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Vertical vibration will excite standing waves on a liquid free surface. We perform
a linear-stability analysis for viscous and viscoelastic liquids of arbitrary depth to
determine the role that insoluble surfactants play in the formation of these paramet-
rically driven surface waves. We find that in order to obtain time-periodic solutions
which involve Marangoni forces in a non-trivial way, it is necessary to consider the
high-Peclet number limit of the surfactant transport equation. Floquet theory is
applied to the linearized governing equations to obtain a recursion relation for the
temporal modes of the free-surface deflection. The recursion relation is then solved
numerically to obtain the critical vibration amplitude needed to excite the surface
waves, and the corresponding wavenumber. The results show that the presence of
surfactants raises or lowers the critical amplitude and wavenumber depending on
the spatial phase shift between the surfactant-concentration variations and surface
deflections.
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1. Introduction

Wave formation on a liquid free surface subject to vertical vibration has been a topic
of active study since the report of Faraday nearly two centuries ago (Faraday 1831).
The intricate patterns and complex dynamics displayed by these standing waves
have made them a prototype for fundamental studies of spatially extended nonlinear
systems (Miles & Henderson 1990; Edwards & Fauve 1994; Kudrolli & Gollub 1996;
Hogrefe et al . 1998; Lioubashevski et al . 1999). An important step in understanding
the behaviour of the waves involves prediction of the critical vibration amplitude at
which they form. Although this problem has been well studied for inviscid (Benjamin
& Ursell 1954), Newtonian (Kumar 1996) and viscoelastic liquids (Kumar 1999), the
role of surfactants has not received as much attention. This issue is addressed in the
present work through the use of linear-stability analysis and Floquet theory.

Surfactants may appear as contaminants in a given experiment, where their pres-
ence generally serves to lower the surface tension. However, if there are variations in
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surfactant concentration along a free surface, surface-tension variations will result.
The latter will exert tangential stresses at the interface and drive a flow in the bulk
liquid. These Marangoni flows may change the critical amplitude needed to excite
standing waves, as well as the corresponding wavelength. Although existing stud-
ies acknowledge this possibility (Miles 1967; Decent 1997), they account for viscous
effects in an approximate way and do not address the possibility that there may
be a spatial phase shift between the surfactant-concentration variations and surface
deflections. Studies of the Faraday instability that account for viscous effects in a
more rigorous way (Kumar 1996, 1999) assume that the surface tension is uniform.
In addition to appearing as contaminants, surfactants may be an integral part of
the liquid itself. In polymer solutions, for example, a layer of polymer may adsorb
at the interface and act like a surfactant (Edwards et al . 1991). Another valuable
reason for understanding surfactant effects is the improvement of applications where
vertical vibration of free surfaces plays an important role. These include materials
processing in microgravity environments and ultrasonic atomization.

We present here an analysis of the role of surfactants on the formation of paramet-
rically driven surface waves. The theory we develop is valid for viscous and visco-
elastic liquids of arbitrary depth covered by a monolayer of insoluble surfactant
whose time-scale for diffusion is much slower than the vibration period. The problem
is formulated in § 2, Floquet theory is applied in § 3, results and a discussion are
given in § 4, and concluding remarks, as well as comparisons of the present work
with related previous work, are made in § 5.

2. Problem formulation

(a) Governing equations

We consider a layer of incompressible viscoelastic liquid which is uniformly covered
by a monolayer of insoluble surfactant. The liquid rests on a horizontal plate which
undergoes vertical sinusoidal oscillations of amplitude a and frequency ω. The vertical
coordinate is denoted by z, such that the bottom of the liquid is taken to be at z = −h
while its undisturbed free surface is located at z = 0. The horizontal and transverse
coordinates are represented by x and y, respectively. The effects of lateral boundaries
are assumed to be negligible, which is consistent with previous studies (Kumar 1996,
1999).

