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ABSTRACT

The excitation of coastal inertial oscillations by a rapidly varying wind is investigated. It is shown that the
mean-square response to a completely random forcing is ¥ oc f ¥s2dt, where ; is the response to impulsive
forcing and the integral is over the record length. The rms response therefore initially increases with time as
£'2, and reaches stationarity in the decay scale for ¥;. As in the random-walk problem, the 72 increase is a
result of the superposition of uncorrelated steps. Continuous random forcing preferentially increases
subsurface amplitudes, since the energy flux from the coast-surface corner causes a surface decay and a
subsurface growth of ;.

With assumed parameters, a step-input wind forcing of 1 dyn cm™2 generates inertial oscillations of 4 cm
s~! in the surface layer and 0.7-1.5 cm s~! below. With a random wind in the range (—0.5, 0.5) dyn cm™,
the surface values increase to 8~11 cm s~! and the subsurface values to 3-7 cm s~'. With an observed wind-
forcing the surface and subsurface amplitudes are 10-17 cm s™! and 5-9 ¢cm s™!, respectively. Compared to
the step-input wind, the oscillations due to a randomly varying wind are less coherent in the vertical and
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more intermittent in time.

1. Introduction

The inertial oscillations observed in the surface
layer can generally be explained by the wind forcing
(Pollard and Millard, 1970). The source of subsurface
inertial oscillations, on the other hand, has been the
subject of some controversy. Pollard (1970) studied
an open-ocean model forced by the sudden application
of a constant wind stress (that is, a step input), in
which the spatial dependence of the wind stress
resulted in the vertical and horizontal dispersion of
the inertial energy. He found, however, that a wind
stress of 1 dyn cm ™2 resulted in a maximum amplitude
just below the mixed layer of only about 1 cm s7%;
farther below, the amplitude decayed sharply to neg-
ligible values. Only wind stresses of hurricane mag-
nitude (Price, 1983; Gill, 1984) can therefore explain
the observed magnitudes of inertial oscillations (10-
20 cm s™!) within and above the thermocline. Below
the thermocline, mechanisms other than wind stresses
have been suggested to dominate.

Kundu et al. (1983, henceforth referred to as
KCM) studied a coastal model and forced it with an
alongshore wind in the form of the customary step
input. The forcing was assumed spatially uniform,
but the spatial inhomogeneity necessary for vertical
dispersion resulted from the presence of the coast.
Since the inertial oscillations are circularly polarized,
the vanishing normal-velocity condition resulted in a
rapid decay of the oscillations near the coast (coastal
inhibition), forcing a downward flux of inertial energy
from the surface-coast corner. As found by Pollard
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(1970), however, the maximum subsurface amplitude
was much lower than observed—less than 1 cm s™!
for a 1 dyn cm™2 wind.

The KCM calculations cannot therefore explain
the large subsurface inertial oscillations observed in
coastal regions (Kundu, 1976b; Thomson and Hug-
gett, 1981; Denbo and Allen, 1984; Hamilton, 1984).
For example, maximum subsurface amplitudes of
10-13 cm s~ have been observed near the coast of
Oregon during a period in which the wind was less
than 4 dyn cm™2. Compared to the observations, the
KCM model oscillations are also too highly correlated
in the vertical, and not intermittent enough in time. '

It was subsequently suggested (Kundu, 1984) that
one possible way to increase the subsurface ampli-
tudes, without proportionally increasing the surface
amplitudes, might be a rapidly varying forcing with
time scales less than an inertial period. Fluxes of
inertial energy would be constantly pumped down-
ward from the coast-surface corner with every change
of the wind. Their random superposition is expected
to generate the large subsurface amplitudes, high
intermittency, and low vertical coherence. ’

The generation of inertial oscillations due to a
time-varying wind forcing will be studied in this
paper. In particular, we shall investigate whether a
time varying wind generates subsurface oscillations
that are realistic, that are large enough in magnitude,
sufficiently intermittent in time, and have small
enough coherence scale in the vertical. It will be
found that the random wind application greatly im-
proves the KCM model results.
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Before presentmg the coastal solutions due to a Eq. (4) becomes

rapidly varying wind, some general relationships be-
tween the forcing and the response are developed in
the next section.

