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[1] Accurate knowledge of the air-sea momentum flux plays a critical role in ocean-
atmosphere modeling. In this study we investigate the momentum flux budget at an air-
water interface in the presence of wind-driven gravity-capillary waves. At the air-sea
interface the total momentum flux (wind stress) partitions into viscous and wave-induced
stress; the latter transfers momentum into surface waves. We estimate the wave growth
rate (momentum transfer rate into waves) to close the momentum flux budget, using
previous laboratory measurements of total and viscous stress, as well as surface wave
spectra. The wave-induced stress is computed via a parameterized wave growth rate,
which is proportional to the turbulent stress divided by the wave-phase speed squared. The
constant of proportionality is then determined under two different assumptions. The first
assumption (nonsheltering assumption) is that the turbulent stress is equal to the total wind
stress. In the second assumption (sheltering assumption) the wave growth rate is
determined by the local turbulent stress, which is a reduced turbulent stress due to the
presence of longer waves. Both assumptions yield simple closed form expressions for the
stress-partitioning ratio (ratio between the total stress and the viscous stress). With the
sheltering assumption the growth rate agrees with previous theoretical and empirical
estimates. Without sheltering, the growth rate is significantly lower than previous
estimates. Therefore our results indicate that the growth rate of surface waves is
determined by the local, reduced turbulent stress rather than the total wind stress.
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1. Introduction

[2] Accurate knowledge of the air-sea momentum flux is
integral to ocean-atmosphere modeling. At the air-water
interface the total momentum flux partitions into viscous
stress and wave-induced stress. The wave-induced stress is
mainly due to the pressure force acting on a sloping
interface and transfers momentum into surface waves. The
momentum flux from wind to a particular Fourier wave
component is determined by the wave growth rate, b,
defined as the momentum transfer rate from wind to waves
per unit wave momentum. Therefore b represents a key
quantity in the air-sea momentum flux budget analysis.
[3] Plant [1982] compiled observed growth rates from

earlier studies and found that b normalized by the wave
frequency is proportional to the total wind stress divided by
the phase speed squared. The constant of proportionality, cb,
was determined by Plant [1982] with large uncertainties of
±50%. Consequently, it is of great interest to the ocean-
atmosphere wave modeling community to reduce these
uncertainties.
[4] Recent analytical and numerical calculations (see

review section 7.2 by Belcher and Hunt [1998]) predict
the cb consistently lower than Plant’s estimate for surface

gravity waves. These calculations and Plant’s parameteriza-
tion do not explicitly include viscous effects; although for
short surface waves viscous, stresses might play a crucial
role in the energy transfer from wind to waves [Miles,
1962]. Harris et al. [1996] concluded from a numerical
modeling study that viscous effects are important in wave
growth. By introducing a second-order turbulence closure
that takes viscous effects into account, Meirink and Makin
[2000] numerically simulated air flow over waves and
showed that the wave growth rate depends on the Reynolds
number, Re (defined by the ratio of friction velocity times
wavelength to kinematic viscosity of air). Their model
results are consistent with the analytical model from van
Gastel et al. [1985], who solved the Orr-Sommerfeld
equation to determine growth rates for gravity-capillary
waves, using asymptotic methods.
[5] Another factor determining cb is the wave sheltering:

if longer waves ‘‘shelter’’ shorter waves, cb needs to
increase to support the same momentum flux into the
waves. Belcher and Hunt [1993] showed with an analytic
model for slowly moving waves that the dominant contri-
bution to wave growth results from the undulating wave
shape. The wave undulation induces an asymmetric pres-
sure perturbation because of the Reynolds shear stress in a
small layer above the surface (the ‘‘inner region’’). Conse-
quently, the wave growth rate depends on the turbulent
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stress inside the inner layer, which is called the local
turbulent stress [Makin et al., 1995; Belcher, 1999; Makin
and Kudryavtsev, 1999]. If the vertical extent of the stress
induced by longer waves exceeds the inner region height of
shorter waves, longer waves effectively reduce the turbulent
stress that is felt by shorter waves and thereby the longer
waves shelter shorter waves [Makin et al., 1995].
[6] Previous measurements of the growth rate of short

wind waves were made in controlled laboratory settings by
observing the initial wave growth just after the onset of the
wind. Larson andWright [1975]measured growth rates using
microwave backscatter for wind-driven gravity-capillary
waves.Kawai [1979] found that initial wind-generated wave-
lets grew exponentially. More recently, Uz et al. [2003]
measured growth rates of gravity-capillary waves in oblique
directions relative to the wind. Overall, the observed growth
rates are consistent with the growth rates determined by
Meirink and Makin [2000].
[7] All these observational studies estimated the growth

