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ABSTRACT

The structure of the stratified turbulent upper mixed layer of the ocean has been numerically inves-
tigated by using the turbulence closure model of Gibson and Launder, under the action of an impulsive
wind stress 7, and zero surface heat flux. The values of buoyancy and Coriolis frequencies assumed are
N =094 x 1072s~! and f = 104 57!, respectively. The solutions indicate that the turbulent diffusion
terms, small in general, transfer kinetic energy downward, although its effect on the deepening is
negligible. Let ¢, be the time in inertial periods and u, be the friction velocity. Then for 0.05 <, < 0.3,
the rate of increase of potential energy in the water column varies as (PE)/81 « 1¥2, rising to a maximum
of ~1.1u,® and implying a mixed layer depth & x ¢!2 as in the Pollard-Rhines-Thompson (PRT) model.
For 1 <t; <6, &(PE)/3r decreases only slightly from a quasi-steady value of (PE)dr ~ 0.254,3,
implying a deepening rate slightly smaller than the Kraus-Turner & « "3, The reason for this difference
in behavior for the two time ranges is the separation of the flow into a depth-independent inertial oscilla-
tion and a quasi-steady shearing flow that carries almost all the turbulent stresses in the water column.
The mechanism for deepening is always the lifting of heavier mass by the locally generated turbulence
at the base of the mixed layer. For very large times (¢; > 12), 8(PE)/at drops sharply, and no deepening
was detected with a vertical resolution of 1 m. The assumption necessary to derive the PRT energy
equation, namely, that the depth-integrated dissipation nearly balances 7, (U, ~ 0), where U, is the surface
velocity and U the depth-averaged velocity, is approximately valid. For¢; < 0.25, the PRT bulk Richard-
son number criterion is equivalent to a local critical gradient Richardson number criterion, and is due
to the self-similarity of the solutions and the consequent thickening of the ‘‘interface.’’ The self-similarity
breaks down for larger times, either because of the Coriolis forces becoming more important or because
of the appearance of a sharp interface due to a nonlinear mechanism, whichever is earlier. An imposition
of a kinetic energy input at the sea surface, so as to simulate the wind-wave flux, has certain desirable
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features.

1. Introduction

The dynamics of the upper surface layer of the
ocean has received a great deal of attention recently,
because it is in this layer that the ocean exchanges
heat and momentum with the atmosphere. The basic
theoretical works in this area are those of Kraus and
Turner (1967) and Pollard et al. (1973, hereafter
referred to as PRT). The Kraus-Turner model does
not consider mean velocities, but equates the rate of
turbulent Kinetic energy produced by wind waves
with the rate of increase of potential energy due to
deepening. This implies that the wind-wave produc-
tion of turbulent kinetic energy is diffused down-
ward, and is used in lifting the heavier mass from
below the mixed-layer base. The PRT model, on the
other hand, equates the rate of work done by the
wind stress on the mean motion, which in their case
is a depth-independent inertial oscillation, to the
rate of increase of kinetic and potential energies of
the mean field. Niiler (1975) showed that the PRT
mean energetics is equivalent to equating the poten-
tial energy increase to the shear production by the
entrainment stress at the mixed-layer base. He and

0022-3670/80/020220-17$08.25
© 1980 American Meteorological Society

de Szoeke and Rhines (1976) showed that the Kraus-
Turner and PRT models are two asymptotic limits
of the general balance of the turbulent kinetic energy
equation.

The theoretical bulk models do not give vertical
distributions of variables so that they could be com-
pared with the observations. The assumption of no
velocity shear in the upper layer does not agree with
most of the observations. For example, Halpern
(1976), Gonella (1970), Pollard (1972 JASIN data,
unpublished) and Davis (1978 MILE data, unpub-
lished) all observed mean shears of the order 10-2
s~!, which is somewhat larger than the buoyancy
frequency N. In particular, Halpern’s surface layer
data (Halpern, 1976; Kundu, 1976) displayed in-
triguing Ekman spirals for sub-inertial time scale
motions.

As Phillips (1977, p. 303) notes, numerical models
are necessary in order to determine more realistic dis-
tributions of velocity, temperature, turbulence in-
tensity, dissipation, etc. Such models make the so-
called second-order turbulence closure assumptions,
and relate the turbulent stresses with the mean field.
The first such numerical mode] of the oceanic mixed
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layer was by Mellor and Durbin (1975). They neg-
lected the vertical diffusion of turbulent kinetic
energy, and assumed that the local rate of its genera-
tion is balanced by the local rate of dissipation.
They were then able to write explicit algebraic ex-
pressions for the turbulent stresses, kinetic energy,
dissipation, etc., and obtained several interesting
solutions for a variety of boundary conditions.

An important question is whether or not the tur-
bulent diffusion is really negligible everywhere,
as Mellor and Durbin assumed. Order-of-magnitude
considerations may be misleading, since sharp
changes can appear across-the interface. It is im-
portant to resolve this question, since the Kraus-
Turner model in contrast implies that all of the wind-
generated turbulence near the surface is diffused
downward and is used for increasing the potential
energy due to deepening. The model of Garwood
(1977), and that of Tennekes (1973) for convective
atmospheric boundary layers, also assume that the
balance at the mixed-layer base is between the tur-
bulent diffusion and the buoyant damping.

In order to investigate the importance of tur-
bulent diffusion, we decided to model the turbu-
lence according to that of Gibson and Launder
(1976), where such terms are retained. Most applica-
tions to geophysical turbulent flow problems use the
models of either Lumley and his co-workers (e.g.,
Wyngaard et al., 1974; Zeman and Lumley, 1976),
or Mellor and his co-workers (e.g., Mellor and
Durbin, 1975; Worthem and Mellor, 1980). The
models of Launder and his co-workers, on the other
hand, have been extensively tested against labora-
tory flows, but have never been applied in geophysi-
cal conditions. In the present work, it was decided
to use the turbulence model of Gibson and Launder
(1976), because it considers gravitational effects
(and is therefore applicable to a stratified field),
retains the turbulent diffusion terms, and is yet
simpler than models that solve differential equa-
tions for all components of the Reynolds fluxes.
A somewhat similar model has also been used by
Worthem and Mellor (1980) to study tropical upper
ocean.