2. Considerations of time varying wind

For linear systems, the response y(¢) due to a time
varying forcing 7(f) can be obtained by superposing
solutions Y(7) due to a unit Heaviside step forcing 7
= H(?). To be specific, 7(f) may be the wind stress
and ¥(¢) may be any resulting flow variable such as
pressure or a velocity component. The variables
and Yy may also depend on location x, but this
dependence will be suppressed for notational sim-
plicity.

The linear superposition leads to the convolution
integrals

w-[ &
()

It is assumed that + = 0 for ¢t < 0. However, the
lower limit (—0) in the first integral covers the case
in which 7 has a discontinuity at ¢ = 0. It is evident
that dyy/dt is Green’s function for the system, that
is, the response to a delta function forcing. One
usually calls y; = dyy/dt the impulse response, as
opposed to the step response Yy

The linear superposition of solutions results in a
general spectral relationship between the forcing and
the response. Let ( ) denote the finite Fourier trans-
form for a record length 7. Equation (1) then gives

¥ =it @)
The response and forcing spectra are respectively
defined as

Sue) = lim (Lf) 5:w) = lim (”—’—T—T—)
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where ()T denotes complex conjugation. Equation
(2) therefore gives A
S\ﬁ = |¢5|2S‘n (3)

which relates the response spectrum Sy to the forcing
spectrum S, by means of the transfer function ;.
Various applications of (3) can be found in electrical
engineering and filter theory.

Consider a forcing in the form of uncorrelated
random noise. For such a signal the spectrum S, is
“white” or frequency independent, so that the mean-
square response is

? = f Swdw = S-rf |\Z5|2dw’ (4)
where (3) has been used. Applying Parseval’s theorem

-} T
f |12/6|2dw=27"J; yaldt,
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The magnitude of the forcing spectrum S, depends
on the sampling interval At. The frequency range of
the spectrum is (—wy, wy), where wy = /At is the
Nyquist frequency in rad s™'. The mean-square forcing
is then related to the spectrum by

— wN
%=

S.dw = 2% S,/ At.
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Equation (5) then becomes
_ . T
¥ = 1At f vsidt (6)
0

which is valid if the forcing spectrum is white, and if
At is small enough to resolve the natural period of
the system.

In the absence of a decay, the impulse response
Ys(t) is a stationary series oscillating at the natural
frequency of the system (the Coriolis frequency fin
the present case). According to (6), the mean-square
response in that case increases indefinitely with the
increase of the record length 7. On the other hand
¥; may be a decaying oscillatory series (having a
decay scale ¢;), which may be due to the presence of
damping or an energy outflow to the surrounding
points if y; is spatially dependent. The decay scale #4
defines a memory time, so that contributions due to
earlier forcings are negligible in the superposition (1).
The integral (6) also converges and y? reaches a

stationary value proportional to f,. If ¢; is large
compared to the natural period, this stationary re-

sponse can be quite large. A random forcing can then
excite a large response at the natural frequency.

