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Abstract

This is the first part of a two-part investigation of a coupled wind and wave model that

includes the enhanced form drag of breaking waves. In part 1 the model is developed and

applied to mature seas. Part 2 explores the solutions in a wide range of wind and wave

conditions, including growing seas. Breaking and non-breaking waves induce air-side fluxes

of momentum and energy above the air-sea interface. By balancing air-side momentum and

energy and by conserving wave energy, coupled nonlinear advance-delay differential equations

are derived, which govern simultaneously the wave and wind field. The system of equations

is closed by introducing a relation between the wave height spectrum and wave dissipation

due to breaking. The wave dissipation is proportional to nonlinear wave interactions, if the

wave curvature spectrum is below the “threshold saturation level”. Above this threshold the

wave dissipation rapidly increases, so that the wave height spectrum is limited. The coupled

model is applied for mature wind-driven seas for which the wind forcing only occurs in the

equilibrium range away from the spectral peak. Modeled wave height curvature spectra as

functions of wavenumber, k, are consistent with observations and transition from k1/2 at low

wavenumbers to k0 at high wavenumbers. Breaking waves affect only weakly the wave height

spectrum. Furthermore, the wind input to waves is dominated by non-breaking waves closer

to the spectral peak. Shorter breaking waves, however, can support a significant fraction,

which increases with wind speed, of the total air-sea momentum flux.
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1 Introduction

Understanding the role of breaking surface waves in air-sea exchange processes is integral

to improving parameterization schemes for coupled ocean-atmosphere models, which are

commonly used for weather and climate predictions (Komen et al., 1996). Although there

exists evidence that wind-generated breaking surface waves enhance air-sea fluxes of heat,

gases, and momentum, the mechanisms that lead to this enhancement are poorly understood

(Melville, 1996). The need to incorporate the breaking wave effect more realistically in

operational wave models is also highlighted in a recent review by Cavaleri (2006).

Previous laboratory experiments indicate that airflow separation at the lee of a breaking

wave leads to an enhanced wave form drag compared to the form drag of non-breaking

waves (Banner , 1990). Laboratory measurements have been obtained under well-controlled

conditions for a monochromatic breaking wave. In the open ocean, however, breaking waves

are randomly distributed and occur simultaneously over a wide range of scales (Banner and

Peregrine, 1993). To quantify wave breaking for random seas, Phillips (1985) introduced

the breaking wave distribution, which is the average length of breaking crests per unit sea

surface area as a function of wave scale. Such a distribution was observed for oceanic field

conditions by tracking white caps of breaking waves via aerial imaging analysis (Melville and

Matusov , 2002).

This is part 1 of a two part study to investigate how a random distribution of breaking

waves influences ocean surface wave spectra and the wind aloft. In part 1 we construct a

coupled wind and wave model and apply the model to mature seas. Part 2 (Kukulka and

Hara, 2007) examines the solutions in a wide range of wind and wave conditions, including

growing seas.

1.1 Equilibrium range of wind waves

An important concept for modeling wind-waves is the equilibrium range of surface wave

spectra, in which the wave field is nearly stationary, so that wave dissipation, energy re-
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distribution due to nonlinear interactions, and the wind-input balance each other (Phillips ,

1985). An upper limit of the equilibrium range was first found, assuming that the wave

height is limited by wave breaking (Phillips , 1958). If the breaking process is independent

of wind properties, this leads to the well known ω−5 power law of the wave height frequency

spectrum (“frequency spectrum”), where ω is the angular frequency measured in SI units

(or k−4 dependency of the wave height wavenumber spectrum [“wavenumber spectrum”],

where k is the angular wavenumber measured in SI units). Observations, however, show a

systematic deviation from such a power law for frequencies just above the peak frequency

with a frequency dependence of ω−4 (Jones and Toba, 2001).

In analogy to Kolmogoroff’s hypothesis for isotropic turbulence, the assumption that

the energy flux through gravity waves in the equilibrium range is constant, yields the ω−4

power law (Kitaigorodskii , 1983). Later, the ω−4 power law was derived by assuming that

dissipation, wind-input, and nonlinear interactions are all significant and proportional to

each other (Phillips , 1985). In these two models, the wave field consists of a superposition

of weakly nonlinear surface gravity waves with random phase.

In contrast, self-similar sharp crested breaking waves dominate the equilibrium range in

the model by Belcher and Vassilicos (1997). Based on this assumption, the wave height

spectrum must also be self-similar, in the sense that it follows a power law in some measure

of wave scale (e.g., wavelength or phase speed). Imposing furthermore a dynamical balance

between dissipation and nonlinear interactions results in a k−4 dependency of the wavenum-

ber spectrum (Belcher and Vassilicos , 1997). The wind-wave equilibrium range models that

we discussed so far, did not explicitly take into account that longer waves extract energy

and momentum from the wind and thereby reduce the wind forcing on the shorter waves.

1.2 Wind and waves coupling

Under idealized conditions, the wind profile changes over time due to momentum and energy

transfer from wind to waves, until the waves do not grow any more because the energy

transfer is quenched (Janssen, 1982). Applying a quasi linear approximation to the governing
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hydrodynamic equations results in a modification of the mean wind flow due to the presence

of waves (Janssen, 1989; Jenkins , 1992, 1993). Using the nonlinear Reynolds equations for

the air, wave-induced fluxes can be modeled in the boundary layer above waves, which is

called the “wave boundary layer” (WBL) (Chalikov and Makin, 1991). The WBL is a thin

layer within the constant stress layer where the wind stress partitions into the wave-induced

stress and the turbulent stress (or the viscous stress inside the viscous sublayer). The effects

of wave motion on the mean wind properties in the WBL can be investigated employing a

wave following curvilinear coordinate system (Jenkins , 1992).

Hara and Belcher (2002) showed that the frequency spectrum transitions asymptotically

from ω−4 to ω−5 at high frequencies, because shorter waves are forced by a reduced turbulent

stress due to the momentum uptake of longer waves. The transition frequency, however, was

inconsistent with observations.

Within the WBL, the mean wind speed profile can be determined, based on the energy

balances of mean, wave-induced, and turbulent motions with an appropriate turbulence clo-

sure scheme. Makin and Mastenbroek (1996) employ the full balance equations of turbulent

kinetic energy and its dissipation to calculate drag coefficients over fully developed seas.

Balancing local turbulent production and dissipation, Makin and Kudryavtsev (1999) esti-

mate an eddy viscosity, which is also used to parameterize the turbulent dissipation rate.

Satisfying energy conservation in the WBL, Hara and Belcher (2004) relate the turbulent

dissipation rate to the reduced turbulent stress, in order to calculate the wind speed profile

over mature wave spectra.

1.3 The need to incorporate breaking waves

In most of the previous wind-wave models, only the wind-input to non-breaking waves has

been considered (Komen et al., 1996; Cavaleri , 2006). A notable exception is the investi-

gation by Kudryavtsev and Makin (2001), who estimated that a considerable fraction (up

to 50%) of the wind stress can be supported by breaking waves. Their model is based on

momentum conservation at the sea surface, where the total stress partitions into the viscous
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stress and wave induced stress due to breaking and non-breaking waves. While this study

presents significant progress towards understanding the breaking wave effect on air-sea mo-

mentum flux, it has important shortcomings. First, the parameterization of the momentum

flux from wind to non-breaking waves depends on the total wind stress. To accurately model

the stress partitioning, however, it is critical that the parameterization depend on the re-

duced turbulent stress (Makin and Kudryavtsev , 1999; Kukulka and Hara, 2005). Second,

the mean wind profile in the WBL is prescribed as logarithmic. Such a wind profile gener-

ally does not satisfy energy and momentum conservation at each height within the WBL.

Third, the energy input to breaking waves is neglected in the wave energy balance. While

we adopt their parameterization of the breaking wave form drag, we also will address these

short-comings in this study.