For the case of the stable mixed layer driven by a
wind stress with no heat flux on top, it will be shown
(Fig. 8) that if a zero flux of ¢* is assumed at the
ocean surface z = 0, then the diffusion term is
especially small near the interface, although it can be
as large as the local rate of change of potential
energy in most parts. However, the zero g2 flux
condition at z = 0 may be unrealistic, since the
breaking of wind waves would create an effective
flux of g* at the upper surface. Some preliminary
results have therefore been obtained with a kinetic
energy flux at the surface to simulate the breaking
waves. It will be shown that the introduction of this
surface flux produces some desirable features in the
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solutions but its contribution to mixed-layer deepen-
ing is negligible.

Another important objective of the present study
is to compare the present numerical calculations
with the theoretical predictions of the Kraus-Turner
and PRT models. A critical quantity for this discus-
sion is the behavior with time of the rate of change
of potential energy in the water column, d(PE)/d¢
(Fig. 6). It will be shown that for times smalier than
about quarter of an inertial period d(PE)/at o« (2,
implying a mixed layer depth 2 « t2 as in the PRT
model. It is shown here, as well as in Kundu (1980),
that for this time range the solutions develop in a
self-similar manner, and the bulk Richardson num-
ber criterion of PRT has physical validity since it is
equivalent to a critical gradient Richardson number
criterion at the base of the mixed layer. On the other
hand, for times larger than an inertial period,
d(PE)/at decreases very slowly from a quasi-steady
value, implying a deepening rate only slightly slower
than the Kraus-Turner 4 o /3,

To summarize the objectives of the present work
are to 1) investigate the importance of turbulent dif-
fusion, both with and without surface flux of kinetic
energy; 2) generate vertical profiles of quantities
that could be measured in the real ocean, for exam-
ple, dissipation, Reynolds stresses, length scales of
large eddies, eddy diffusivities, mean velocity and
temperature, etc.; and 3) compare solutions with the
principal theoretical works on oceanic mixed layers.

2. The model
a. Equations of motion and the turbulent fluxes

The present model, like all the others quoted so
far, is one-dimensional in nature in that horizontal
variations are neglected. Due to insufficient observa-
tions, it is not clear how good this assumption is.
Denman and Miyake (1973) concluded that horizon-
tal advection is not significant in the heat budget for
periods less than several weeks, and Niiler and
Kraus (1977) also argued that these effects are small.
Price et al. (1978), on the other hand, suggested
that the advective effects are important, although
not overwhelming. In any case, a one-dimensional
model will be used here because it is simple, and yet
sufficiently comprehensive to answer the questions
addressed in the Introduction.

The equations of mean motion are

U 0/ —

———fV=—(—uw+vﬂ/—)

ot 0z 0z

i2% 0/ — oV

— 4+ fU = —|-vw + v — )
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where (u,v,w) are turbulent velocity components in
the (x,y,z) directions, z is positive upward, (U,V)
are mean horizontal velocity components, 6 is the
fluctuating temperature, 7 the mean temperature,
f the Coriolis parameter, and » and k the molecular
diffusivities of momentum and heat, respectively.

The turbulent fluxes in Eq. (1) are modeled here
according to the proposal of Gibson and Launder.
Only an outline of this model is presented here. The
original work should be consulted for further details.

In Cartesian tensor notation, the model equations
for the determination of Reynolds stresses —u;u;
are (Launder, 1975)

Du O Gmup+ P 248
= - U u ij i€
Dt BXk A At 4 i ij
diffusive pro- viscous
transport duction  dissipation

~ 22 = (i — %84q) — 0.55(Py; — %8yP), (2)
q

pressure scrambling

where

aU; U,
Pijz ‘(uiuk 2 +ujuk )

X 0xy
— B(g;uib + gu; 0),
— oU; J—

P = —uuy v — Bgu0 = 2Py,

Xk
q? = Yau,u;.

Here i and j can be 1, 2 or 3; §;; is the Kronecker
delta, P and € are, respectively, the rates of pro-
duction and viscous dissipation of turbulent kinetic
energy g2, B is the coefficient of thermal expansion,
and g = (0,0,—g) is the gravitational vector. The
‘““pressure scrambling’’ term p(du;/dx; + du;/0x;)
is modelled by the last two terms in Eq. (2). Setting
i =j, and summing gives an equation for turbulent
kinetic energy: '

Dq* B 0
Dt

Eq. (2), along with similar equations foru,;6 and ¢,
can be solved. for the turbulent fluxes. Simple
algebraic equations for «;u; would result if the left-
hand side and the diffusive transport terms are al-
together neglected in Eq. (2), as was done by Mellor
and Durbin. However, another way to achieve the
same effect is to assume that (Rodi, 1972)

(QPuz) + P — €. 2"

axk

Duu; —_— g
_— + u;l; U
Dt ka ( i k)
u;u; | Dg* ) —2——]
= + U NE))
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That is, the advective minus the diffusive transport
of u;4; is locally proportional to the same for g2, the
factor of proportionality being u;u;/q%. According to
Gibson and Launder, this is a good approximation
in thin shear flows, such as the mixed layer. On

" using Eq. (2'), assumption (3) implies

Du ild n
Dt axk

- Ul
Wwwuy) = _7,_ (P —e).

Substitution of the above into Eq. (2) now gives
algebraic equations for u;4; , which is a considerable
simplification. -

Treating the equation for D(u;0)/Dt in a similar
way, and making additional assumptions about the
temperature variance 6% and temperature dissipation
€y, the final equations of the Gibson-Launder model
for a (z,t) dependent model reduce to

— q2 —_
—u =—d>[w2 ~ﬁgu0]
€
—_— 2 —
—uw = EI—¢>[w2 - Bgvo}
€
— 2 P P R
(1= Do) e
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— oT z oU
b =dr L 2 1050, Livg 22
0z € 0z
— 2__ 98T Lgpu—_} %
—v0 = d)Tq— w— + 0.5¢; fI——w() —_
€ az € a9z
— L— 4 9T
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—[— 83U — oV
R; = ng(i[uw — 4+ ww ——]
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= flux Richardson humber,
¢ = 0.45/(1.2 + Ple),

¢r = [3.2 + 0.5(Ple — D],
— — 9V — —
P = —uwﬂ — oW 9—— + Bgwl = P, + Bgwb.
0z 0z

Here P, is the shear production. The values of the
numerical constants have been estimated in this
model from measurements in laboratory flows. The
kinetic energy and dissipation are determined by
solving

dqg* @ dq*

L=y, |+ P - 5

ot az(vt 62) ¢ ©
2

de =.6_(_”L?_€) + 1.45 Pe _ 195, (©)

ot 9z\1.3 9z q* q*
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FiG. 1. Dependence of the critical Richardson number on P/e according
to the Gibson-Launder model.

where 0/9t is used instead of D/Dt because of the
absence of advection in the present one-dimensional
model. Eq. (5) is derived from Eq. (2') by assuming
gradient diffusion —wg? = v,0¢%90z. Derivation of
Eq. (6) is shown in Hanjalic and Launder (1972).