As a simple numerical illustration, consider the
random wind forcing of a one-dimensional slab-like
Ekman layer of thickness 4. Assume a zero bottom
stress, so that there is no viscous decay. The eastward
velocity in this layer due to a northward impulsive
forcing 7 = 4(f) can be easily shown to be

Us = % sin ft. )

From (6) and (7), the mean-square eastward velocity
due to a random forcing is

= AT
2
The rms velocity u’ is therefore related to the rms
forcing 7' by
k(22 1)"
! T L 4 ’

®)

T

where time has been expressed in terms of the inertial
period ¢; = 2« /f.
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Equation (8) implies that the ensemble-averaged
rms velocity for a record of length T varies as T'/2,
It is easy to show that the amplitude of the oscillations
must then vary with the running time as ¢!/2 on the
average. Equation (8) also implies u’ oc ‘AZVX’, where
N = T/At is the number of steps. This is similar to
the result of a “random walk”, in which the rms
distance travelled in N uncorrelated steps of length
Aris r = ArVN. (See Feynman et al., 1963, for a
simple proof.) This similarity is no surprise, since
both of these phenomena are the results of a random
superposition of uncorrelated steps.

Equation (8) will now be tested against a numerical
evaluation of the solution. For this, a random stress
series is generated in the computer by setting the
stress equal to a random number between (—0.5, 0.5),
with equal probability of occurrence in this range.
This produces a stress series with an rms value of 7’
= (12)"'2 = 0.2887. The velocity field corresponding
to such a random forcing at intervals of At/t; = 1/9
is found from (1) and (7), and is shown in Fig. 1.
The rms #’ does seem to vary as ¢!/, as in (8). Testing
with various At showed that u’' also increased with
At, in agreement with (8).

The rms velocity at the end of 30 cycles in Fig. 1
is found to be u/f h/v' = 8.2, which is in reasonable
agreement with the value of u'’f h/r’ = 8.1 predicted
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from (8). In contrast recall that a step forcing generates
a much smaller response of tma f A/ = 1.
The energy relation is

o2, o 1 f '

2(u + v9) A TUdl. 9)
The right-hand side of (9) is plotted in the bottom
panel of Fig. 1, and the agreement of the wind work
and the resulting inertial energy is apparent. In agree-
ment with (8), the work done (kinetic energy) is very
closely proportional to ¢. Introduction of a decay time
in the impulse response (7) showed that the work
done and the resulting velocity field reach stationary
states for ¢ > 1,. .

It may at first be surprising that a random = and
the resulting v should be correlated, as (9) implies.
To see why they are correlated, note that the response
can be viewed as a superposition of a series of random
impulses at intervals of At. For simplicity assume
that the impulses are of equal magnitude but random
sign. An initial northward impulse immediately results
in a northward velocity vy. Because of the inertial
rotation of the velocity vector, the northward velocity
decreases to v’ < v, after At at which time the second
impulse is applied; the assumption At < t; will ensure
that v’ is also northward. The second impulse, which
could be in either direction, will do positive work on
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FIG. 1. Time series of ¥ and surface-stress work in slab-like Ekman layer, forced by a purely
random wind stress of rms value 7'. Note that the resulting amplitude far exceeds the step
response, Uma: f i/ = 1, and the close agreement between the surface work and kinetic energy.
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the system if it is directed northward (since v’ > 0).
A southward second impulse, on the other hand,
would result in a negative work, but its magnitude
would be smaller than the positive work of the first
impulse (since v’ < 1p). Continuing this argument,
the net work done after a series of impulses will be
positive. Note.that v’ — vy as At — 0. The net work
done, and the resultant velocities, would therefore go
to zero as At — (0, in agreement with (8).

Summarizing this section, it has been shown that
large oscillations at the natural frequency can be built
up by random forcing. The resulting amplitudes go
like #'/? if there is no decay of the impulse response.
If the impulse response decays in time ¢4, the response
to random forcing reaches stationary values propor-
tional to ¢,'/%. These ideas will now be used to study
the coastal inertial oscillations excited by a rapidly
varying wind.