To understand the maximum possible influence of breaking waves, we previously devised a

model for the extreme case in which the wind input is dominated by breaking waves ((Kukulka

et al., 2007), hereafter referred to as KHB). Such a model is applicable to strongly forced wave

fields as they have been observed in the laboratory. For older seas (fully developed), however,

the model does not yield physical solutions, suggesting that the input to non-breaking waves

cannot be neglected for the whole wave spectrum.

To model the form drag of breaking and non-breaking waves, we will combine the model

from KHB with the approach from Hara and Belcher (2002, 2004). In the next section,

we derive coupled nonlinear advance-delay differential equations governing the wind speed,

turbulent wind stress, the wave height spectrum, and the breaking wave distribution. The

system of equations is based on the conservation of momentum and energy in the WBL and

wave energy conservation. In section 3 the model is applied to idealized mature wind-driven

seas, followed by concluding remarks in section 4.
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2 Theory

The wave field is described statistically by the two-dimensional wavenumber spectrum Ψ(k, θ),

or alternatively the saturation spectrum, B(k, θ) = k4Ψ(k, θ), and the two-dimensional distri-

bution of breaking waves, Λ(k, θ). The average breaking crest length of waves, at wavenumber

k and propagating in the direction θ relative to the wind, is given by Λ(k, θ)kdθdk (Phillips ,

1985). The unitless one-dimensional distribution of breaking waves is defined as

Λ(k) =
∫ π/2

−π/2

Λ(k, θ)kdθ. (1)

and the unitless one-dimensional saturation spectrum is defined as

B(k) =
∫ π/2

−π/2

B(k, θ)dθ (2)

with the directional spreading (or directionality) of B(k, θ) defined as

hB(k, θ) =
B(k, θ)

B(k)
, (3)

and the directional spreading of Λ(k, θ) defined as

hΛ(k, θ) =
kΛ(k, θ)

Λ(k)
. (4)

Here, Λ(k, θ) and B(k, θ) are assumed to be zero for |θ| > π/2 for simplicity.

The geometry of breaking waves, characterized by a steep (nearly discontinuous) slope,

differs from the smooth sea surface geometry resulting from non-breaking waves. In order to

define a vertical coordinate z above such a complex surface, consider first the instantaneous

air-water interface due to the superposition of sinusoidal non-breaking waves with random

phase. For such an interface, one may introduce a local, time-varying vertical coordinate z,

so that z = 0 at the sea surface (z increases with height) (Makin et al., 1995; Makin and

Kudryavtsev , 1999). Now we superimpose intermittent breaking wave crests as disturbances

with finite height above the smooth non-breaking wave surface, such that for a breaking

wave at k its crest appears at a height z = a(k), where a is the wave amplitude.
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We assume that breaking waves are self similar and that the wind is stationary and

horizontally homogeneous with mean wind speed u in the x-direction. The wind velocity

vector (U ,V ,W) is decomposed into

(U ,V ,W) = (u + ũ + u′, ṽ + v′, w̃ + w′), (5)

where the tilde indicates wave-induced motions and the prime denotes turbulent motions.

Furthermore, KHB introduced the “spatial sheltering effect”, so that shorter waves in

airflow separation areas of longer breaking waves cannot be forced by the wind. Kukulka

(2006) found overall that the spatial sheltering affects mainly young developing seas. There-

fore, for simplicity we neglect the spatial sheltering effect in Part 1, and will examine the

effect on young seas in Part 2.

2.1 Air-side momentum conservation

Within the constant stress layer, the total wind stress τ0 partitions into turbulent Reynolds

stress, τt = −ρa〈u′w′〉, and wave-induced parts (here 〈·〉 denotes phase averaging and ρa is the

density of air). The wave-induced stress is decomposed further into one part due to the form

drag of non-breaking waves, τw, and another part due to the form drag of breaking waves,

τb. Here, τw is referred to as “wave stress” and τb as “breaking stress”. The breaking stress

transfers momentum directly into the wave, so that it effectively reduces the momentum

transport through the air inside the WBL. The total momentum budget can be written as

τ0 = τt(z) + τw(z) + τb(z) = constant. (6)

The wave-induced momentum flux at height z into non-breaking waves is given by (Makin

et al., 1995; Makin and Kudryavtsev , 1999)

τw(z) =
∫

∞

0

∫ π/2

−π/2

ρwωβg(k, θ)Ψ(k, θ)F (z, k) cos θ k dθdk, (7)

where ρw denotes the density of water, βg is the growth rate of wind-driven gravity waves

and F (z, k) is a decay function to account for the decrease in wave induced stress with
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height (Makin et al., 1995). The forcing of non-breaking waves depends on the turbulent

stress in a thin layer above the water surface, the so called “inner layer” (Belcher and Hunt ,

1993). The inner layer height is given by δ/k, where δ is the constant inner layer height

coefficient. The wave-induced stress also decays over a comparable height. We therefore

approximate F (z, k) as a step function, which equals one inside the inner layer and zero

outside (Makin et al., 1995; Makin and Kudryavtsev , 1999). Furthermore, βg is set to a form

based on empirical estimates (Plant , 1982), except that the forcing stress is determined by

the turbulent stress evaluated at the inner layer height, rather than the total wind stress

(Makin and Mastenbroek , 1996; Belcher , 1999; Makin and Kudryavtsev , 1999), i.e.,

βg(k, θ) = cβω
τt(z = δ/k)

ρwc2
hβ(θ) s[ul

∗
(z = δ/k) − φc] (8)

where c is the phase speed, hβ = cos2 θ denotes the directionality of βg. The step function

s(q),

s(q) = 1 for q ≥ 0

s(q) = 0 for q < 0 (9)

assures that waves moving faster than a multiple φ−1 = 1/0.07 of the local friction velocity

ul
∗
(z = δ/k) =

√

τt(z = δ/k)/ρa are not forced by the wind (Plant , 1982). Note that for

simplicity, we do not consider the damping of waves with ul
∗
(z = δ/k) < φc (see,e.g., Jenkins

(1992) how wave damping could be incorporated). To keep the notation simple, we define

sβ = s[ul
∗
(z = δ/k) − φc], (10)

so that the wave-induced stress becomes

τw(z) =
∫ δ/z

0

∫ π/2

−π/2

sβcβhβ(θ)τt(z
′ = δ/k) B(k, θ) k−1 cos θ dθdk. (11)

The form drag of breaking waves is parameterized following Kudryavtsev and Makin

(2001) and KHB. For a monochromatic wave with amplitude a and breaking crest length l,

the wind force τb (per unit ocean surface area) that acts on the breaking wave is

τb(k) = −∆p(k)2a(k)l(k), (12)
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where ∆p denotes the pressure drop due to airflow separation ahead of the wave crest.

Scaling arguments as well as previous experiments suggest that the pressure drop can be

parameterized by

∆p(k) = −ρacγ[u(k) cos θ − c]2 s[u(k) cos θ − c] (13)

where u(k) = u(z = ǫ/k) denotes the wind speed evaluated at the height of the breaking

wave, a = ǫ/k, ǫ is the slope of the breaking wave, and cγ is the breaking wave drag

coefficient. In this paper we assume for simplicity the linear phase speed of surface gravity

wave, although in principle a phase speed factor can be introduced to model the phase speed

of nonlinear waves (see also KHB). Similar to the forcing of non-breaking waves, the step

function assures that only waves moving with a phase speed slower than u cos θ are forced

by the wind and for convenience we will introduce a notation

sp = s[u(k) cos θ − c]. (14)

Assuming that the momentum flux to the breaking wave is concentrated at the wave crest,

the breaking wave form drag at height z for a spectrum of waves is expressed as

τb(z) =
∫ ǫ/z

0

∫ π/2

−π/2

ρasp βΛ Λ(k, θ) [u(k) cos θ − c]2 cos θ dθdk, (15)

where Λ is the distribution function of breaking waves and βΛ = 2cγǫ is a constant coefficient.