The equations of momentum and mass conservation are given by

ρ(∂tu + u · ∇u) = −∇p + ∇ · τ − ρB(t)ez, (2.1)
∇ · u = 0, (2.2)

in which u represents the velocity field, t denotes time, ρ is the density, p is the
pressure, τ is the deviatoric stress tensor, ez is the unit vector in the z-direction,
and B(t) = g − a cos(ωt), where g is the mean gravitational acceleration. The stress
tensor, τ , is expressed as follows:

τ = ηs(∇u + (∇u)T) + a, (2.3)

where ηs is the solvent viscosity and a is the non-Newtonian contribution to the stress
tensor, which is potentially a complicated function of the velocity and its gradients.
In this work, however, only linear perturbations about a quiescent base state will
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be considered, meaning that the displacement gradients will be small. We may then
apply the linear theory of viscoelasticity to describe a (Bird et al . 1987):

a =
∫ t

−∞
G(t − t′)(∇u + (∇u)T) dt′, (2.4)

in which G(t − t′) is called the relaxation modulus.
The location of the air–liquid interface is taken to be z = ζ(x, y, t), where ζ

represents the surface deflection from its quiescent state. The shear stress balance at
the interface is expressed by (Deen 1998)

t · π · n = t · ∇s σ, (2.5)

n · π · n = −σκ. (2.6)

Here, the dynamics of the air overlaying the liquid layer have been neglected. In (2.5)
and (2.6), the tensor π is expressed by

π = −(p − ρB(t)ζ)δ + τ , (2.7)

in which δ is the identity tensor, σ is the surface tension, κ is the curvature, and t
and n are the tangent and normal vectors to the interface, respectively.

The kinematic boundary condition at z = ζ(x, y, t) is given by

(∂t + us · ∇s)ζ = ws, (2.8)

where us and ws denote the velocity vector and its vertical component evaluated at
z = ζ, and ∇s = (δ − nn) · ∇ is the surface gradient operator. The equation of mass
conservation for the surfactant is given by

∂tΓ + ∇s · (usΓ ) + (us · n)(∇s · n)Γ = D∇2
sΓ, (2.9)

where Γ is the surfactant surface concentration and D is the surface diffusion coeffi-
cient (Stone 1990). In (2.9), the second term on the left-hand side represents transport
by convection, the third term represents transport due to surface dilation, while the
term on the right-hand side represents diffusive transport. Finally, no-slip and no-
penetration are applied at the plate:

w|z=−h = 0 and ∂zw|z=−h = 0. (2.10)

(b) Scaling and linearization

In order to render these equations dimensionless, the following scaling is chosen:

u = (ωd)ũ, (x, y, z) = h(x̃, ỹ, z̃), ζ = dζ̃, t = (1/ω)t̃, p = (ηsωd/h)p̃,
(2.11)

where tilde denotes a dimensionless quantity. In this work, we shall assume that
the ratio of the deflection amplitude to the liquid depth is ε = d/h � 1. For the
surfactant concentration, Γ , and surface tension, σ, we choose the following scaling:

Γ = ΓmΓ̃ and σ = σm + σ̃S, (2.12)

where Γm denotes the mean surfactant concentration and σm is the surface tension
corresponding to Γm. The spreading pressure is given by S = σ0 − σm, where σ0
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denotes the value of the surface tension for an uncontaminated liquid surface. We
shall assume that the surfactant concentration is dilute enough to permit use of a
linear equation of state:

σ = σ0 +
(

∂σ

∂Γ

)
Γ=0

Γ. (2.13)

We will write the relaxation modulus as G(t − t′) = (ηp/λ)F (t − t′), where ηp
is the non-Newtonian contribution to the zero-shear viscosity of the liquid, λ is a
characteristic relaxation time, and F is a dimensionless function.

The above scalings are substituted into the governing equations, boundary condi-
tions and equation of state, which are then linearized; we henceforth drop the tilde
notation. The equation of momentum conservation becomes

Rut = −∇p + ∇2u +
η

De

∫ t

−∞
F (t − t′)∇2u dt′ + O(ε), (2.14)

where R is a modified Reynolds number expressed by

R ≡ ρh2ω

ηs
, (2.15)

and η ≡ ηp/ηs. The Deborah number, a ratio of the characteristic relaxation time to
the characteristic time-scale associated with the flow, is given by

De ≡ λω. (2.16)