3. Results for step wind

Consider the coastal ocean on a flat shelf. The
water depth is D, and the surface mixed-layer depth
is . The subsurface water has a buoyancy frequency
N(z), and a momentum and heat diffusivity ». The
coordinates (x, y, z) and velocity components (4, v,
w) are taken in the east, north (alongshore), and
upward directions, repectively. Pressure and density
perturbations from a state of rest are p and p. The
origin is placed at the surface-coast corner, with the
ocean extending in the negative x-direction. The
ocean bottom is assumed slippery. The alongshore
independent model equations are

U, —'f‘D =—px+ ("uz)zT
] +fu = (sz)z
0=-p.—g
U+ w, =0

2
P T w = (vp).:
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Solutions are obtained by decomposing the variables
in terms of vertical normal modes:

© A
U, 0, p= 2 (tn, Un, D)
n=0
w= > w,,f Ondz (10)
n=0 -D
p= 2 Pnbn:
n=0 J

For n > 1, the vertical modes are given by

an(%) +¢.=0, ¢, =0 at z=0,—-D, (11)

where the eigenvalues ¢, are the long internal wave
speeds. The expansion coeflicients satisfy

0 + v, _fvn + Dnx = T ]
(0, + v2)vn +fun =77
0, + vu)pn + anunx =0 ( : (12)

anwn = (0; + vn)Dn

Pn = —Dnlg ]

Here v, = vN?/c,* is the viscous damping coefficient.
The coupling coefficients of each mode to-the wind
stress 7 = [7%, 7] are

0 0
Y|
-D -D

Solutions for a step-input alongshore wind 7 H(¢),
where H(¢) is the Heaviside function, are given in
KCM. Solutions for a cross-shelf step-input wind can
be found in a similar way. The complete response to
the step input r = [7*H(¢t), 7 H(?)] is

1—e™ —vnt 242 23172
#ye " Jo(f 1 — X, 5
n

H(t + x/c)r e ™™
v,2 + f2

H (t + x/ Cn)Tnye—ynt
val + f?

[fer e — v, sin(ft + x,)

e—VntJI(f2t2 — xn2)1/2
(f2t2 _ xn2)1/2

e—VntJI(thZ _ xn2)1/2
(f2t2 . xn2)l/2

{f— e (v, sinft +fcosft}*{
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(14)

1-1.5 cm/s
e 1.5-2.0cm/s

12.0

Depth (m)

; oo &3 :' s et 125
200 0 200
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FIG. 2. Contour plots of inertial amplitude for various times. Forcing is a step-input
alongshore wind. Contour interval is 0.5 cm s™. Subsurface regions with amplitudes above 1.0
cm s~! are shaded. Small regions of amplitude larger than 1.5 cm s™' are shaded heavily; these

occur within region A4 at #/z, = 2.8 and near the bottom at t/t; = 21.0 and 28.5. Amplitude in
regions of nearly uniform value is indicated by ~ amplitude.
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Here x, = xf/c,, Jo and J, are the Bessel functions,
and the asterisk represents the convolution product
of two functions delineated by braces, with the integral
going from —x/c, to . For example

(g0} = [ - gy

In (14) the subscript H on p,, u, and v, is used as
a reminder that these are the step responses. Note
the v,y due to 7™ is equal and opposite to u,y due to
7%. The solutions satisfy the zero initial conditions,
and the following boundary conditions: u = 0 at x
= 0; (u4, v, p) are bounded as —x — oo0; and u, = v,
= w= 0 at z = 0, —D. They contain the nonoscillatory
component of the response, as well as the inertio-
gravity waves which are of interest here. Terms not
multiplied by H(z + x/c,) are the unbounded solutions
and those multiplied by H(t + x/c,) are the waves
generated by the presence of the coast. A detailed
discussion of these equations without the 7* terms is
given in KCM.

Step-input calculations up to 5 days are discussed
extensively in KCM. A similar calculation up to 25
days will be briefly discussed here, bringing out some
new information. The parameters used here are

7=1dyn cm™

N=10?%s"

f=10"*s"! (inertial period #; = 17.45 h)
h=20m

D=125m

v=1cm?s",

~ Magnitude

Depth (m)

Phase
-x =16 km
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The values of D and » chosen here are smaller than
those in the KCM calculations.