2.2 Air-side energy conservation

The total energy equation can be obtained by considering the mean energy budgets of mean,

wave-induced, and turbulent motions (Makin and Mastenbroek , 1996; Hara and Belcher ,

2004). We will follow closely the approach by Hara and Belcher (2004) and KHB and

emphasize here only how the total energy equation deviates from the traditional model of

turbulent shear flow close to a solid wall. Let us start with the total mean energy equation

for a turbulent shear flow that is not influenced by waves (Cohen and Kundu, 2002),

d(uτt)

dz
− dΠ

dz
− ε(z) = 0. (16)
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The product uτt in the first term describes the energy flux due to the turbulent stress

acting on the mean flow, Π = (p′w′ + ρa
1

2
w′(u′2 + w′2 + v′2)) is the mean vertical energy flux

associated with turbulent fluctuations, and the last term, ε, denotes the dissipation rate of

turbulent kinetic energy. Similar to traditional turbulence models close to a solid wall, we

neglect the divergence of the flux Π in the further analysis. The simulation of airflow over

non-breaking waves also suggests that the divergence of Π is not the dominant term in the

balance equation of turbulent kinetic energy (Makin and Mastenbroek , 1996). Then, the

total mean energy equation for traditional wall layer turbulence can be written as

d(uτt)

dz
− ε(z) = 0. (17)

Based on the observation that eddies lose their kinetic energy roughly during a turning

period, the dissipation rate can be estimated by

ε =
τ

3/2

t

ρ
3/2
a κz

, (18)

where κ = 0.4 is the von Kármán constant, τt = ρa[u
l
∗
]2 ∼ 1

2
ρa(|u′|2 + |v′|2 + |w′|2) is a scale

for the kinetic energy of the eddy, and τ
1/2

t (ρ1/2
a κz)−1 = ul

∗
(κz)−1 is a scale for the turning

frequency (Cohen and Kundu, 2002). We will follow Hara and Belcher (2004), who use this

parameterization to model the losses of turbulent kinetic energy in the wave boundary layer.

Without wave-induced stresses τt = τ0 = constant, so that integration of (17) yields the

logarithmic wind speed profile.

The effects of waves on the balance (17) are as follows. First, wave-induced energy fluxes,

resulting in the transfer of energy from the air to waves, need to be considered. Second, as

discussed in the previous subsection, the turbulent stress decreases towards the surface due

to wave-induced stresses; therefore, the dissipation rate also decreases towards the surface.

Third, the wave stress also acts on the mean flow, so that the energy flux uτt in (17) needs

to be replaced by u(τt + τw). The mean air-side energy equation including the wave effect,

can be written as

d[u(τt + τw)]

dz
− ε(z) − dΠw

dz
− eb(z) = 0, (19)
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where Πw denotes the energy flux induced by non-breaking waves and eb is the rate of air

energy transferred to breaking waves. The energy flux due to wave-induced motions, Πw, is

parameterized after Hara and Belcher (2004)

Πw(z) = −
∫ δ/z

0

∫ π/2

−π/2

Iw(k, θ)k dθdk. (20)

where

Iw(k, θ) = cβsβhβ(θ) k−2 c τt(z = δ/k) B(k, θ) (21)

is the spectral energy flux to non breaking waves.

Following KHB, the spectral energy flux to breaking waves is

Ib(k, θ) = ρaspβΛ Λ(k, θ) k−1 c[u(k) cos θ − c]2, (22)

and the angle integrated spectral energy flux is

Ib(k) = c
∫ π/2

−π/2

ρaspβΛ Λ(k, θ) [u(k) cos θ − c]2 dθ. (23)

Since the energy is mostly transferred at the breaking wave height a = ǫ/k, one finds

eb(z)dz = −Ib(k)dk. (24)

2.3 Wave energy conservation

In the equilibrium range for waves with wavenumbers between k0 and k1 (here we define k0

and k1 as the lower and upper bound wavenumber, respectively), the wave field is stationary

and homogeneous, so that the energy input rate due to wind forcing is balanced by the wave

dissipation rate, D, and nonlinear interactions, NL,

Iw(k, θ) + Ib(k, θ) + NL(k, θ) − D(k, θ) = 0, (25)

where Iw and Ib were specified in the previous subsection. Following Phillips (1985), we set

NL = ρw (γΛ − γ3) c3 k−2[B(k, θ)]3, (26)

D = g−1ρwb c5 Λ(k, θ). (27)
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The parameterization of the nonlinear interaction term is based on resonant interaction of

four gravity waves, where the constant coefficients γ3 and γΛ are similar to Phillips’ β and

γ, respectively. The parameterization of the dissipation term is based on the loss of energy

of a breaking wave front to turbulence and b is a constant coefficient.

2.4 Λ(B)

In order to solve the above equations for B, Λ, τt, and u, one must prescribe a functional

relationship between Λ and B. We set

Λ(k, θ) = γΛb−1k−1[B(k, θ)]3
(

1 +

[

B(k, θ)

Bsat

]n)

, (28)

where n ≫ 1. In the limit n → ∞, Λ ∝ B3 for all B < Bsat and Λ → ∞ for all B > Bsat. The

first term of the sum is based on the arguments that there is a wavenumber range in which

nonlinear interactions and dissipation are proportional to each other (Phillips , 1985). The

second term of the sum is based on the observation that Λ increases rapidly for B > Bsat

(Banner et al., 2002), where Bsat is the “threshold saturation level” (Alves and Banner ,

2003). Notice that the first term on the right hand side is dominant for B < Bsat, while the

second term dominates for B ≥ Bsat. Hence, from (26) and (27) one obtains

for B(k, θ) < Bsat

NL − D = −γ3ρwk−2c3[B(k, θ)]3 (29)

and for B(k, θ) → Bsat

NL − D = ρw (γΛ − γ3) c3 k−2B3
sat − g−1ρwb c5 Λ(k, θ). (30)

From the wave energy equation (25) with (22) and (21), one may express B and Λ in

terms of wind properties for B(k, θ) < Bsat and sβ = 1

B(k, θ) =

(

cβb hβ(θ)
τt(z = δ/k)

ρwbγ3c2 − spβΛγΛρa(u cos θ − c)2

)1/2

(31)

Λ(k, θ) = γΛb−1k−1[B(k, θ)]3 (32)
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and for B(k, θ) → Bsat

B(k, θ) = Bsat (33)

Λ(k, θ) =
sβcβ τt(z = δ/k) hβ(θ) + ρw (γΛ − γ3) c2 B2

sat

ρwb c2 − spβΛ [u(k) cos θ − c]2 ρa

Bsatk
−1.

(34)

Note that the equilibrium range spectrum for short waves (33) is consistent with the

equilibrium range model used by Jenkins (1993) to calculate momentum air-sea fluxes.

2.5 Governing advance-delay equations

2.5.1 Relation between height and wavenumber

Unlike the models of Hara and Belcher (2002, 2004) or KHB, which consider the wind

input to either breaking or non-breaking waves, at height z momentum and energy can be

transferred to waves at two different wave scales. To determine changes in the air momentum

and energy balances, (6) and (19), respectively, from height z to height z + dz, momentum

and energy is transferred to non-breaking waves at a wavenumber k = δ/z and to breaking

waves at a wavenumber k = ǫ/z. Furthermore, consider the wind input terms in the wave

energy equation (25) at a single wavenumber k. The input term to non-breaking waves (21)

requires the turbulent stress evaluated at the inner layer height z = δ/k. In contrast, the

input term to breaking waves (22) depends on the wind speed evaluated at the wave height of

the breaker z = ǫ/k. In the following discussion, we will derive the governing advance-delay

equations, reflecting that derivatives in z (or in k) of the turbulent stress and wind speed

at a given height (or wave scale) depends on terms evaluated at lower and higher heights as

well (or smaller and grater wave scales).