Itis easy to show that if the shear stresses in (4) are
written as —uw = v(@U/3z) and —vw = v(3V/52),
then the eddy viscosity is

%¢(1~ff)_2f_¢2_R_‘_ \

€ € 1—-—Riqg

Ve = I (7)
1 + ¢dH(1 + 0.5/0)B €

where B = Bg(q*€?)(87T/8z), and o is the turbulent
Prandtl number given by

_ ¢ 1405416 - $p)B
1 + ¢p¢rB

&r

The Gibson-Launder model thus consists of Eqs.
4), (5), (6) and (7), along with the mean flow equa-
tions (1). Thus, differential equations will have to be
solved for U, V, T, g2 and €, along with algebraic
equations for the Reynolds fluxes.

It can be shown from Eq. (7) that the eddy viscos-
ity, and therefore the turbulent fluxes, in this model
go to zero if R; > R where

1+ 0.46P/¢
R, = : 8)
1 + 2.78P/e + (Ple)

A plot of R, against P/e is given in Fig. 1 (see also
Fig. 6 of Gibson and Launder). Notice that R; ~ 0.3
if P/le = 1, which is close to the value of R;, = 0.21
in the Mellor-Durbin model.

b. Boundary and initial conditions

The initial condition was one of no motion, with
a temperature distribution linearly varying from
9°C at z = 0 to 5°C at z = —100 m, which corre-
sponds approximately to the temperature distribu-
tion across the seasonal thermocline in Fig. 1 of
Denman and Miyake (1973), and gives a buoyancy
frequency of N2 = 0.88 x 107* s72, [Note that this
value of N2 is very near that assumed by Mellor and
Durbin, but somewhat smaller than the value of
N%? =12 x 107*s72 used in calculations of PRT,
Niiler and Kraus (1977) and Price et al. (1978).

The boundary conditions used are as follows:

oU av orT
z2=0 vy—=7, —=0, —=0 on (1)
0z 0z /4
a 2
L —0orF on (5)
0z
8 qu) ’
=P ~ —|y, — 6
€ az(vt 0z on (6)
z=-100m: U =V =0, T=constant on (1)
q* =0 on (5)
e =0. on (6)

The conditions on (1) are equivalent to a wind stress
7o in the x direction suddenly applied at ¢t = 0, and
a zero surface heat flux. The values of 7, used were
1.0, 1.5 and 2.0 dyn cm™2, but the dimensional re-
sults given here all correspondtot, = 1.5dyncm™2,
The surface boundary condition on Eq. (5) de-
pends on whether one assumes a downward flux of
kinetic energy F imparted at the ocean surface,
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FiG. 2. Variation of the depth of the turbulent layer according to the present model and the
PRT model. ¢; is time in inertial periods. The inset shows the temperature profiles at two times.

Wind stress 7, = 1.5 dyn cm™2.

presumably due to the wave-wind action. The wind-
wave flux F should only depend on the stress and
the density of water p, so F = mu,?, where u,
= (1o/p)"? and m is a constant. The solutions pre-
sented here have m = 0 or 0.5.

The surface boundary condition on the dissipation
equation (6) was obtained by setting d¢%3¢ = 0 at
z = 0in (5), which is a reasonable assumption since
the 9g?%/dt term is several orders of magnitude
smaller than the other terms in Eq. (5). P was evalu-
~ ated at the previous time step in this boundary con-
dition. [In the meteorological situation one gener-
ally applies a condition like € = u, %z or de/dz
= —¢/z at the edge of a surface layer (x = von
Karmén constant), but it is unrealistic to expect a
surface layer in the oceanic situation.] '

The lower boundary conditions could be applied
at any depth below the maximum mixed-layer
depth; we chose to apply them at z = —100 m.

The numerical values used were Bg = 0.22 cm s?
K™, and f = 107 s™! corresponding to an inertial
period of T; = 2#/f = 17.5 h. Molecular values of
the diffusion coefficients were used below the mixed
layer, with v = 0.0134 cm? s™' and k& = 0.00134
cm? s

c. Method of solution

The set of equations (1), (5) and (6) were integrated
forward in time, modeling the turbulent fluxes by (4)
and using (8) to determine whether the flow was
turbulent or not. The time step was Az = 60 s, and
the grid spacing was Az = 1 m. The fluxes of heat

and momentum, dissipation, and Kinetic energy
were defined midway between the grid points for the
mean velocity and temperature, resulting in an ac-
curate differencing procedure. An implicit scheme
was used for rendering the diffusive terms stable,
and standard tri-diagonal matrix routines were used
for solving the resulting equations. In addition to
applying a surface wind stress, a small value of
was introduced at the first grid point below the sur-
face so as to start the calculations; the resulting
solutions were observed to be independent of the
assumed starting value within a few time steps.

3. Results with no wave flux

Solutions will now be presented for the case where
no turbulent energy flux was imposed on the sea sur-
face; i.e., where all the turbulence was generated
internally by shear. A sudden imposition of a sur-
face stress in the x direction at ¢ = 0 created a tur-
bulent field that deepened with time through the
stratified fluid. The ‘“mixed-layer’’ depth & will be
defined here as the depth beyond which the velocity
becomes less than 0.2 cm s™'. Fig. 2 shows the varia-
tion of 4 with the nondimensional time ¢t; = ¢/T;. The
inset in this figure shows the temperature profiles
at t; = 0.5 and 3.0, showing the development of a
layer well mixed in temperature.

a. Small times (t; < 0.25)

Fig. 3 shows the velocity and temperature dis-
tributions for¢; < 0.4. It is apparent that in the range
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F1G. 3. Development of velocity and temperature profiles for small times.
79 = 1.5 dyn cm™2.