Profiles of the first 50 baroclinic modes are deter-
mined by solving the eigenvalue problem (11). The
barotropic mode is taken to be ¢o(z) = 1 and ¢
= (gD)"2. Solutions are found from (14) and (10) for
unit step inputs of 7* and 77 by summing over 51
normal modes, in which the solutions converged. A
complete calculation up to 25 days took over one
hour of computing time on the CRAY-1 computer.

Only the results for 77 =1 dyn cm™ will be
presented in this section, since those for 7* = 1 dyn
cm™2 are essentially similar in nature. The near-
inertial oscillations are extracted from the solution
by complex demodulation of the time series at inertial
frequency. [They were determined in KCM by a
different method, with practically the same result.]
Only these demodulated “inertial” series will be
presented, except in Fig. 6 where the entire solution
is considered.

Figure 2 shows the contour plots of the inertial
amplitude for various times, in which the following
characteristics should be noticed:

1) The amplitude adjacent to the coast decays
monotonically throughout the water column (coastal
inhibition).

2) The loss of energy in the surface layer is caused
by a downward flux from the corner. This results in
a region of gain A in which the maximum amplitude

of 1.5 cm s™! is reached at #/t; =~ 3.
Magnitude
0.5 1.0
Q
~
i &
&
T T T T = T 1
-60° 0° 60° 200°
Phase
-x =32 km

FI1G. 3. Vertical correlation of velocity vectors. Forcing is a step-input alongshore wind. Left
and right panels refer to offshore distances of 16 and 32 km, respectively. All correlations are
computed with respect to 60 m depth. A positive d(phase)/dz signifies upward phase speed.
Note the generally upward phase propagation, except below 90 m depth at —x = 16 km.
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3) Another region of gain B moves offshore and
upward near the bottom. This region is apparently
created by a combination of the bottom reflection of
some of the downward flux from the surface layer,
and the loss of near-shore energy near the bottom.

4) There is a general decay in the surface layer
throughout the 32 cycles of computation, with the
amplitudes decreasing from 4 cm s™! to about 2 cm
s .
5) In contrast, most of the subsurface region pre-
serves its original amplitude of 0.7 cm s~!, although
the region of gain 4 decays.

It should be noted here that the amplitude evolution
of the impulse response wus(x, ) = Juy/ot is very
similar to that in Fig. 2, since uy is an almost periodic
series.

Phase differences in the flow field can best be
described by the complex correlation coefficient of
velocity vectors (Kundu 1976a), defined as the nor-
malized form of the inner product

R = wi(x, Hw(xo, 1),
where w = u + iv. The magnitude of R gives a
weighted average correlation, and the phase angle of
R gives the average anticlockwise angle of vector at
x with respect to the vector at x,. Figure 3 shows the
magnitude and phase of vertical correlation at two
offshore locations. The phase propagation is generally
upward, except near the bottom close to the coast

151 -Z2=0-20m
25m
<
E
L
>
— 0 — 1
15 100m U (cm/s) 15
125m
75m
50m
1.5~

F1G. 4. Vertical distribution of velocity vectors at ¢/t; = 19 and
—x = 32 km. Forcing is a step-input alongshore wind. Each point
corresponds to the instantaneous current at a certain depth. Larger
dots are separated by 25 m and smaller dots by 5 m. Each current
vector is rotating clockwise at a near-inertial frequency, so that the
current at 100 m depth leads those above and below. Phase speed
below 100 m is therefore downward, implying bottom reflection.
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o.
.o : .a * ....- 00
-Z=115m .
— T _600
200 0

-—X(km).

FIG. 5. Phase angle of horizontal correlation of velocity vectors.
Forcing is a step-input alongshore wind. Upper and lower panels
refer to the surface and 115 m depth, respectively. Phases are
computed with respect to the vector at —x = 200 km. Negative
phase angle signifies that nearshore currents lead.