The breaking height z = a(k) = ǫ/k can be uniquely related to k, so that

z(k) =
ǫ

k
. (35)

Furthermore, we define the turbulent stress evaluated at the breaking height

τt(k) = τt(z = ǫ/k) (36)
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and the ratio of the inner layer height and the breaking height

δǫ =
δ

ǫ
< 1. (37)

Substitution of (11) and (15) into (6) yields, after differentiation with respect to k,

d(τt)

dk
+

∫ π/2

−π/2

ρaspβΛ Λ(k, θ) [u(k) cos θ − c]2 cos θ dθ

+
∫ π/2

−π/2

sβcβhβ(θ)τt(k) B(δǫk, θ) k−1 cos θdθ = 0. (38)

Substitution of (20) and (23) into (19) yields

d[u(τt + τw)]

dk
+

∫ π/2

−π/2

ρaspβΛ Λ(k, θ) c[u(k) cos θ − c]2 dθ

+
∫ π/2

−π/2

c(δǫk)sβcβhβ(θ)τt(k) B(δǫk, θ) k−1 dθ +
τ

3/2

t

κkρ
1/2
a

= 0. (39)

Note that δǫk refers to a longer wave with an inner layer height z = ǫ/k. The wave energy

equation (25) becomes

ρaspβΛ Λ(k, θ) c[u(k) cos θ − c]2 + sβcβhβ(θ) c τt(k/δǫ) B(k, θ) k−1 +

ρw (γΛ − γ3) c3 k−1[B(k, θ)]3 = ρwb c3 Λ(k, θ). (40)

Note that the turbulent stress evaluated at the inner layer height δ/k is τt(k/δǫ).

To solve these last three equations for wavenumbers between k0 and k1 (corresponding

to breaking wave amplitudes of ǫ/k1 to ǫ/k0), one needs to specify B between δǫk0 and k0

in equations (38) and (39). Furthermore, to solve the wave energy equation (40) for waves

between k0 and k1, one needs to specify τt(k) between k1 and k1/δǫ.

2.5.2 Non-dimensional variables

We introduce the following non-dimensional variables,

dK =
dk

k
(41)

S =
τt

ρac2
(42)

Sw =
τw

ρac2
(43)
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U =
u

c
(44)

b′ =
ρw

ρa

b. (45)

Here, K is the non-dimensional wavenumber linear in log k, S is the normalized turbulent

stress, Sw is the normalized wave stress, and U is the normalized mean wind speed. Fur-

thermore, the following model parameters are defined:

γ2 =
βΛ

b′
(46)

µ2 =
ρac

3
β

ρwγ3

(47)

µ2
Λ =

ρac
3
β

ρwγΛ

(48)

nNL =
γ3 − γΛ

γ3

(fraction of NL input) (49)

µΛ =
µ√

1 − nNL

(50)

∆ = − log(δǫ) > 0. (51)

The first terms in (38) and (39) become

d(τt)

dk
= c2k−1ρa

(

dS

dK
− S

)

, (52)

d[u(τt + τw)]

dk
= (τt + τw)

du

dk
+ u

dτb

dk

= c3k−1ρa

[

(S + Sw)

(

dU

dK
− 1

2
U

)

− Uc−2ρ−1
a

dτb

dK

]

. (53)

After multiplying equation (38) by ρ−1
a kc−2 and (39) by ρ−1

a kc−3, the non-dimensional air

momentum and air energy equations are expressed as

dS

dK
= S − Mb − Mw (54)

dU

dK
=

1

2
U − (S + Sw)−1

(

Eb + δ−1/2
ǫ Ew − UMb + κ−1S3/2

)

(55)

which need to be solved for S and U . Note that the equation for U contains Sw which is

calculated as

dSw

dK
= Sw + Mw. (56)
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The normalized flux terms in the governing non-dimensional equations are

Mb =
∫ π/2

−π/2

sp[kβΛ Λ(K, θ)] [U cos θ − 1]2 cos θ dθ (57)

Mw = S
∫ π/2

−π/2

sβcβB(K − ∆, θ) hβ(θ) cos θdθ (58)

Eb =
∫ π/2

−π/2

sp[kβΛΛ(K, θ)] [U cos θ − 1]2 dθ (59)

Ew = S
∫ π/2

−π/2

sβcβ B(K − ∆, θ) hβ(θ) dθ (60)

From the wave energy equation (40) and the relation Λ(B) from (28), one further obtains

expressions for B and Λ in non-dimensional variables.

For B(K, θ) < Bsat and sβ = 1

cβB(K, θ) =

(

δǫS(K + ∆)
hβ(θ)

µ−2 − γ2µ−2
Λ sp(U cos θ − 1)2

)1/2

(61)

kβΛΛ(K, θ) = γ2µ−2
Λ [cβB(K, θ)]3. (62)

For B(K, θ) → Bsat

cβB(K, θ) = cβBsat (63)

kβΛΛ(k, θ) =
γ2δǫhβ(θ) sβS(K + ∆) + γ2(µ−2

Λ − µ−2)(cβBsat)
2

1 − γ2 sp[U cos θ − 1]2
cβBsat.

(64)

In summary, our coupled wind wave model is described by the three coupled first-order

differential equations for the three variables S, U , and Sw.

The model equations (54) to (64) have the following important properties. First, with

γ = 0 and Bsat → ∞ the governing equations converge to the system without breaking

waves (Hara and Belcher , 2002, 2004). With γ = 0, but limiting Bsat, the solutions are

modified (part 2). Second, for cβ = 0, the system (54) to (64) equals the model with input

to breaking waves only (KHB). Third, although the system (54) to (64) is fully coupled, the

air-side equations (54) to (60) can be solved for any known wave field, Λ and B without

(61) to (64). In this case, only the input coefficients βΛ, ǫ for breaking waves and cβ, δ for
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non-breaking waves need to be specified. Furthermore, for given Λ and B, solutions will be

self-similar in cβB, βΛΛ.

In solving the full system (54) to (64), the term S(K + ∆) in (61) and (64) introduces

an “advance” term. In addition, evaluation of (58) and (60) using (61) introduces a “delay”

term U(K − ∆). To understand the physical origin of the advance-delay terms see also the

discussion of the previous subsection. The solution to such advance-delay equations differs

from solutions of ordinary differential equations, since the solution depends not only on the

boundary conditions at some k with k0 ≤ k ≤ k1, but generally also on some specified S

for k > k1 and specified U for k < k0. As there are no standard solvers for advance-delay

equations available, we propose a simple method of solution in the Appendix A.

2.6 Estimates of parameters

In this section we will show that model results depend on six key parameters: two height

coefficients, two wave input coefficients, and two coefficients that are related to the wave

height spectrum. Originally, the model depends on eight physical coefficients cβ, δ, γ3, γΛ,

Bsat, βΛ, ǫ, and b. For the normalized system of equations, the number of coefficients is

reduced to five model parameters ∆, cβBsat, µ, µΛ, and γ. We will next consider how this

multi-dimensional parameter space can be constrained in a physically meaningful way.

First, the effect of the non-linear wave-wave interactions (γ3 6= γΛ and µ 6= µΛ) will be

analyzed in detail only in subsection 3.4, so that γ3 = γΛ, and µ = µΛ unless noted otherwise.

Second, although there are two physical coefficients, βΛ and b, related to the breaking

wave dynamics, they affect just one model parameter γ =
√

βΛρa/bρw that depends on the

ratio of the two. In fact, γ can be interpreted as a measure of net energy and momentum

input to breaking waves. The following discussion is therefore focused on this parameter

γ instead of βΛ and b. The value of b will be only necessary for determining the absolute

value of the breaking statistics Λ for comparison with observations. We set b = 0.01 for

that purpose, which is consistent with the range (from 0.003 to 0.07) estimated by Melville

(1996).
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Third, the physical coefficient γ3 and the model coefficient µ are both related to the

Phillips (1985) wave height spectrum coefficient αp, which determines the wave spectrum

level closer to the spectral peak (see Appendix C).

In summary, our solutions involve six critical parameters with clear physical interpreta-

tion: two height coefficients ǫ and δ, determining the input heights to breaking and non-

breaking waves; two input coefficients γ and cβ for breaking and non-breaking waves; and

two coefficients µ and Bsat, controlling the spectral level. These six physical parameters then

determine the four model parameters, ∆, cβBsat, µ, and γ.