The continuity equation is unaltered.
The shear stress balance becomes

(∇2
s − ∂zz)w|z=0 +

η

De

∫ t

−∞
F (t − t′)(∇2

s − ∂zz)w|z=0 dt′ = M∇2
sσ + O(ε), (2.17)

in which M is a Marangoni parameter, which represents a ratio of Marangoni stresses
to viscous stresses:

M ≡ S
ηsωd

. (2.18)

The normal stress balance is expressed by

p|z=0 = 2∂zw|z=0 + 2
η

De

∫ t

−∞
F (t − t′)∂zw|z=0 dt′ + B(t)ζ − C∇2

sζ + O(ε), (2.19)

where B(t), the dimensionless modulated gravity, is expressed by

B(t) = B − A cos(t) (2.20)

in which

A ≡ ρah2

ηsωd
(2.21)

is the dimensionless amplitude of the sinusoidal acceleration and

B ≡ ρgh2

ηsωd
(2.22)
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provides a measure of the significance of the mean gravitational forces. The parameter
C, given by

C ≡ σm

ηsωh
, (2.23)

is an inverse capillary number reflecting the importance of capillarity. Note that
the potential effect of Marangoni stresses on capillarity has been neglected (see
Appendix A).

The kinematic boundary condition is now given by

∂tζ = w|z=0 + O(ε), (2.24)

and the equation of surfactant mass conservation is

∂tΓ =
1

Pe
∇2

sΓ + O(ε), (2.25)

where Pe, which represents the ratio of surfactant transport by Marangoni stresses
to that by surface diffusion, is expressed by

Pe ≡ hωd

D . (2.26)

Equations (2.10) become

w|z=−1 = 0 and ∂zw|z=−1 = 0. (2.27)

Following scaling, the surfactant equation of state simply becomes

σ = 1 − Γ. (2.28)

In arriving at these equations we have performed a Taylor series expansion about
z = 0 and, to leading order, the free-surface boundary conditions apply at z = 0.

(c) Normal-mode decomposition

Making use of the continuity equation, it can be shown that ez ·∇∧∇∧u = −∇2w.
Use of this relation permits us to write (2.14) as

(R∂t − ∇2)∇2w − η

De

∫ t

−∞
F (t − t′)∇2(∇2w) dt′ = 0 + O(ε). (2.29)

The pressure, p, can be eliminated by applying ∇s to the x- and y-components
of (2.1), applying ∇2

s to (2.19) and using the continuity equation:

2∇2
s∂zw|z=0 + 2

η

De

∫ t

−∞
F (t − t′)∇2

s∂zw|z=0 dt′ + B(t)∇2
sζ − C∇4

sζ

= R(∂t − ∇2)∂zw|z=0 − η

De

∫ t

−∞
F (t − t′)∇2∂zw|z=0 dt′ + O(ε). (2.30)

For a liquid layer where the effect of lateral boundaries is negligible, ζ, w and Γ
may be expressed in terms of the following normal modes:

ζ(x, y, t) → ζ(t)eik·x,

w(x, y, z, t) → w(z, t)eik·x,

Γ (x, y, t) → Γ (t)eik·x,


 (2.31)
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where k is the real-valued wave vector in the (x, y)-plane and x is the planar co-
ordinate vector such that ∇2

s → −k2. Substitution of (2.31) into (2.17), (2.24), (2.27),
(2.29) and (2.30) yields

[R∂t − (∂zz − k2)](∂zz − k2)w − η

De

∫ t

−∞
F (t − t′)(∂2

zz − k2)2w dt′ = 0 + O(ε),

(2.32)

∂tζ = w|z=0, (2.33)

(k2 + ∂zz)w|z=0 +
η

De

∫ t

−∞
F (t − t′)(k2 + ∂zz)w|z=0 dt′ − Mk2Γ = 0 + O(ε),

(2.34)

(R∂t − ∂zz + 3k2)∂zw|z=0 − η

De

∫ t

−∞
F (t − t′)(R∂t − ∂zz + 3k2)∂zw|z=0 dt′

+ k2B(t)ζ + Ck4ζ = 0 + O(ε),
(2.35)

∂tΓ +
k2

Pe
Γ = 0 + O(ε), (2.36)

w|z=−1 = 0 and ∂zw|z=−1 = 0. (2.37)

Note that ∇2
sσ has been replaced by k2Γ using (2.28) and (2.31). Equations (2.32)–

(2.37) will be used with Floquet theory to investigate the linear-stability character-
istics of the problem.