40'1

201

MAGNITUDE (s/cm)

PHASE

o f
—1800 T — T T 1

0.25

w (cph)

FIG. 6. Magnitude and phase angle of transfer function #is(w) of
cross-shelf current at (—x, —z) = (72 km, 45 m) due to alongshore
wind. Note the nearly 180° phase shift across the resonant frequency
w=f
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(—x = 16 km) where it is downward, implying bottom
reflection. At later times bottom reflection takes place
farther offshore. This is evident in the hodograph plot
(Fig. 4), showing bottom reflection below 100 m at
an offshore distance of 32 km.

The horizontal phase differences at two depths are -

shown in Fig. 5. The values fall on a smooth line at
the surface where the correlation is high, but not at
the deeper layer where the correlation is lower. Off-
shore of 100 km the vectors are oriented practically
in the same direction. The nearshore vectors lead,
signifying an offshore phase propagation. A" typical
nearshore horizontal wavelength is Ay = 27[d(phase)/
dx]™! ~ 400 km, far larger than the 70 km wavelength
suggested in KCM essentially based on the dispersion
relation. It is apparently inappropriate to apply the
dispersion relation m = k/(w* — f%)"? for inertio-
gravity waves and use local values of the parameters,
because the WKB approximation is not valid in a
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situation where only a small part of a complete wave
is present in the flow field. (Note that the total phase
variation in Fig. 5 is only 50°.)

The magnitude and phase of the transfer function
#; at a point is shown in Fig. 6. It is found by Fourier
transforming the step response uy and multiplying
by iw. The transfer function peaks near w = f, with
its phase changing by nearly 180° across the resonant
frequency. This characteristic is similar to that of
other linear oscillatory systems (for example, see Fig.
2.5 of Bendat and Piersol, 1971). The —180° phase
of the response near w = 0 is consistent with the fact
that a northward alongshore wind generates a negative
steady u below the surface layer.

4. Results for time-varyihg wind

In this section the coastal response due to a time-
varying wind will be constructed by superposing the

3-5 cmss
B 5-7 cm/s
T I -
5 5 8
— ~
q- ‘ . £
=
a.
3
i | | 125
17.5 285 0
Lt el ]
= oW G
_ &
o

200 0]
"~ —x (km)

-x (km)

FIG. 7. Contour plots of inertial amplitude for various times. Forcing is a random alongshore
wind between (—0.5, 0.5) dyn cm~2. Contour interval is 1.0 cm s™'. Subsurface regions with

amplitude above 3 cm s~ are shaded.
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step input solutions of the last section. Two types of
forcing will be considered, namely the completely
random wind and an observed wind.

Consider first the case of a random alongshore

wind in the range (—0.5, 0.5) dyn cm™2, having a.

uniform probability in this range. The stress has a
zero mean and an rms value of 7' = (0.2887 dyn
cm™2. The corresponding eastward velocity is found

from a discrete version of (1), namely

M
ux, 1) = 2, ATP(mADu(x, t — mAr),

m=0

where 1 = MAt, Ar? is the stress change at time mA¢,

and u;” the response due to a unit step input of 77,
The sampling interval is chosen to be At = 2 h.

The resulting amplitude evolution (Fig. 7) shows
maximum surface values of 11 cm s™! and maximum
subsurface values of 6-7 cm s~!. These are several
times larger than those due to a step input of 1 dyn
cm™? (Fig. 2), a fact already noted in a simpler
situation without horizontal variability (Fig. 1). Note
in Fig. 7 that the continuous superposition has gen-
erally energized the subsurface water more than the
surface water. This is consistent with (6), and the fact
that the impulse response (whose amplitude evolution
is similar to Fig. 2) monotonically decays in the
surface layer but not below, except very close to the
coastal wall. Physically, the effect is due to the
continuous downward flux of energy from the surface-

57 (96km.45m)
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coast corner. The persistence time (Fig. 8) of the
velocity is about 10-15 cycles.