2.6.1 Two height coefficients

The input height coefficient to breaking waves is the breaking wave slope, which ranges from

0.1 to 0.5 (Melville, 1996) and is held constant at the intermediate value ǫ = 0.3 in this study.

The coefficient δ is less constrained: previous studies have assumed values approximately

between δ = 0.01 and 0.1. Here, the value of δ = 0.05 is adopted (Hara and Belcher , 2004).

2.6.2 Two input coefficients

Based on observations, the proportionality coefficient of the wave growth rate was estimated

to be cβ = 32 ± 16 (Plant , 1982). Because many theoretical studies indicate that cβ is

close to 16 for gravity waves (Belcher and Hunt , 1998), cβ is set to cβ = 25, which is

between the average value from observations and theoretical estimates. The value of the

input coefficient to breaking waves γ is difficult to constrain since our knowledge of the

breaking wave dynamics is limited. In this study we set γ = 0.07 so that our model results

of the Charnock coefficient agree with previous observations (see section 3.3). This value

is also consistent with the previously estimated range γ = 0.04 − 0.5 (KHB). The model

dependence on different values of γ is discussed in part 2.
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2.6.3 Two wave spectrum coefficients

The coefficient Bsat is the threshold of B(k, θ) where dissipation limits the saturation spec-

trum. Recent field observations suggest that Bsat is in the range 0.001 < Bsat < 0.005 with

most values likely between 0.001 < Bsat < 0.003 (Appendix C). Most observations of the

Phillips (1985) wave height spectrum coefficient range from αp = 0.06 to αp = 0.13 (Hwang

et al., 2000a), but αp can be as low as αp = 0.02 (Hara and Belcher , 2004). Based on the

analysis in Appendix C, this results in a range of µ between 0.125 and 0.813. Since the

wave field, and therefore αp and Bsat, likely depend on wind speed and sea state, αp and

Bsat generally cannot be assumed constant (Komen et al., 1996). We will therefore examine

our model results over the ranges of 0.001 < Bsat < 0.005 and 0.125 < µ < 0.813 (with the

default values of Bsat = 0.002 and µ = 0.6) in the following discussion.

In summary, we will fix the two model coefficients ∆ = 1.8 and γ = 0.07 and let the

other two model coefficients, cβBsat and µ, vary corresponding to the uncertainty of the

wave spectrum coefficients αp and Bsat. Note that if B and Λ were known, only the four

coefficients βΛ, cβ, ǫ and δ are required to solve the air-side equations (54) to (60).

3 Mature seas

Applying our model to mature, pure wind-seas allows an important simplification. Mature

seas can be classified by a wave age criterion (Drennan et al., 2003),

σ =
cp

u∗

> 20, (65)

where σ is the wave age and cp is the phase speed at the spectral peak. Since the peak

wavenumber kp < gu−2
∗

20−2 is smaller than gu−2
∗

φ2 (φ is described in (8)), non-breaking

waves close to the spectral peak are not forced by the wind. If we set k0 = gu−2
∗

φ2, the

delay terms in (58) and (60) vanish in the range δǫk0 < k < k0, allowing us to integrate

the system of equations from k = k0. Furthermore, as our results below indicate, for the

longest waves the dissipation of wave energy and the input to breaking waves for k < k0 is
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negligible. Therefore, one may practically set the wind input and dissipation for all waves

with k < k0 to zero. If k0 is far enough from the peak, so that complex dynamics close to

the peak do not significantly influence the simple wave energy balance (25), then our model

can be applied for the entire wind forced range of mature sea spectra.

The wind speed at the surface is for mathematical convenience set to zero, i.e., u = 0

at k1 → ∞. Physical solutions need to be truncated at a finite k1, where the effects of

viscosity or surface tension are significant. Previous studies have shown that the solution

is not very different if k1 is set above 400m−1 for medium to high wind speeds (Hara and

Belcher , 2004). Details on the method of finding solutions to the advance-delay differential

equations are presented in Appendix A. We will first thoroughly discuss the solutions for

the wave field, which is critical to the accurate determination of wave-induced fluxes.

3.1 Surface wave height spectrum

Before considering the full two dimensional wave height spectrum, we focus the discussion

on the angle-integrated, one-dimensional, wave height spectrum.

3.1.1 One-dimensional

A sensitivity analysis indicates that the shape of the spectrum depends mainly on the pa-

rameter µ (or αp for fixed cβ) and Bsat. The parameter µ determines the spectral level at

low k, while Bsat determines the spectral level at high k. The spectral level increases with

increasing Bsat and µ. Figure 1 shows the possible range of one-dimensional wave curvature

saturation spectra, corresponding to the lowest and highest values of Bsat and µ. Solutions

of the marginal saturation spectrum are also compared to previous observations (Melville

and Matusov , 2002; Banner et al., 1989) in Figure 2.

Our results show a distinct high and low wavenumber part, which is due to the two

regimes of the Λ function (28). At low wavenumbers, where the wind-input is proportional

to nonlinear interactions, the saturation spectrum roughly increases as k1/2, similar to the

Phillips (1985) spectrum. As B increases to Bsat at higher wavenumbers, dissipation by wave
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breaking limits B to Bsat, so that B approaches a constant value at Bsat. This is equivalent

to the hard limit of B first proposed by Phillips (1958). Therefore, this asymptote differs

physically from the asymptote found by Hara and Belcher (2002), which is due to spectral

sheltering. Theoretically, if Bsat exceeds the asymptotic limit of Hara and Belcher (2002),

B cannot reach Bsat and the model is independent of Bsat. However, our upper bound

of Bsat = 0.005 is still lower than the limit of Hara and Belcher (2002). The transition

wavenumber between the two regimes depends on both µ and Bsat. Interestingly, the wave

spectrum is quite robust and insensitive to other model parameters.

3.1.2 Two-dimensional

Even though breaking waves generally play an important role in the balance (25), the wave

height spectrum is hardly affected by breaking waves for mature seas. This is because at low

wavenumbers, breaking waves do not dominate the wind input, as simple scaling arguments

suggest (see Appendix B). For high k, on the other hand, B has already reached its constant

limit, i.e. it is not affected by the details of the dynamics described by the system (38)

to (40). In Appendix C, we show that the saturation spectrum increases with k and is

approximated by

B(k, θ) =
1

4
αp

u∗

c
cos θ (66)

until it reaches Bsat and then remains constant afterwards:

B(k, θ) = Bsat. (67)

Figure 1 indicates that these approximations are indeed very close to the solution of the full

model.

The approximate solution for B(k, θ) yields a cosine distribution of the directional spread-

ing for lower k. For high k, the directional spreading is nearly omnidirectional (Figure 3).

Qualitatively, this behavior of the spreading function is consistent with previous observations

of wind-driven gravity waves close to the spectral peak (Hwang et al., 2000b) and short wave
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spectra (Banner et al., 1989).

3.2 Breaking wave distribution

The other critical statistics concerning the wave field in the coupled wind and wave problem

is the distribution of breaking waves. Again, we will first focus on the angle integrated

distribution and then discuss the two-dimensional breaking wave distribution.

3.2.1 One-dimensional

Since the normalized governing equations yield the solution of b′Λ(k) instead of Λ(k), we first

present b′Λ(k) for different Bsat and µ in Figure 4. For any fixed wavenumber, b′Λ does not

change by more than an order of magnitude due to the uncertainties in the parameters µ and

Bsat in the examples shown in Figure 4. Close to the spectral peak, the input to breaking

waves is negligible (Appendix B). If B can be approximated by (66), Λ is proportional

to k3/2, which is indeed observed for most cases. Although there is no simple systematic

behavior of Λ at higher wavenumbers, the solutions roughly transition from k3/2 to k1 as k

increases.