3. Floquet theory

Since the vibration is time-periodic and appears as a coefficient of ζ in (2.35), the
response of the standing waves should also be time-periodic according to Floquet
theory. However, (2.36) indicates that the surfactant concentration decays exponen-
tially on a time-scale inversely proportional to Pe. Thus, the time-periodic solution
to (2.36) is Γ = 0, which corresponds to a constant surfactant concentration. There
are no Marangoni flows with this solution because the surface tension is spatially uni-
form. As we wish to study the effects of Marangoni flows on time-periodic solutions,
we hereby consider the high-Pe limit of (2.36). In this limit, the time-periodic solu-
tions of (2.36) include those for which the surfactant concentration varies spatially,
but not temporally. The resulting surface-tension variations will drive a Marangoni
flow which should affect the onset of the waves. Recognizing that the Peclet num-
ber can also be expressed as Pe = εh2ω/D—and using typical values of h = 1 cm,
ω/2π = 60 Hz and D = 10−5 cm2 s−1—we see that Pe � 1 even for relatively small
values of ε. This indicates that the high-Pe limit of (2.36) is of physical relevance to
many situations of interest.

We begin by expressing ζ(t) and w(z, t) by

ζ(t) = e(s+iα)t
∞∑

n=−∞
ζneint, (3.1)
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w(z, t) = e(s+iα)t
∞∑

n=−∞
wn(z)eint, (3.2)

where s and α are real valued. The value of α determines whether the surface waves
respond subharmonically (α = 1

2) or harmonically (α = 0) to the vibration.
Substitution of equation (3.2) into equation (2.32) yields

(D2 − q2
n)(D2 − k2)wn(z) = 0, (3.3)

where D ≡ d/dz and the qn are given by

q2
n = k2 +

R(s + i(α + n))
νn

, (3.4)

in which νn = 1 + (η/De)In, wherein the integral In is expressed by

In ≡
∫ ∞

0
F (τ)e−(s+i(α+n))τ dτ ; (3.5)

here τ = t−t′. Equation (3.3) suggests a solution for wn(z) of the form (if s+i(α+n) �=
0)

wn(z) = Pn cosh(kz) + Qn sinh(kz) + Rn cosh(qnz) + Sn sinh(qnz). (3.6)

Noting that Γ is now a time-independent quantity, we substitute (3.2) into (2.34)
to obtain (

1 +
η

De

)
In(∂zz + k2)wn(0) − M̄k2Γ = 0, (3.7)

where

M̄ =
M(1 − e−2π(s+i(α+n)))

2π(s + i(α + n))
. (3.8)

Substituting (3.6) into (3.7) yields

[2k2Pn + (k2 + q2
n)Rn]νn − M̄k2Γ = 0, (3.9)

while substitution of equations (3.1) and (3.6) into equation (2.33) yields

Pn + Rn =
νn(q2

n − k2)
R ζn. (3.10)

It then follows that

Pn =
νn

R (q2
n + k2)ζn − M̄k2

νn(q2
n − k2)

Γ (3.11)

and

Rn = −2νn

R k2ζn +
M̄k2

νn(q2
n − k2)

Γ. (3.12)

Substitution of equation (3.6) into equations (2.37) yields

Pn cosh(k) − Qn sinh(k) + Rn cosh(qn) − Sn sinh(qn) = 0,

−kPn sinh(k) + kQn cosh(k) − qnRn sinh(qn) + qnSn cosh(qn) = 0.
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Making use of the result cosh2(qn) − sinh2(qn) = 1, it then follows that

Qn =
qnRn − Pn[k sinh(k) sinh(qn) − qn cosh(k) cosh(qn)]

qn sinh(k) cosh(qn) − k sinh(qn) cosh(k)
, (3.13)

Sn = −kPn + Rn[k cosh(k) cosh(qn) − qn sinh(k) sinh(qn)]
qn sinh(k) cosh(qn) − k sinh(qn) cosh(k)

. (3.14)