0.05 < r; < 0.25, the velocity and temperature pro-
files are self-similar. The self-similarity breaks down
for t; < 0.05 during which the motion starts up from
rest, and for ¢; > 0.25 for which Coriolis forces be-
come important. It is shown in Kundu (1980) that if
there is no Coriolis parameter in the problem and a
constant critical gradient Richardson number.J is im-
posed at the interface,! then self-similarity holds
for 100 < tN < 500. It is shown there that some
consequences of self-similarity with initially linear
stratification N are that (i) the temperature and
velocity gradients at a fixed value of n =-—z/h(zr)
are constant in time; (ii) the mixed-layer depth fol-
lows the rule & = (4J)Yu (t/N)V?; (iii) the depth-
average velocity behaves as U =~ (4J )V (tN)HYV

! Strictly speaking, the present model does not really have a
gradient Richardson number criterion, but a flux Richardson
number criterion R; . = 0.3 (since P/e =~ 1). But since the gradient
and flux Richardson numbers are related by J = Ry, and the
turbulent Prandtl number o(~0.6-1.5) does not vary a great deal
near the interface, the flux and gradient Richardson number
criteria do not give very different results.

and (iv) the bulk Richardson number Ri = ghAp/
pU?%, where U is the depth-average velocity and
Ap is the depth-average density difference be-
tween the mixed-layer fluid and that just below the
interface, remains constant during deepening and is
related to the critical gradient Richardson number by

Ri=~2J. )]

Consequence (i) is evident in Fig. 3, and conse-
quences (ii), (iii) and (iv) were found to be in fair
agreement with the present numerical computations.

b. Sharpening of interface

It was found that the well-rounded mixed layer
bottom of Fig. 3 sharpened into a steep interface
for about t; > 1. The sharpening is evident from
the inset of Fig. 2, which compares the temperature
profiles at ¢; = 0.5 and 3.0. This sharpening may
not, however, be due to the Coriolis forces becom-
ing important. It is shown in Kundu (1980) that the
sharp interface appears for ¢N > 500, without
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F1G. 4. (a) Hodograph of the surface velocity. The numbers along ihe path indi-
. cate time in inertial periods. (b) Hodographs at depths of —z = 0, 10 and 20 m
for the inertial period from t; = 3 to t; = 4. Wind stress 7 = 1.5 dyn cm™2.

Coriolis forces. With the presently assumed value
of N/f = 93.8, the limit tN = 500 corresponds to
t; = 0.85. The reason for the sharpening is more
fully explained by Kundu. Briefly, note that the mag-
nitude of the heat flux v must be zero at z =0
and —4, and was found to have a maximum at a point
(call it M) slightly above the layer bottom. The tem-
perature gradient T, increases monotonically with
depth throughout the mixed layer (Fig. 3). There-
fore, below point M, an increase of T, is associated
with a decrease of the heat flux, as if it were a diffu-
sive system with a negative apparent diffusivity.
Such a behavior would tend to sharpen an initially
diffused profile (Posmentier, 1977).

c. Velocity field

The development of the velocity field at various

depths is shown in the hodograph plots of Fig. 4.
Fig. 4a is the hodograph of the surface velocity, with
t; marked at various points in the path. The hodo-
graph almost repeats itself after about ¢; = 2, after

which the deepening slows down considerably. The
initial velocities are larger because the mixed-layer
depth is smaller, the depth-integrated velocities
being constrained by the relations

0
J Udz = (7o/f) sin2t;,
-D

0
J Vdz = (1o/f)(—1 + cos2mt;),
-D

where D > h. The depth-integrated hodograph is
therefore a circle with its center at (0, —7,/f) and
radius 7,/f, which was verified in the solutions. The
velocity at a certain depth is zero until the mixed
layer reaches it, after which it goes through a tran-
sient period and then executes almost periodic
(slightly damped) inertial oscillations. These points
are nicely illustrated in Mellor and Durbin.

Fig. 4b shows the hodographs at depths of 0, 10
and 20 m for the inertial cycle 3 <¢;, < 4. It is
evident from the equality of the inertial circles at the
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three depths that the velocity field consists of a depth-
independent (slab) inertial oscillation of half ampli-
tude of ~6 cm s*, superimposed on a steady shear
flow whose depth integral gives the time-mean
Ekman transport. For #; < 1, the shear and inertial
oscillation cannot be separated as such; the velocity
field can then be described as an inertial oscilla-
tion with a shear in it. J. McCreary (private com-
munication) has pointed out that this response is
similar to the development of the Ekman layer in a
layer of constant depth & with a zero bottom stress.
The bottom stress is indeed negligible in the present
numerical model. It is shown in the Appendix that all
components of the inertial oscillation with any shear
are smeared out by the eddy viscosity v, in a time
scale 2h%* 7%, ~ 1 h with & = 20 m and v, = 200
cm? s7!, The depth-independent components of the
inertial oscillation persist, a result of zero bottom
stress. In the present model, however, the develop-
ment of slablike inertial oscillations take nearly an
inertial period, not just one hour; presumably this
delay occurs because the mixed-layer depth is not
constant, but increases rapidly, for ¢; < 1.

The time mean flow (U,,,V,,) at later stages, after
the inertial oscillations are taken out, is shown in
Fig. 5. [The decay of the inertial oscillations would,
in the real world, be caused mainly by the radiation
of internal waves from the base of the mixed layer
(Kundu, 1976)—a process not modeled here.] This
is obtained by time-averaging the velocities for one
inertial cycle starting at t; = 3.0. The Ekman spiral
in depth (Fig. 5b) is not totally unlike that in a con-
stant eddy viscosity model. The surface velocity is
at 51° to the right of the wind.

d. Depth-integrated energetics

The vertically integrated energy balance,
obtained by depth-integrating the different terms in
Eq. (5), is shown in Fig. 6 as a function of time. For
a fixed N/f (=93.8 in the present case), the terms
should scale with «,2, as was verified by obtaining
solutions with 7, = 1.0, 1.5 and 2.0 dyn cm™2, and
observing that the points indeed lie close to the uni-
versal behavior shown. The behavior is similar to
that of the Mellor-Durbin model, although less noisy,
presumably because of retention of transport terms
and use of a smaller time step. The vertical integral
of the transport term being zero, the shear produc-
tion minus the buoyant destruction very nearly
balances the viscous dissipation, plus a small dif-
ference (~0.005-0.02u,% equal to the rate of in-
crease of turbulent kinetic energy in the water col-
umn, not shown in the figure. The terms increase
during the initial stages (¢; < 0.25), after which there
is a slow decay up to about ¢; = 1.0. Beyond that,
the terms reach a quasi-steady state where the dis-
sipation ~4.4u,* and shear production =~4.6u.®.
Note that the buoyant destruction in the water col-
umn, or the rate of increase of potential energy,
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Fi1G. 5. (a) Quasi-steady velocity profiles, obtained by sub-
tracting the inertial oscillations from ¢; = 3 to 4. (b) Quasi-steady
Ekman spiral. The dashed part is below the turbulent layer. Wind
stress 7 = 1.5 dyn cm™2.

