillations can be accounted for
by the wind forcing than previously thought possible.
Further work is therefore suggested to study wind-
forced inertial oscillations. Flow field should be eval-
uated for a distributed source, using realistic values
of the stress gradients [Eq. (8)]. The present assump-
tion of independence perpendicular to the direction
of propagation fails for occluded fronts or localized
storms such as a hurricane. Geisler’s (1970) horizon-
tally bounded two-layer solution should therefore be
generalized to a continuously stratified ocean.
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