Substitution of equation (3.6) into equation (2.35) yields

νn[Qn(k(q2
n − k2) + 2k3) + Sn(qn(q2

n − k2) + qn(3k2 − q2
n))]

+ Bk2ζn + Ck4ζn = 1
2k2A(ζn+1 + ζn−1). (3.15)

Substitution of equations (3.11)–(3.14) into equation (3.15) finally yields

Anζn + BnΓ = 1
2A(ζn+1 + ζn−1), (3.16)

wherein

An =

[k2B + Ck4 − ν2
n((4k3/R)qn(q2

n + k2)
−(k/R)[Cn cosh(k) cosh(qn) − Dn sinh(k) sinh(qn)])]

k2(qn sinh(k) cosh(qn) − k sinh(qn) cosh(k))
, (3.17)

Bn = M̄k
[En(1 − cosh(k) cosh(qn)) + Fn(sinh(k) sinh(qn))]

qn sinh(k) cosh(qn) − k sinh(qn) cosh(k)
, (3.18)

in which

Cn = qn(q4
n + 2q2

nk2 + 5k4),

Dn = k(q4
n + 6q2

nk2 + k4),

En = qn
(q2

n + 3k2)
(q2

n − k2)
,

Fn = k
(3q2

n + k2)
(q2

n − k2)
.

If s + i(α + n) = 0, then w0(z) = 0 and we take A0 = (Bk + Ck3) and B0 = 0.
For M = 0, (3.16) takes the form of a recursion relation for the ζn. This recursion

relation can be truncated at a particular value of n and a matrix eigenvalue problem
can be formed (Kumar & Tuckerman 1994). The solution of this eigenproblem (by
standard numerical methods) for s = 0 yields the neutral stability curves, from
which the critical vibration amplitude and corresponding wavenumber can be found.
To employ a similar strategy for M �= 0, an expression is needed to relate Γ to ζn. A
reasonable assumption is that variations in the surfactant concentration will occur
when the surface is deformed. This motivates us to take

Γ = γζneiφ. (3.19)

Here, γ is a coupling constant and φ is a phase angle between the variations in
surfactant concentration and surface deflection. According to (3.19), each temporal
mode of the surface deflection is associated with a corresponding concentration vari-
ation. Equation (3.19) also allows for the fact that the surface and concentration
disturbances may not be in phase spatially. The constant γ can be absorbed into the
Marangoni number, while φ can be varied to study the effects of phase shifts.
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Figure 1. Tongue-like neutral stability curves in the k–A-plane. The tongues alternately cor-
respond to subharmonic and harmonic responses of the interfacial waves to the forcing, with the
tongue closest to the A-axis corresponding to a subharmonic response. These curves correspond
to the case where B = 26, R = 3770, C = 0.8, M = 0 and η = 0.

4. Results and discussion

The critical vibration amplitude and corresponding wavenumber can be determined
from the neutral stability curves, as noted above. The neutral curves form a series
of tongue-like regions in the k–A-plane, with each tongue alternately corresponding
to a subharmonic or harmonic response. A typical set of these curves is shown in
figure 1, and the critical amplitude and wavenumber are given by the location of the
tongue tip closest to the k-axis.

For inviscid liquids, all the tongue tips touch the k-axis (Benjamin & Ursell 1954).
This indicates that the standing waves can be excited by arbitrarily small amplitudes,
and that a unique wavenumber is not selected at instability onset. The presence of
viscosity pushes all the tongue tips off the k-axis, leaving the first subharmonic
tongue closest to the k-axis (figure 1). This corresponds to a situation where the
waves respond subharmonically to the vibration frequency. Harmonic responses in
Newtonian liquids are possible if the liquid depth is sufficiently shallow (Kumar
1996). This has the effect of damping out long-wavelength disturbances, and pushes
the tip of the first subharmonic tongue to a higher value of A than that of the first
harmonic tongue. In viscoelastic liquids, harmonic surface responses can occur if η
is sufficiently large and the Deborah number is O(1) (Müller & Zimmermann 1999;
Kumar 1999). This appears to be a consequence of the fact that viscoelastic liquids
can behave like elastic solids and are thus capable of sustaining Rayleigh-like surface
waves.