reaches a maximum of ~1.1#.3. In applications of
the Kraus-Turner theory, it is usually assumed that
the rate of increase of potential energy due to
deepening is ~1.0-1.2u,3, the ‘““wind-wave input’’
(Kraus and Turner, 1967; Denman, 1973; Niiler,
1975). According to the present model it is nearly
u,? for 0.25 <t; < 0.5, but smaller outside this
range. For about z; > 1, it decays very slowly, from
avalue of ~0.284 2 att; = 1.5t0 ~0.23u 2 ats; = 4.

For comparison, the work done by the wind stress
is also shown in Fig. 6, which plots one-fifth of
T,Uolu 2. As expected from the surface velocity
plot of Fig. 4a, the work done is very nearly a
sinusoidal function of time, with the maxima at
about ¢; = 0.25, 1.25, 2.25, etc. For initial times
(t; < 0.25), both 7,U, and 3(PE)/dt are increasing
functions of time, and an important question is: how
much of the work goes into potential energy in-
crease. Fig. 6 gives this as ~8%. This value agrees
with the expressions obtained from similarity agru-
ments for small ¢;, which give h = (4.J)Y4u (t/N)1?
and U = (4J) Y% (tN)2. The rate of change of
potential energy of the water column is approximately



228

JOURNAL OF PHYSICAL OCEANOGRAPHY

VoLUME 10

_D{PE)ear/ 3
dlram/;

[s]
%8 fwedz/u3 --—(PE/3 /
-

| 1 |

FiG. 6

4

5. Depth integrals of shear production P;, dissipation €, buoyant produc-

tion gBwé of present and PRT models, and one-fifth of work done by surface

wind stress.

dh

PE ~ VaN%h? — 7 (10

where the numerical factor of 1/4 on the right-hand
side is exact for a slablike density profile (for proof
see Kato and Phillips, 1969), and somewhat less for
anon- homogeneous density proﬁle On substitution
of the expression for i, Eq. (10) gives PE = d(PE)/
81 =~ Y8(4J)¥*u SN )”2 Taking the surface velocity
to be ~1.5U (see Fig. 3), the work done by the stress
is W=~ 1.5(4J)""u,*(tN)"?. This gives the ratio
PE/W =~ J/3 ~ 10%. Usmg a numerical factor of 1/5
on the right-hand side of (10) would have made this
ratio to be ~8%. .

For times 1 < ¢; < 4, PE settles to a nearly con-
stant value, and its magnitude should be compared
with the average value of 7,U,; i.e., the work done
if the inertial oscillations are taken out. Fig. 6 shows
that ~5% of this work goes into increase of poten-
tial energy after ¢; > 1.

Also shown in Fig. 6 is the rate of change of po-
tential energy for the PRT model given by

6 P 3 N 1/2
—(—%R—T- = %(?—) sin2at(1 — cos2at;)~14,
t

t, <1, (11

which reaches maximum at#; = 0.2 and goes to zero
at t; = V5. For initial deepening (; < 0. 2), the time
variation of the PRT potential energy increase is
similar to but larger than that for the present model,
as would be expected since the PRT mixed-layer
depth s larger than the model % in this region (Fig. 2).
(It is also evident that the behavior of the curves in
Fig. 6 are universal only in that they are propor-
tional to u,3, but each may depend on the ratio N/f.
However, no attempt was made to determine how
the scales should depend on N and f for the various
time ranges.)

To investigate moye fully the possible power law
behavior of 2 and PE with time, Fig. 7 shows the
variation of # and PE versus #; on a log-log plot up
tot; = 40. It is evident that in the range of 0.05 < ¢,
< 0 25, both PE and & behave like 2, in agreement
with the similarity relations or the PRT formulation.
The deepening rate siows down after half an inertial
period. For N = 0.94 x 1072 s™!, the potential
energy is seen to decrease very slowly in the range
1 <t; < 6, somewhat slower than PE « ¢4 and a
deepening rate somewhat, faster than 4 « ¢, In
fact, a Kraus-Turner type PE = constant and & « /3
would not be a bad approximation. These power
laws, however, are somewhat tentative because of
the considerable noise in the PE calculations. For
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Fic. 7. Log-log plot of the time variations of the mixed-layer depth h (for N = 0.94 X 1072 s™*) and
the rate of change of depth-integrated potential energy PE (for N = 0.94 X 10725~ and N = 1.88
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t, > 8, PE decreases very sharply, and no deepen-
ing was detected for ¢; > 12 with a vertical resolu-
tion of Az=1m. Using N =188 x 107?57, a
value twice as large, the layer seemed to stop deep-
ening earlier, at t; = 5 (Fig. 7). The continual
deepening up to t; = 100 observed by Mellor and
Durbin could be due to their taking a nonuniform
N(z), with the stratification decreasing with depth.

e. Vertical structure

The energy balance as a function of depth is of
interest, especially to see if the turbulent diffusion
term is important. Fig. 8 shows the vertical distribu-
tions of the terms in the kinetic energy equation (5)
for 7o = 1.5 dyn cm™? at f; = 3.0. The buoyant
destruction term, already included in P, is also shown
for comparison. By calculating solutions for 7o = 1.0,
1.5and 2 dyn cm™2, it was again noted that these vari-
ables, when plotted as Ph/u >, etc., vs z/h, approxi-
mately collapsed into universal distributions for #;
= 2.5. The numerical values of € in Fig. 8 are in fair

agreement with values measured by Stewart and
Grant (1962), who report € =~ 0.02 cm?s™ for
—z = 1-2 m, and much less for -z = 15 m.