The vertical correlation (Fig. 9) is less than that
due to step forcing (Fig. 3), and again shows the
nearly 180° phase change just below the mixed layer
and the bottom reflection near the coast.

The coastal system is next forced with an observed
wind stress series. The data chosen for this (Fig. 10)
are wind measurements off the coast of Oregon
during the summer of 1973 (Halpern et al, 1974).
The alongshore stress during the period of calculation
has a mean of —0.58 dyn cm™2, a standard deviation
of 0.71 dyn cm‘z, and a peak value on July 12 of
—3.6 dyn cm™2 The cross-shelf stress is small with a
standard dev1at10n of 0.04 dyn cm™

The flow is computed by summmg contributions
from both components of the wind. The eastward
velocity, for example, is found from

M
ux, 1) = 2 AT (mADug(x, t — mAL)

m=0
M
+ > AT(mADu(x, t — mAb),
m=0

where the unit step responses #g" and uy” are found
from the analytical expressions (14). The sampling
interval At = 2 h.

The resulting amplitude plot (Fig. 11) shows surface
values of 10-17 cm s™! and subsurface values of 3-9

L1111
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0] 5 10

T T

15 20 25

Days

FIG. 8. Time series of u at three locations indicated in parentheses.
Forcing is a random alongshore wind between (—0.5, 0.5) dyn cm™2.
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MAGNITUDE PHASE

0 — 1 , J . . 1 N )
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125mJ

FIG. 9. Vertical correlation of velocity vectors at an offshore
distance of 16 km. Forcing is a random alongshore wind between
(—0.5, 0.5) dyn cm™2 The correlation is computed with respect to
the 60 m depth. Note the generally upward phase propagation,
except below 105 m depth. Also note that the correlation magnitude
is lower than that for a step forcing shown in Fig. 3.

cm s!. A time-series plot (Fig. 12) shows that the

persistence time is typically 10-15 cycles. Vertical
correlation was found to have magnitudes similar to
that shown in Fig. 9. The persistence time and
correlation scale are therefore larger than those ob-
served.

5. Summary and remarks

The excitation of coastal inertial oscillations by a
rapidly varying wind has been investigated. It has
been shown that the mean-square response to a
completely random forcing is
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where is the mean-square wind stress, At the
sampling interval, T the record length and y; is the
impulse response. An undamped one-dimensional
system forced by random noise therefore oscillates at
the natural frequency of the system, with the rms
amplitude increasing as /2. The /2 increase of the
rms response is similar to that in a random walk,
and results from a superposition of uncorrelated
steps. In a system in which y; is a decaying series,
the rms response initially increases with time as z'/?
and reaches stationarity in the decay scale for ;.
Continuous random forcing therefore preferentially
increases the subsurface amplitudes since the energy
flux from the surface-coast corner causes a surface
decay and a subsurface growth of ;.

The coastal model used is that of Kundu et al
(1983), which was forced with a step-input constant,
alongshore wind. It is linear, alongshore-independent,
vertically diffusive and stratified. The parameters
assumed hereare D = 125 m, A =20 m, » = | cm?
sTL,f=10"*s"'and N = 1072 s7!. A step forcing of
1 dyn cm™ generates an inertial oscillation of 4 cm
s~ in the surface layer. It undergoes rapid decay near
the coast, forcing a downward flux of inertial energy
from the surface-coast corner. The subsurface oscil-
lations are 0.7-1.5 cm s™!. They are highly coherent
in depth and not intermittent in time.