Next, we compare our modeled breaking distribution with the observations from Melville

and Matusov (2002) (Figure 5), which were obtained for developed seas with wave ages

exceeding 20. Since the motion of whitecaps was observed, the measurements of Λ are

presented as a function of phase speed, so that we apply the conversion Λ(k)dk = −Λ(c)dc

using the linear dispersion relation. For high phase speeds (low wavenumbers) model results

are lower but within an order of magnitude of the observations. Note that our results can

be easily increased by adjusting the parameter b. Also, the agreement for greater c is closer,

if one assumes an enhanced phase speed of non-linear waves. For these longer waves, we

also approximately recover the Λ ∼ c−6 trend found in the observations if B < Bsat. Note

that longer, faster waves that are not directly forced by the wind, should not be compared to

theoretical estimates based on a balance between wind input and dissipation. For small phase

speeds (high wavenumbers) the power increases for both observations and model results.

23



However, the observations converge asymptotically to a c−1 trend (Melville and Matusov ,

2002), while the modeled Λ roughly transitions to c−5.

What are possible reasons for this discrepancy at high wavenumbers? First, one must

keep in mind the different definitions of Λ. Our Λ is defined based on theoretical ideas,

namely that breaking waves can be directly related to dissipation and wind input. This is

fundamentally different from the definition based on experiments (Melville and Matusov ,

2002), which is founded on the idea that the advance of a whitecap represents a breaking

wave crest. Especially for short waves, these definitions might be inconsistent, considering

for example micro-scale breakers, which do not entrain air. Only more observations will tell

if the discrepancy is due to different definitions of Λ, or if there are shortcomings in our

theory or the previous experiment (Melville and Matusov , 2002).

It is also interesting to compare our model results to previous theoretical studies. For the

default parameters, the high c asymptote c−6 (or Λ(k) ∝ k3/2) is consistent with previous

models (Phillips , 1985; Hara and Belcher , 2002), where the energy loss due to breaking is

balanced by nonlinear interactions of four gravity waves. The calculated low c asymptote for

default parameters is close to c−5, which is different from the asymptote c−3 found by Hara

and Belcher (2002). Generally, the asymptotic behavior depends on the model parameters,

as we show in part 2.

3.2.2 Directionality

Figure 6 indicates that the functional form of the directionality depends on the model param-

eters. For larger values of Bsat the directionality of the breaking wave distribution changes

relatively little with wavenumber. Close to the peak, the directionality approaches a cos3 θ

distribution for B(k, θ) < Bsat and a cos2 θ distribution for B(k, θ) → Bsat. Therefore, if

B approaches Bsat with increasing k, the directional spreading broadens slightly. For lower

Bsat, the directional spreading changes little up to k/k0 ∼ 103 and then narrows as k further

increases until Λ becomes unidirectional for the asymptotic limit k → ∞. Note that waves

with k/k0 > 103 are likely outside the surface gravity wave range for fully developed seas.
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This asymptotic limit plays an important physical role, however, for younger growing seas

(see part 2).

Our result that the dominant propagation direction of breaking waves is close to the wind

direction (θ = 0) is qualitatively consistent with the observations from Melville and Matusov

(2002). However, more observations are needed to determine if our theoretical framework is

sufficient to model the distribution of breaking waves realistically.

3.3 Air-sea momentum flux

The wave field described by the breaking wave distribution and wave height spectrum is

critical in determining the wave-induced momentum fluxes. The momentum flux is often

parameterized in terms of the drag coefficient cD that relates the total stress to the wind

speed at 10 m height,

u2
∗

= cDU2
10. (68)

For a neutrally stable atmosphere, the wind speed profile outside the wave boundary layer

is logarithmic

U10 =
u∗

κ
ln

href

z0

, (69)

where z0 is the roughness length and the reference height is href = 10m. The Charnock

coefficient is a normalized roughness length

r =
z0g

u2
∗

. (70)

Connecting the wind profile of the wave boundary layer to the logarithmic profile at z = ǫ/k0

yields

r = ǫφ−2 exp
(

−κφ−1U0

)

, (71)

where U0 = U(k0) and φ has been defined in (8). To calculate the Charnock coefficient, we

will assume that the wind stress is mainly supported by the form drag of gravity waves. This

assumption is approximately valid for moderate to high wind conditions (U10 > 10ms−1),

since the relative contribution of the viscous stress decreases with increasing wind speed

25



(Komen et al., 1996). Furthermore, for mathematical convenience, we consider asymptotic

solutions with k1 → ∞. Previous model results justify this assumption, because model results

closely approached this asymptotic limit for k1 = 400m−1 or larger (Hara and Belcher , 2004).

The sensitivity of momentum flux calculations on the input height coefficients δ and ǫ

as well as the input coefficients cβ and γ is thoroughly discussed in Kukulka (2006). Here,

we will adjust γ to be consistent with previous observations of the Charnock coefficient.

Generally, observed Charnock coefficients for fully developed seas (with σ = 20 − 30) have

large uncertainties; observations to date span the range r = 0.008 − 0.5 (Jones and Toba,

2001). Aside from the fact that r might not be uniquely related to σ even for pure wind-

seas, part of this wide range is due to significant measurement errors as well as measurements

taken for confused seas or unsteady wind conditions. Keeping in mind the large uncertainty,

we will next discuss “mean” values, based on best fits to the scattered observations. A best

fit to compiled data sets taken prior to 2000 yields a Charnock coefficient between r = 0.014

and r = 0.037 for fully developed seas (Jones and Toba, 2001). Focusing on single-peaked

wave spectra from a particular field program, results in a Charnock coefficient between

0.016 and 0.024 (Smith et al., 1992). This range agrees with r = 0.018, which accurately

models the momentum transfer from wind to ocean for a different field experiment (Johnson

et al., 1998). More recently, for carefully selected data sets of pure wind seas, Charnock

coefficients have been determined to be r ≈ 0.01 for σ = 20 (with most observations in

the range of r = 0.004 − 0.05) (Drennan et al., 2003). The most recent empirical formula

based on the compilation of major data sets from field campaigns yields r = 0.016, 0.021 for

U10 = 10, 20ms−1, respectively (personal communication with Prof. James Edson).

Based on these previous investigations, we may assume that the Charnock coefficient for

fully developed seas takes a value close to r = 0.015 for mean observed conditions. Imposing

a normalized roughness length of r = 0.015 for mature ocean conditions, results in a breaking

wave input coefficient of γ = 0.07 with the default values of the wave spectrum coefficients,

µ = 0.6 and Bsat = 0.002. Therefore, we have set by default γ = 0.07 throughout this study.

This value of γ is within the estimated range of KHB, but lower than their default value.
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In the following subsection we will show that the momentum flux to breaking waves

depends critically on the wave height spectra.

3.3.1 Effect of wave height spectrum

As discussed above, measured wave height spectra show some variability in the parameters

µ (or αp) and Bsat, which determine the spectral levels at low and high k, respectively.

Systematic changes of µ and Bsat with environmental conditions result in variations of r. We

therefore investigate the sensitivity of momentum flux calculations towards the combination

of minimum and maximum values for the parameters µ and Bsat (first nine rows and first

five columns in Table 1). Generally, an elevated saturation spectrum (elevated µ and Bsat)

increases the momentum fluxes into non-breaking waves and enhances the total momentum

flux, while the relative input to breaking waves decreases. For Bsat ≤ 0.002, the limiting

value Bsat is quickly reached so that the value of µ has only a small effect on the overall

momentum flux. The specific values of Bsat and µ determine, whether the wave form drag

is dominated by breaking or non-breaking waves. For example, with µ = 0.6 (default) and

Bsat = 0.005 the momentum flux to non-breaking waves dominates. With the same µ, but

Bsat = 0.001, on the other hand, the input is dominated by breaking waves.