The turbulent transport term 8(v,0 g2/0z)/dz is seen
to transfer turbulent kinetic energy from near the
surface where P > ¢, to deeper layers where
P < e. It is generally smaller than P and €, except in
the range 17-22 m where they are comparable. The
diffusion is seen to be generally larger than the local
rate of change of potential energy —Bgw#8. This does
not, however, mean that the diffusion is contribut-
ing to the deepening, since near the interface the
transport term is negligible. Therefore it does not
contribute to deepening, and the idea of Garwood
(1977), that this term supplies the kinetic energy near
the interface necessary to lift the denser fluid from
below, does not agree with the present calculations.

Fig. 9 gives the vertical distributions of the eddy
viscosity »,, the kinetic energy flux »3¢%dz, and a
turbulence length scale defined by I = ¢%5.3¢, for
t; =3 and 7 = 1.5 dyn cm™2. Fig. 10 shows the
vertical distributions of the corresponding stresses
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and kinetic energy. Note that although the turbulence
intensity g2 is maximum at the sea surface, v, is
maximum well inside the interior. This is because
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Fi1G. 9. Vertical profiles of the eddy viscosity, kinetic energy
flux and the turbulence length scale. Wind stress 7o = 1.5
dyn cm™2,

v, « q¥e, and € increases faster than g* as |z| — 0.
The behavior of the eddy viscosity is somewhat
similar to that in Worthem and Mellor (1980), who
choose | = —«kz near the sea surface? (x is the von
Karman constant) and hence obtain a », distribution
that goes to zeroat z = 0. The surface eddy viscosity
in the present model is about half the maximum value.

In the absence of waves, the eddy coefficient may
indeed be maximum in the middle. In the laboratory
experiment of Kato and Phillips (1969), for example,
the mean velocity has been described to vary most
rapidly near the driving screen and the entrainment
interface, and almost uniform in the central region.
This would seem to imply an eddy coefficient lower
near the surface than in the middle.

The consistency between the stress distributions
in Fig. 10 and the velocity distributions in Fig. §
could be checked by splitting the solution into a
quasi-steady mean shear and a depth-independent
inertial oscillation. Thatis, U = U, + U;, V =V,
+ V;, where approximately

oU; oV,

—L_fv,=0, —%

+ Ul=0
ot f

0 — 0 —
_fVm - 5—2‘('—uw) fUm = 5; (—UW)

2 This choice does not seem to be easy to defend. Such a
rigid-lid assumption would be appropriate in the atmospheric
case, but not in the oceanic case.
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The uniform curvature of the vw profile gives rise to
the uniform shear in U,,. The small shear of V,, in
the top 80% of the mixed layer, and the large shear
of V, in the bottom 20%, are consistent with the
_ small curvature of uw in the top part and the larger

curvature of uw in the bottom part. These facts were
verified by using actual numerical values and finding
agreement with the above equations.

4. Comparison with PRT

PRT assume that the eddy coefficients in the mixed
layer are so large that the velocity and density pro-
files are slablike. The deepening rate is specified by
the criterion that

ghhp

p(U? + V?)

Ri =

= constant during deepening, (12)

where the caret denotes the depth-independent PRT
variables; (U,V) and Ap are the discontinuities in
the velocity and density at the bottom of the layer.
PRT originally set Ri = 1. Laboratory data (Price,
1979a; Thompson, 1979), field data (Price et al.,
1978; Price 1979b), as well as previous n-umerical
solutions (Mellor and Durbin, 1975) show that the
PRT theory gives answers of the right order if Ri is
set to a somewhat smaller value of the constant, in
the range 0.35-0.8.

Neglecting rotational effects (¢; < 0.25) and as-
suming self-similarity but not slablike profiles,
Kundu (1980) has shown that Ri ~ 2J = constant
during deepening, where in the definition of Ri one

identifies U with the depth-average velocity and
Ap with the depth—average density difference. The
relation Ri = 2J is in fair agreement with Mellor
and Durbin’s finding that Ri =~ 0.35 with J = 0.23.

In the present numerical calculations, note from
Flg 2 that hihpRT = (.8- 0 9. Since hPRT & Rlll4

it is apparent that setting Ri = 0.6 would give faxr
agreement between the present calculations and the
PRT theory. The relation Ri = 2J, therefore, seems
valid.

The bulk and gradient Richardson number criteria
are therefore equivalent, a consequence of self-
similarity. If 8 is the thickness of the ‘‘interface’
within which the local Richardson number is nearly
equal to the critical value, then the self-similarity
would require that the ratio 8/4 remains constant
during deepening, a result also predicted by Gar-
wood (1977). The heavier lines in Fig. 3 indicate the
“‘interface thickness,”” defined arbitrarily as the
region where the local Richardson number is within
30% of the critical value. It is apparent that the
interface thickens, and 8/4 does remain constant,
fort; < 0.25.

Additional insight into the PRT Richardson num-
ber criterion may be obtained by examining the
energetics. Substitution of the criterion (12) into the
depth-integrated equations of motion gives

. i) i}
7l =— KB+ R = ®B), (13
or ot |

where
A 0
KE = 1/2J (U2 + V3dz,
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FiG. 11. Verification of Eq. (17). Wind stress 7, = 1.5 dyn cm™2,

and 7, U is the rate of working by the wind on the
depth-averaged velocity U.
Neglecting viscous -transports and the viscous
dissipation of the mean kinetic energy, the kinetic
energy.equations for the mean and turbulent fields are

14

0 — —_
——(U2+V) = — — (uwlU + wwV) — Py, 14
26t( ) aZ( ) (14)

98" _ _ 9 (ogd + Ps+ Bewb — ¢, (I5)

ot dz

where P, is the shear production. Elimination of
P, between (14) and (15), a vertical integration, and
an assumption of no flux of g2 at the surface, give

i}
7o' Up = -2 (KE) + — (PE) + E, (16)
or or

where Uy is the surface velocity,

0 —
S(PE)/ot = —BgJ wodz,
/—D
and
0
E = J (e + 8q%dt)dz
-D

is nearly the total dissipation in the water column
(since 8q%0dt < €). The present model calculations,
of course, obey (16). Due to the presence of the shear,
however, the surface velocity U, will be larger in

magnitude than the depth-averaged velocity U, say
U, = U + U,. Assuming that 0(KE)/dt can be
approximately replaced by a(KE)/dt, note that (13)
and (16) will be identical if )

T()'Ue “E 1

PE 1 R 17
Setting Ri = 1, as was originally done by PRT, is
equivalent to assuming that the ‘‘extra work”
7,-U, exactly balances the total dissipation in the
water column.