Figure 2 shows how the presence of surfactants affects the critical amplitude and
wavenumber for parametrically driven surface waves. For simplicity, we consider
Newtonian liquids (η = 0) and fix B = 26, R = 3770 and C = 0.8, which are
representative parameter values. For this set of parameters, the surface response is

Proc. R. Soc. Lond. A (2002)
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Figure 2. The tip of the first subharmonic tongue for M = 0 (dots) and M = 10 with φ = 0
(circles), φ = π/2 (crosses), φ = π (triangles) and φ = 3π/2 (squares). The vertical axis is the
ratio of the vibration amplitude (A) to the gravitational parameter (B). For these plots, B = 26,
R = 3770 and C = 0.8.

subharmonic, and only the tip of the first subharmonic tongue is shown in figure 2.
When Marangoni forces are present and there is no phase shift (φ = 0), the criti-
cal amplitude increases and the wavenumber increases slightly. Increasing the phase
angle to φ = π/2 decreases the critical amplitude and increases the critical wavenum-
ber relative to the M = 0 case. The amplitude is lowered further for φ = π, and the
wavenumber is slightly smaller than for the M = 0 case. At φ = 3π/2, the wavenum-
ber decreases further and the amplitude increases to a value larger than would exist
in the absence of Marangoni forces.

The behaviour of the critical amplitude with respect to the phase angle can be
explained fairly easily. When the concentration disturbances are in phase with the
surface deflections (φ = 0), regions of high surfactant concentration will occur at
the wave crests while regions of low surfactant concentration will occur at the wave
troughs. Due to the surface-tension differences that these concentration variations
produce, Marangoni flows will be generated which pull liquid away from the crests
and into the troughs. This will tend to inhibit wave formation, and this is reflected
in the larger value of the critical amplitude relative to the M = 0 case. When the
concentration disturbances are completely out of phase with the surface deflections
(φ = π), regions of low surfactant concentration will occur at the wave crests while
regions of high surfactant concentration will occur at the wave troughs. The resulting
Marangoni flows will pull liquid into the crests and away from the troughs. This
will tend to enhance wave formation, and this is reflected in the smaller value of
the critical amplitude relative to the M = 0 case. For intermediate values of the
phase angle, the observed values of the amplitude lie between the two extreme cases.
Interestingly, the largest wavenumber shifts occur for the two intermediate cases
(φ = π/2, 3π/2) rather than for the two extreme cases (φ = 0, π).
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Table 1. Comparison of critical amplitudes

(B = 26, R = 3770, C = 0.8, De = 0.)

A/B
︷ ︸︸ ︷

η (M = 0) (M = 10) ratio

0 1.2 3.0 2.50
5 6.0 7.2 1.20

10 9.8 10.6 1.08
20 15.6 16.2 1.04
50 26.5 26.8 1.01

We now discuss the effect of liquid viscoelasticity by considering one of the simplest
forms of the relaxation modulus, the single-mode Maxwell model (Bird et al . 1987;
Larson 1988):

F (τ) = e−τ/De. (4.1)
With this expression, νn take the form

νn = 1 +
η

1 + De[s + i(α + n)]
. (4.2)

For De � 1, νn = 1 and viscoelasticity has no effect. For De � 1, νn = 1+η, meaning
that the liquid behaves in a Newtonian manner but with an enhanced viscosity. We
have performed several runs in which η is varied with De = 0, M = 0 or 10 and φ = 0
(all other parameters had the same values as listed earlier). Comparison of the results
for M = 0 with those for M = 10 at different values of η indicates that although
the critical amplitude is larger for M = 10, Marangoni forces have a weaker effect
as η increases (table 1). This is expected since the viscosity of the liquid increases
with η, and the increased viscous forces oppose the Marangoni forces. For De ∼ 1,
the effect of viscoelasticity depends on the value of η. When η ∼ 1 and M = 0, the
critical amplitude for De ∼ 1 will be lower compared with the De = 0 case at fixed
η (Raynal et al . 1999; Kumar 1999). This is because the real part of νn, which is
proportional to the energy dissipation in the system, is smaller when De �= 0. In this
regime, the presence of Marangoni forces will have the same qualitative effects as seen
for Newtonian liquids. When η � 1 with De ∼ 1 and M = 0, the favoured surface
response may become harmonic rather than subharmonic (Kumar 1999; Müller &
Zimmermann 1999; Wagner et al . 1999). However, since this is the regime in which
the liquid viscosity is large, the presence of Marangoni forces will not have as strong
an effect as for the regime where η ∼ 1.