3.3.2 Comparison to models without breaking waves

Starting from the theory without input to breaking waves and Bsat → ∞ (Hara and Belcher ,

2002, 2004), modeled Charnock coefficients are 0.011-0.093 (last three rows of the last column

in Table 1), somewhat larger than mean observations. If we introduce the limiting Bsat =

0.002, but still neglect the input to breaking waves, modeled Charnock coefficients are now

too low (0.002-0.004). Only if the input to breaking waves is included, does the modeled

Charnock coefficient increase to 0.011 - 0.015 and agree with observations. Interestingly, an

elevated Bsat could compensate for neglecting the breaking wave effect to yield a Charnock

coefficient that is consistent with observations, although the wind input to the wave field

would be physically very different (for example, compare r with and without breaking waves
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for Bsat = 0.002 and Bsat → ∞ with µ = 0.125, fourth and tenth row in Table 1). Without

the effect of breaking waves, the total momentum flux is more sensitive to the spectral level

at high k. Overall, our results indicate that the spectral shape as well as modeling the input

to breaking waves is critical to determine the total air-sea momentum flux.

3.3.3 Wind speed and stress profiles

Figures 7 to 9 shows the modeled wind speed and stress partitioning as a function of z

normalized by the wave boundary layer height zT = ǫ/k0. These results clearly indicate that

the input to both breaking and non-breaking waves is significant. Note that near the wave

boundary layer height (z/zT ≈ 1) the solution for the turbulent stress follows closely the

previous theoretical estimate (Hara and Belcher , 2002), indicating the dominance of non-

breaking waves for longer waves. At very low levels, on the other hand, the wind speed follows

approximately the analytic solution from KHB, suggesting that breaking waves dominate the

wave energy input for very short waves. Figure 7 indicates that a significant fraction is fluxed

to short breaking waves very close to the surface.

Although our solution has been obtained without a fixed wavenumber upper limit (k1 →

∞), the theory should not be applied in the capillary wave range or in the viscous sublayer.

The height of the viscous sublayer can be estimated by zν ≈ 5νau
−1
∗ν , where νa denotes the

kinematic viscosity of air and u∗ν is the viscous friction velocity (Cohen and Kundu, 2002).

For u∗ = 1ms−1 (U10 ≈ 20ms−1) and a viscous stress close to 25% of the total stress (see

Figure 7), we find zν/zT = 5ǫ−1νagφ2u−2
∗

u−1
∗ν ≈ 2× 10−5, which is close to the lowest heights

shown in Figure 7. Therefore, only the input heights of the smallest forced waves shown in

Figure 7 are close to the viscous sublayer height. Note that zν/zT further decreases with

increasing wind speed.

Next we consider the amplitude zc of the smallest breaking gravity wave. Assume the

shortest breaking wave is at k1 = 360m−1, so that the normalized input height to breaking

waves is given by zc/zT = k0/k1 ≈ 10−4 for u∗ = 1ms−1. Therefore, the lowest part of Figure

7 may be modified due to the capillary effect. Note that at this height the wave-form drag
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contributes about 50% to the total stress. Furthermore, zc/zT decreases with increasing u∗,

so that the total wave-form drag must increase with u∗ (Figure 7). In particular, Figure

7 indicates that the relative contribution of breaking waves to the total wave form drag

increases with wind speed.

KHB and Kukulka (2006) have shown that the spatial sheltering effect can modify the

dynamics close to the surface, and therefore the details of the wind speed and stress parti-

tioning. However, the sheltering hardly affects the drag coefficient of mature seas.

3.4 Nonlinear wave-wave interactions

Nonlinear wave-wave interactions are parameterized by (26) with γΛ 6= γ3. Nonlinear interac-

tion alters Λ for longer waves because nonlinear interactions and dissipation are proportional

to one another, and their sum is proportional to the coefficient µ. For fixed µ, an elevated

coefficient nNL increases µΛ in (50). This causes a weakening of the breaking wave effect in

(61) and a decrease of Λ in (62) for B < Bsat, where the breaking wave influence is already

relatively small. Lowering the value of nNL, on the other hand, leads to a relative increase

in Λ and the breaking wave effect for B < Bsat. For B → Bsat the balance (64) can be

dominated by dissipation and input to breaking waves, so that nonlinear interactions are

negligible. For nNL → 1 (nonlinear interactions completely balance the wind-input), results

are nearly unaltered compared to the results obtained for nNL = 0, except that the breaking

distribution approaches zero where B < Bsat. Similarly, nNL = −1 (nonlinear interactions

provide as much energy input as the wind-input) alters Λ only at low k, where Λ increases

approximately by a factor of two. Results for the Charnock coefficient are nearly independent

of nNL (changes less than 1%).

4 Summary and conclusions

We have developed a coupled wave and wind model that incorporates the enhanced form drag

of breaking waves. Combining the approaches by Hara and Belcher (2002,2004) and KHB,
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the model is based on wave energy conservation and energy and momentum conservation in

the wave boundary layer. These conservation principles lead to a system of coupled non-

linear advance-delay differential equations governing the wind speed, turbulent wind stress,

wave height spectrum, and breaking wave distribution. To close the system of equations,

we introduce a relationship between the wave height spectrum and the breaking wave dis-

tribution. For low values of B, this relationship is based on four-wave nonlinear interactions

being proportional to dissipation (Phillips , 1985). As B increases beyond a threshold, the

wave height spectrum is dissipation limited (Phillips , 1958).

The system of equations has been solved numerically for mature seas with wave ages

greater than 20 (Drennan et al., 2003), where the wind forcing is only significant for shorter

waves away from the spectral peak (in the equilibrium range). Our model predicts a transi-

tion of the saturation spectrum from k1/2 to k0 at higher wavenumbers, and thus reconciles

the two asymptotic limits of Phillips (1985) and Phillips (1958). The directional spreading

changes from a cosine distribution relatively close to the spectral peak to an omnidirectional

distribution at higher wavenumbers. The effect of breaking waves on the wave height spec-

trum is weak. The relationship between the one-dimensional breaking distribution and wave

scale (expressed in k or c) depends on the particular set of parameters. Generally, Λ as

function of c is approximately proportional to c−6 for longer waves and proportional to c−5

for intermediate scale waves.

Finally, we have estimated the sensitivity of the Charnock coefficients (normalized rough-

ness length) on wave parameters for mature seas. Based on model results, it is likely that

breaking waves support roughly 6 to 75% of the total wave form drag depending on the wave

field. Therefore, to accurately model air-sea momentum fluxes, one must account for the

enhanced from drag of breaking waves. Both the total momentum flux (drag coefficient) and

the stress partitioning depend sensitively on the representation of the wave height spectrum.

Hence, understanding systematically the dependence of wave spectra on wind speed and sea

state is critical to improve predictions of the total wind stress over the ocean surface. In

Part 2 we will apply our model to a wide range of wind and wave conditions.
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A Numeric solutions

In order to solve the system (54) to (60) on the interval [K0, K1] (corresponding to waves

with wavenumbers between k0 and k1 and heights between ǫ/k1 and ǫ/k0), we first choose

a grid of N points xj on [K0, K1], where j = 1...N , x1 = K0 and xN = K1. Next we

approximate the solution S, U , and Sw by (N − 1) cubic polynomials Sj, Uj, and Swj, which

interpolate the solution and its first derivative at both ends of the interval [xj, xj+1]. Since

the solution is estimated globally, the advance delay terms can be calculated explicitly. The

polynomials are expressed as their Hermite presentation, so that for each xj there are six

coefficients that approximate the solution S, U , Sw and its derivative (see, e.g., Shampine

et al. (2000)).

To determine the 6 × N coefficients, we specify the three boundary conditions for S, U ,

Sw and impose that the approximate solution satisfies (54) to (64) at each xj and midpoint of

[xj, xj+1] (“collocation equations”). The system of 6×N − 3 non-linear algebraic equations

is solved numerically using a damped, modified Newton’s method (Ascher et al., 1988).

The grid spacing is determined empirically, so that solutions are sufficiently accurate and

converging, typically (xj+1 − xj) is set to 0.2. K1 is gradually increased until the solution

becomes independent of the upper boundary condition.