All terms on the left side of (17) were evaluated
in the present model as a function of time, the depth-
average velocity being subtracted from the surface
velocity for evaluating 7,°U,. It was found that
7o' Uo and E are indeed of the same order for all times
(Fig. 11). This, however, dogs not mean that Ri is
nearly 1 for all times, since PE in (17) is an order of
magnitude smaller than 7,- U, and E, and one is deal-
ing here with the small difference between two large
numbers. It was found that (7,-U, — £) <0 for
t; < 0.5, and (7'U, — E) > 0 for ¢; > 1. This is
consistent with (17), since Ri = 0.6 for ¢; < 0.5,
and Ri is presumably a number >1 for #; > 1 during
which there is no PRT-type deepening.

It is easy to see why 7, U, should be of the same
order as E for all times. For small times 7, U, is
nearly half the total surface stress work, and is there-
fore of the order of E (Fig. 6). For large times (f; > 1),
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Fi1G. 12. Vertical profiles of the turbulent kinetic energy budget with surface
wave flux, and the distribution of eddy viscosity. P is the net production (shear

production minus buoyant destruction). Wind stress 7, = 1.5 dyn cm™.

U, is identical to U, the surface value of the time
mean profile U,, in Fig. 5. However, 7,U,,, is also
the average work done in an inertial cycle, and there-
fore equals E + PE. Eq. (17) shows that Ri must
therefore be large in this time range.

5. Solution with wave flux

Some preliminary results have been obtained
where a kinetic energy flux has been imposed on
the top surface, by means of the boundary condition
v0q%8z = mu,® at z = 0 on Eq. (5). The energy
budget for m = 0.5 and 7, = 1.5 dyn cm~2 is shown
in Fig. 12. The transport term is seen to be every-
where positive, and the production near the surface
decreases compared to the case with m = (. The
effect of the transport term is again negligible near
the interface. In fact, the deepening rate is only
slightly larger than that with no wave flux.

The interesting change from the previous solution
is that the eddy viscosity is no longer maximum in
the middle (Fig. 12), which is due to the fact that
g? is now higher near the surface. This is a desir-
able feature in the solution, since all the observations
summarized in the review paper by Pollard (1977)
show that the eddy coefficients are largest (~200-
400 cm? s7') near the sea surface. The increase of
v, near the surface only decreases the velocity gradi-
ents near the surface, but otherwise the dynamics
was found to remain essentially unchanged from the
case with no surface wave flux. For example, the

-2

depth-integrated energy balance was very similar
to Fig. 6.

6. Summary and discussion

The structure of the turbulent stratified upper
mixed layer of the ocean has been numerically in-
vestigated by applying the turbulence closure model
of Gibson and Launder. The model retains the tur-
bulent diffusion terms and involves the solution of
differential equations for g? and e and algebraic
equations for the stresses and heat fluxes. Solutions
have been obtained under the action of an impulsive
wind stress and a zero surface heat flux.

Most of the solutions described here have a zero
surface kinetic energy flux. The resulting mean mo-
tion consists of depth-independent inertial oscilla-
tions superimposed on a time-mean shear which
somewhat resembles an Ekman spiral with a surface
velocity of 51° to the right of the wind. There is
evidence [Fig. 14 of Halpern (1976); Fig. 8 of Kundu
(1977)] that sub-inertial-scale motion in the surface
layer is sometimes indeed very much like an Ekman
spiral with surface veering of order 30-45°.

The turbulent diffusion term is in general smaller
than P or e, but comparable to —8gw8. It transfers
energy downward from near the surface, but its con-
tribution to deepening is negligible. The negligible
values of diffusion near the base result from the
small local magnitude of v,. This conclusion would
therefore not hold if the gradient diffusion law used
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here were found to be totally inadequate in the ocean.
The retention of the diffusive terms has the merit,
however, of avoiding jittery solutions, and the pres-
ent solutions were smoother than Mellor and Dur-
- bin’s. In fact, instabilities were found to result in the
present model if the diffusive term in either the ¢2
or the € equation was dropped.

The present work does not, however, conclusively
demonstrate that turbulent diffusion is unimportant
in oceanic mixed layers. First, the convective situa-
tion resulting from a surface heat loss has not been
considered. Second, all closure models derive the
values of their principal constants from laboratory
experiments. But oceanic turbulence might very
well be different from laboratory turbulence. The
patchiness of ocean turbulence, Langmuir circula-
tions, etc., do not have their laboratory counter-
parts, and the assertion that turbulence is,universal
may not include the oceanic situation. Third, the
model fails in the absence of any shear. But the inter-
face does propagate in the stirring experiments of
Turner (1968) in which there is no shear, certainly
due to turbulent diffusion. Although it is quite un-
likely that this mechanism would be effective during
the initial rapid deepening period, such a “‘stirring”’
mechanism could possibly simulate processes on the
seasonal time scales.

The time variation of the rate of increase of poten-
tial energy in the water column (Fig. 6) shows several
interesting features. For 0.05 < t; < 0.3, it is seen
that PE varies like ¢*2, reaching a maximum of
~1.1u,® at t; = 0.3. (The maximum value would,
of course, depend on N and f. The value of 1.1u,2is
valid only for the assumed values of N = 0 94
X 1072standf = 107 s7 1) PE for the PRT model
also varies like '/2 for small times, although its mag-
nitude is about twice as large, implying that the criti-
cal Richardson number in the PRT model should be
set to ~0.6 for the equivalence of the two model
calculations. With the left-hand side of (10) varying
like #12, an integration gives h « ¢ as in the PRT
deepemng for small times.

For 1 <1, <6, PE decays only slightly from a
qua51 steady value of ~0.25u4 .2, implying a deepen-
ing rate slightly smaller than the Kraus-Turner
h o« 13 possibly about & x V4, The reason why PE
settles down to a nearly constant value for ¢; > 1
is because the motion then separates into a depth-
independent inertial oscillation and a quasi-steady
shearing motion. All the turbulent stresses are car-
ried by the shearing motion, except a small stress
at the bottom of the inertial slab. The turbulent
field therefore reaches a quasi-steady state, and the
vertical distributions of P, e, uw, wé, etc., do not
vary much with time. Hence, 8g [ w@dz reaches
a nearly constant value.

A comparison of the PE and 1oU, variations in
Fig. 6 shows that during initial deepening (¢; < 0.25),
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about 8% of the work goes into potential energy
increase, whereas for large times (¢; > 1), about
5% of the average work during an inertial cycle
goes to PE.