Finally, we comment on the robustness of our results to surfactant concentrations
which are non-dilute. In the non-dilute regime, a nonlinear equation of state is gener-
ally needed to describe the relationship between surfactant concentration and surface
tension (Edwards et al . 1991). However, since our analysis is concerned with small
departures from an equilibrium state, a nonlinear equation of state could be linearized
around the mean surfactant concentration. This would produce an additional param-
eter in the problem, namely the local slope of the surfactant concentration–surface
tension relationship. The additional parameter would not alter the qualitative nature
of our results since it simply controls the magnitude of the Marangoni forces. The
results will also be robust to changes in C, which sets the mean surface tension.
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5. Concluding remarks

We have analysed the role of insoluble surfactants on the formation of parametrically
driven surface waves. To obtain time-periodic solutions of the linearized governing
equations where Marangoni forces play a non-trivial role, it was necessary to consider
the high-Pe limit of the surfactant transport equation. Application of Floquet theory
enabled us to obtain a recursion relation for the Fourier modes of the free-surface
deflection, which was then solved to obtain the critical vibration amplitude and
corresponding wavenumber. The results show that the presence of surfactants will
either increase or decrease the critical amplitude depending on the spatial phase
shift between the surfactant-concentration variations and the surface deflections. In
addition, the critical wavenumber will also change.

It is important to discuss the relationship of our work to previous work involving
the effects of surfactants on standing waves. In general, surface waves on a liquid will
be subject to damping from four sources (Miles 1967; Decent 1997):

(i) viscous dissipation in the bulk of the liquid;

(ii) viscous dissipation at the bottom and side walls of the liquid container;

(iii) viscous dissipation due to motion of the meniscus (contact-line damping); and

(iv) viscous dissipation due to Marangoni flows at the free surface (Craik 1982).

Miles (1967) neglected (i) and used boundary-layer methods to account for (ii)–(iv)
in order to derive a linear damping coefficient for surface waves. Using a similar
approach, Decent (1997) worked out a cubic damping coefficient for Faraday waves.
Experiments to study the effects of surfactants on contact-line damping in both the
linear and nonlinear regime of the Faraday instability were carried out by Jiang
et al . (1996). Numerical simulations and perturbation analysis were also performed
using the equations of motion for an inviscid fluid and accounting for damping by
a single coefficient in the free-surface boundary condition. Our work accounts for
(i) and damping at the bottom wall in a complete way for the linear regime of the
instability, and neglects (iii) and damping at the side walls. We also demonstrate
that Marangoni flows need not have a damping effect, and indeed can make it easier
to excite the instability if the concentration disturbances are sufficiently out of phase
with the surface deflections.

The results of this work should be useful for understanding the behaviour of surface
waves in applications where vertical vibration plays a key role, including micrograv-
ity materials processing and ultrasonic atomization. In addition, our analysis could
easily be extended to consider the behaviour of liquid sheets, which serve as a model
for soap films (Kumar 2001), and to larger surfactant concentrations for which non-
linear equations of state are required. The techniques we use may also be helpful in
analysing Marangoni effects brought about by temperature gradients (Birkh et al .
2001).
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Appendix A.

Here we illustrate the argument for neglecting the potential effect of Marangoni
stresses on capillarity. Scaling the capillary term in the normal stress balance we
obtain

σκ =
(σm + σ̃S)

ηshω
ζ̃xx, (A 1)

where, for the sake of simplicity, we have only considered the streamwise direction.
If we now consider dilute concentrations of surfactant, such that the spreading coef-
ficient is small, S/σm ∼ εs, where s ∼ O(1), then equation (A 1) becomes

σκ =
σm

ηshω
(1 + εsσ̃)ζ̃xx

=
(

σm

ηshω

)
ζ̃xx + O(ε). (A 2)

We define C ≡ σm/ηshω to finally obtain

σκ = Cζ̃xx + O(ε). (A 3)
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