For mature seas the longest forced wave is at k0 = g/u2
∗
(0.07)2 (Plant , 1982), so that

S0 = (0.07)2. Furthermore, Sw(K0) = 0, since no waves with k < k0 are forced. The delay

terms in (58) and (60) vanishes for K < K0, so that for K between K0 −∆ and K0 there is

no input to non-breaking waves. The wind speed close to the surface is set to zero at K1−∆.

Therefore, there is no input to breaking waves at heights corresponding to K between K1−∆

and K1, so that the advance term in (61) to (64) vanish.
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B Effect of breaking waves close to the spectral peak

Based on a scaling argument, one can show that for fully developed seas the energy input to

breaking waves close to the lower wavenumber limit k0 is small relative to wave dissipation.

The maximum input (at θ = 0) to breaking waves normalized by the wave energy loss is

Ib

D
= γ2 (u/c − 1)2. (72)

Evaluation of this expression close to k = k0, where τt(k0) ≈ τ0, results in

[

Ib

D

]

k0

= γ2

(

u

u∗

√

S0 − 1
)2

. (73)

An upper bound for the input to breaking waves is given by an upper bound of the wind

speed, umax, i.e.,
[

Ib

D

]

k0

≤ γ2

(

umax

u∗

σ−1
0 − 1

)2

. (74)

The maximum wind speed can be estimated by a lower limit of the Charnock coefficient, say

r0 ≈ 0.008, so that umax = u∗

κ
ln ǫg

k0u2
∗
r0

. Substitution of this results in

[

Ib

D

]

k0

≤ γ2S0

[

1

κ
ln

ǫ

r0

− 1

κ
ln S0 − S

−1/2

0

]2

. (75)

With S0 = (0.07)2 and ǫ = 0.3 the right hand side of the inequality is about 0.1% and

6% for γ = 0.07 (default value) and γ = 0.5 (upper bound), respectively. Therefore, the

wind input to breaking waves close to the spectral peak is not a dominant term in the wave

energy balance. Notice also that the upper limit increases with decreasing wave age until

it approaches one, suggesting that the input to breaking waves close to the dominant wave

may increase for younger seas.

C Approximation of the saturation spectrum and es-

timates of µ and Bsat

In Appendix B we have shown that the input to breaking waves is negligible near the lower

wavenumber bound k0. Since the turbulent stress is not significantly reduced for waves near
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k0 (see Figures 7 to 9), the wave spectrum can be approximated from (31) [with hβ = cos2 θ

and µ defined in (47)]. For µc−1
β

u∗

c
cos θ < Bsat

B(k, θ) = µc−1
β

u∗

c
cos θ (76)

On the other hand, once the saturation spectrum approaches Bsat,

B(k, θ) = Bsat. (77)

Figure 1 shows that the combination of these two approximations is close to the solution of

the full model.

The coefficients µ and Bsat are adjusted to be consistent with previous observations of

the wave spectrum.

C.1 µ

Phillips (1985) introduces a parameterization of the saturation spectrum

B(k, θ) =
αp

4
g−1/2u∗k

1/2 cos θ. (78)

Comparing this equation to (76), his coefficient αp is related to our model coefficient µ such

that

αp =
4µ

cβ

. (79)

C.2 Bsat

Our model result suggests that B(k, θ) will converge to Bsat for high k. Therefore, we will

match Bsat to observations of B ≈ constant. Banner et al. (1989) measured wavenumber

spectra of short gravity waves (λ = 0.2− 1.6m or k = 4− 31m−1), using stereophotography.

They found B(k, θ) ≈ 0.0012. Banner et al. estimate the spectrum for all angles between 0

and 360◦. Note that there is a 180◦ ambiguity for Fourier transforms on stationary images.

Since in our theory waves cannot propagate against the wind direction, we take Bsat ≈ 0.0024.
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More recently, Melville and Matusov (2002) measured the wavenumber spectrum along

a flight track in upwind and downwind directions for waves between k = 0.1 − 3m−1,

Ψx(kx) =
∫

∞

−∞

Ψ(kx, ky)dky

=
∫

∞

−∞

B(k)k−4h(k, θ)dky, (80)

where Ψx denotes the marginal spectrum and k =
√

k2
x + k2

y, and θ = arctan(ky

kx

). In the

high k limit, one may approximate the marginal spectrum from our solution by

Ψx(kx) =
∫

∞

−∞

Bsatk
−4dky

= Bsat

∫

∞

−∞

(

k2
x + k2

y

)

−2

dky

=
π

2
Bsat k−3

x . (81)

From Melville and Matusov (2002) spectrum, we find for k > 0.4m−1, k3
xΨx = (1.6 ± 0.4) ×

10−3, which results in Bsat = (1.0 ± 0.3) × 10−3. Note that if the angular spreading is not

omnidirectional, the estimate for Bsat will increase. For example, for B(k, θ) = Bsat cos2 θ,

Bsat = (1.4 ± 0.4) × 10−3. Also, Bsat might be underestimated if the wavenumber range

is too close to the spectral peak, so that B(k) still increases with k (as found by Melville

and Matusov for k > 20/m). If frequency spectra in the saturation range are converted

to wavenumber spectra via the dispersion relation, B(k) is approximately B(k) ≈ 0.006

(Phillips , 1977). Assuming an omnidirectional spreading function, Bsat results in Bsat ≈

0.002. Banner et al. (2002) found a threshold for the saturation spectrum in the frequency

range ω/ωp = 1 − 2.48, above which the breaking probability significantly increases. Their

data suggest that B(k) does not exceed 0.006, corresponding roughly to B(k, θ) < 0.002.

In summary, observations indicate that Bsat likely is between 0.001 and 0.003. However,

since Bsat was also inferred from one-dimensional spectra and since an assumed angular

distribution that peaks in the wind direction increases Bsat relative to the omnidirectional

distribution, we assume a generous upper bound of Bsat,max = 0.005.
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Tables

Bsat µ τw/τ0(%) τb/τ0(%) r r(γ = 0)

0.001 0.125 25 75 0.009 <0.001

0.001 0.6 29 71 0.009 <0.001

0.001 0.813 29 71 0.009 <0.001

0.002 0.125 42 58 0.011 0.002

0.002 0.6 55 45 0.015 0.004

0.002 0.813 56 44 0.015 0.004

0.005 0.125 69 31 0.015 0.006

0.005 0.6 92 8 0.037 0.030

0.005 0.813 94 6 0.041 0.036

∞ 0.125 83 17 0.019 0.011

∞ 0.6 99 1 0.076 0.074

∞ 0.813 100 0 0.093 0.093

Table 1: Charnock coefficient r for smallest, default, and greatest values of Bsat and µ.

Other parameters are cβ = 25, γ = 0.07, δ = 0.05, ǫ = 0.3. The stress partitioning between

breaking and non-breaking waves is calculated under the assumption that the total stress is

supported by the wave form drag (high wind conditions). The last column shows the results

without wind input to breaking waves (γ = 0).
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Figure 1: One-dimensional saturation spectrum B(k) as a function of k/k0. Black lines are

solutions for different µ and Bsat. Grey lines are asymptotic solutions.
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Figure 2: Comparison of model result for marginal saturation spectrum at U10 = 10ms−1

with observations. Black lines are model results for different µ and Bsat (compare Figure 1),

previous observations from Melville and Matusov (2002) for U10 = 13.6ms−1 (dark gray thin
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Figure 3: Directionality of the modeled saturation spectrum for Bsat = 0.002 and µ = 0.6.
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Figure 7: Modeled wind stress partitioning (left panel) and wind speed profile (right panel)

for µ = 0.6, Bsat = 0.002. Analytic solutions HB (Hara and Belcher , 2002, 2004), KHB

(Kukulka et al., 2007). The top of the wave boundary layer is at zT = ǫ/k0.
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Figure 8: Same as Figure 7, except Bsat = 0.005 (non-breaking dominated).
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Figure 9: Same as Figure 7, except Bsat = 0.001 (breaking dominated).

50