Although the deepening rate is not far from
h o« ¢13 for large times, the mechanism is not as im-
plied in Kraus and Turner. They did not explicitly
talk of the importance of the turbulent diffusion
term, but their idea of the wave-generated turbu-
lence being used for deepening implies turbulence
diffusion. In the absence of significant transport to
the base of the mixed layer, the mechanism of deep-
ening in the present model is the local production
(or equivalently, local shear) at the base. The shear
of both the mean and the inertial -oscillation at the
layer base must contribute to this deepening, and
there are several pieces of evidence for this fact.
First, slight inertial oscillations were evident in the
magnitude of the shear production P, near the base;
P, reaches maxima near about r; = 1.7, 2.7, etc., at
which times the shear of the quasi-steady motion and
the inertial oscillation are in the same direction at
the layer base. Second, the slow decay of the inertial
oscillations (e.g., in the 7,U, curve in Fig. 6) must
be due to the production of turbulence at its base.
The decay is not viscous, since virtually the same
decay rate was observed by setting molecular
viscosity to zero in the calculations.

If the inertial production near the layer base does
make a contribution, then one wonders why there is
no inertial oscillation in PE in Fig. 6 for large times.
The reason is, because of the absence of inertial
shear elsewhere, the oscillations in P, and w8 occur
only near the layer base. When integrated over the
depth, these small oscillations do not stand out. If
the inertial currents were taken out, PE is not ex-
pected to settle down to a value much smaller than
0.25u,3, because they do not contribute to any
smearing of the heat throughout the layer.

For¢; > 12if N = 0.94 x 1072 s7!, and for ¢; > 5
if N is twice as large, PE dropped sharply and no
deepening was detected with a vertical resolution
of Az = 1 m. It was expected that the layer would
probably finally stop deepening because, in view of
the Appendix, the shear (velocity jump) at the layer
base would decrease when 4 becomes much larger
than the Ekman depth. No appreciable decrease
of shear at the layer base was detected, however,
probably because the mixed layer depth was never
an order of magnitude larger than the Ekman depth.
The reason for the rather sudden and sharp drop of
PE, and the accompanying cessation of deepening,
is not therefore very clear. The question, however,
is merely academic as far as the application to the
real ocean is concerned, since the wind stress would
hardly remain constant for more than 12 inertial
periods!

The assumption necessary to derive the PRT
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energy equation for mean flow, namely, that the
depth-integrated dissipation approximately balances
7,- (U, — U), has been shown to be a reasonable one.
The model results also suggest that the bulk Richard-
son number criterion of PRT is equivalent to a con-
stant critical gradient Richardson number at the base
of the mixed layer. This has been observed to re-
sult from a self-similarity of the solutions, giving
rise to a thickening of the interface durmg initial
(t; < 0.5) deepening.

An imposition of a kinetic energy flux at the sea
surface, so as to simulate the energy input due to
breaking waves, has been shown to give an eddy
viscosity profile that is maximum near the sea sur-
face. However, the detailed structure of the eddy
viscosity does not seem to affect the results very
much. No vertical profile of v, was given by Mellor
and Durbin, but our duplication of their model cal-
culation with a constant wind stress and zero heat
flux showed that their v, was maximum at the sur-
face. The behavior of v, in the present model without
wave flux was different (Fig. 9), yet the structure
and dynamics of the mean and turbulent fields are
similar to theirs. It seems that the various second-
order closure models would give results that may
differ in details, like the distributions of Prandtl
number, ratios of normal stresses, even eddy vis-
cosity, etc. However, at least the depth-integrated
dynamics (Fig. 6), which is of prime interest for
mixed layer calculations, would not be different.
There is something basic about the dynamics that
is obeyed by all the numerical schemes, and hope-
fully the real world. For small times (#; < 0.25), this
basic fact seems to be self-similarity (Kundu, 1980),
and for large times (f; > 1), it is the separation of
the flow into a steady shear and a depth-independent
inertial oscillation.

Two important aspects have been left out of the
present calculations. One is the effect of surface
heating and cooling, and the other is the determina-
tion of the vertical distributions of temperature
variance, temperature dissipation, etc., which are
presently being measured in the ocean. These will
be dealt with in a future work.

APPENDIX

Currents in a Layer of Constant Depth
and No Bottom Stress

The development of currents in a mixed layer of
constant depth h and uniform viscosity », under the
action of an impulsive surface stress 7, in the x direc-
tion is presented here. The assumptions of a depth
h less than the Ekman depth (2v,/f)'? and a zero
bottom stress cause the velocity to approach the bot-
tom with a finite value and zéro slope, somewhat
like Fig. 5a.

-
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Defining a complex velocity W = U + {V, the
equation to be solved is

with boundary and initial conditions 0W/8z = 7,/py,
atz = 0;0W/0z = 0atz = —h;and W = Qatr = 0.
The solution is (Nomitsu, 1933)
(1 = D7 cosh(l + Hk(h + z)

2pvk sinh(l + i)kh

ity 1 > 1+ Vai(B./k)?

+ e+ Y ———
pvk*h 2 o 1+ Ya(B/k)

W =

X cosfBnz exp(—vtant)} )

where & = (f12v,)"? and B, = nw/h. The first part in
the solution is the steady component, and is similar
to an Ekman spiral with a finite bottom velocity,
much like Fig. S. The second part of the solution,
which is needed to satisfy the initial condition of
no motion, is composed of inertial oscillations. The
depth-independent component of this persists un-
damped, while those with shear are damped within a
time?,; = 2/v,3,% = 2h¥m,. The values appropriate
for the present numerical model are & ~ 20 m and

=~ 200 cm? s7t, giving 1, = 1 h.

Note that in the classical Ekman solution with no
slip condition at the bottom, the depth-independent
component of the inertial oscillation is not possible,
and all components of the inertial oscillations decay.
The possibility of an undamped depth—independent
inertial osc1llat10n is so]ely a result of a ‘‘slippery
bottom.’

It can also be verified from the solution given that
the shallower the depth # with respect to the Ekman
depth k71, the greater the deviation « of the steady
surface current from the direction of the wind. The
veering & = 45°if h > k™', and a = 90° if h <€ k1.
This makes sense, since the steady velocity is almost
uniform across the layer if & < k™', In the present
numerical solution « = 51°,
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