Application of a completely uncorrelated random

alongshore wind in the range (—0.5, 0.5) dyn cm™2,

having a standard deviation of 0.29 dyn cm™, in-

2

x’
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10 15 20
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FIG. 10. Observed wind stress components off the coast of Oregon during 1973.
Note the different scales for 7 and 7.
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FIG. 11. Contour plots of inertial amplitude for various times. Forcing is the observed wind
of Fig. 10. Contour interval is 1.0 cm s™'. Subsurface regions with amplitude above 3 cm s~!

are shaded.

creases the inertial amplitudes everywhere. They are
typically 8-11 cm s™' in the surface layer and 3-7
cm s! below. The model is also forced by an
observed wind stress series having a peak value of 3.6
dyn cm™ and a standard deviation of 0.7 dyn cm™2.
The resulting surface and subsurface oscillations are
10-17 and 3-9 cm s7!, respectively. Compared to the
step forcing, the inertial oscillations generated by
these time varying forcings are less coherent in the
vertical, and more intermittent in time (typically
persistent for 10-15 cycles).

The predicted sharp reversal of phase at the mixed
layer bottom does not agree with observations off
Oregon (Kundu 1976b). This is probably due to the
absence of a well defined mixed layer (in which the
wind force can be assumed uniformly distributed) in

the region of observation. However, the phase reversal
does agree with the Mediterranean observations of
Millot and Crépon (1981), in which the water column
had a well defined upper mixed layer.

The bottom trapping of energy in the model is a
consequence of the slip condition u, = v, = 0 used,
which necessarily generates a local extremum of
velocity. A no-slip bottom condition would avoid
this, but energetic inertial oscillations just above the
bottom Ekman layer would still exist, as seen in the
finite-difference calculations of Kundu (1984). Bottom
intensification of inertial energy is also seen in the
calculations of Gill (1984) and the observations of
Saunders (1983).

The mechanism of coastal inhibition, which leads
to the downward propagation of inertial energy from
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FI1G. 12. Time series of u at three locations indicated in parentheses.
Forcing is the observed wind of Fig. 10.

the surface-coast corner, strictly needs a vertical
coast. It is therefore necessary to speculate on what
would happen over a realistic nearshore bottom to-
pography. The model group velocity from the coast-
surface corner makes an angle of 0.2° with the
horizontal (Fig. 2), which is of the order of typical
topographic slopes. Flow over a steeper topography
would behave essentially according to the model, but
that over a gentler bottom slope could be different.
However, the coastal inhibition would still act to
force the inertial energy out of the corner, perhaps in
a modified way; the problem needs a numerical study.
Moreover, it is possible that beach processes in fact
simulate a near-vertical “wall” to the offshore flow
in the top 20 m or so. In that case the corner flux
* would simply undergo several reflections between the
gently sloping bottom and the ocean surface as it
carries energy offshore; the dynamics would otherwise
be essentially unchanged.

The model results should be judged against coastal
observations, which show subsurface oscillations as
large as 10-15 cm s, low vertical coherence scales
(~20 m), and high intermittency (persistence time
~ 5-20 cycles). The effect of rapidly varying the
wind stress has therefore greatly improved the model
results over those due to a step input, but not
completely removed the discrepancy with observa-
tions. A spatially varying wind stress may be able to
improve the model results further, because of addi-

tional downward fluxes of energy from regions of
sharp change in the wind stress. Mechanisms neglected
here, for example, the resonantly interacting internal
wave triads (McComas and Bretherton, 1977), might
also be important in the real ocean.

It is intriguing to speculate whether the superposi-
tion mechanism proposed here can help explain some
of the subsurface oscillations observed in the open
ocean. Calculations of Pollard (1970) and Gill (1984)
show that the subsurface step response in the open
ocean is much smaller than the observed amplitudes.
As a result, it is generally agreed that the deep-ocean
inertial oscillations are not wind forced, but forced
by bottom roughness or are due to the poleward
propagation of higher-frequency internal waves to
their turning latitudes (Fu, 1981). However, the im-
pulse response in the deep ocean persists for
many months (Gill, 1984), and therefore the wind
forcing over a long enough time cannot be completely
ruled out.
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