rate by focusing on the initial stage of the wave growth
when the effects of the nonlinear wave interaction and wave
breaking are negligible. In this study, we use the overall
momentum flux budget to estimate the growth rate. One of
the objectives of the paper is to investigate the sensitivity of
the stress partitioning on the sheltering and nonsheltering
assumptions. Our approach is possible because of the recent
theoretical and observational advancement of the stress
partitioning at the air-water interface. We derive simple
analytical formulas for the ratio of viscous to total stress
that depend only on the wave field and cb. The experiment
by Banner and Peirson [1998] provides measurements of
the total stress, viscous stress and the wave field. With the
experimental data we may estimate the coefficient cb.
[8] Waves of all scales (not just peak waves) may

contribute to the overall wave induced stress. Therefore it
is important to integrate the contributions from the entire
wave spectrum. Our approach is based on the assumption
that linear theory can be applied to model the momentum
flux from wind to each wave spectral component. Unlike
the initial wavelets observed by Kawai [1979], the strongly
wind-forced waves of the experiment by Banner and
Peirson [1998] show nonlinear features, such as wave
breaking, particularly in the peak region of the spectrum.
Still, we believe that the linear theory can be applied
provided that a significant fraction of the momentum flux
is supported by shorter waves away from the spectral peak.
Last, our approach is data driven, so that nonlinear effects
could be implicitly modeled through the fitting parameter cb
(e.g., if breaking waves enhance the momentum flux, cb
must be elevated).

2. Stress Partitioning at the Air-Sea Interface

[9] We start with the assumption that the surface wave
field is a linear superposition of sinusoidal wave compo-
nents. For a continuous spectrum of waves the dimensional
input rate of momentum to waves is defined by

b k; qð Þ ¼ M k; qð Þ
rwwY k; qð Þ ð1Þ

where Y is the two dimensional wave number spectrum, rw
denotes the density of water, and w is the frequency of a

wave component. The denominator is the spectral wave
momentum density while the numerator, M, represents the
spectral momentum flux density into the waves with wave
number k and propagating in the direction q relative to the
wind. The vertical momentum flux into the waves along the
wind direction can be expressed as

tw ¼
Z 1

0

Z p=2

�p=2
M cos qkdqdk ¼ rw

Z 1

0

Z p=2

�p=2
bwkY cos qdqdk:

ð2Þ

In (2) we assume for simplicity that all the waves propagate
in angles between �p/2 and p/2 relative to the wind
direction. At the air-water interface the total momentum
flux, t0, partitions into a viscous stress, tn, and wave
induced stress, tw,

t0 ¼ tn þ tw: ð3Þ

2.1. Wave Growth Rate

[10] To calculate the wave-induced stress via (2), we set
the growth rate to

b k; qð Þ ¼ cbw
tb
rwc2

hb qð Þ; ð4Þ

where, c is the wave-phase speed, and hb(q) = cos2q is the
directionality of the wave growth rate. As discussed below,
tb(k) denotes the turbulent stress that determines the wave
growth of waves at k. This parameterization is consistent
with laboratory and field data [Plant, 1982], numerical
model results by Mastenbroek et al. [1996], and is also in
agreement with theoretical estimates [e.g., Belcher and
Hunt, 1993]. In addition, this form allows easy comparison
among growth rates because it is often used in the literature
[e.g., Belcher and Hunt, 1998; Makin and Kudryavtsev,
1999; Meirink and Makin, 2000; Uz et al., 2002]. In this
study we assume that cb is a function of Re only and is
constant for large Re, i.e., for gravity waves (see discussion
below). Note that cb is a ‘‘bulk parameter’’ that hides
important wave growth mechanisms such as the effects due
to the undulating shape of the wave, the nonzero velocity at
the surface of the wave, and a variable surface roughness
[Belcher and Hunt, 1993]. In addition, the value of cb may
depend on wave sheltering [Makin and Kudryavtsev, 1999].
Simple analytic formulas for the ratio of the viscous to total
stress highlight the difference between sheltered and
nonsheltered waves.

2.2. No Sheltering

[11] In Plant’s original formula the turbulent stress tb
that determines the wave growth rate is assumed to be
equal to the total stress. We refer to this parameterization
as the ‘‘nonsheltered’’ growth rate, because longer waves
do not ‘‘shelter’’ shorter waves by reducing the local
turbulent stress. Then, substitution of (4) into (2) yields,
with (3)

tn
t0

¼ 1� cI ; ð5Þ
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where

cI ¼
Z 1

0

Z p=2

�p=2
cbk

3Yhb qð Þ cos qdqdk: ð6Þ

2.3. Sheltering

[12] The key idea of sheltering is that the turbulent stress
tb in (4) decreases in the presence of a spectrum of waves,
because waves extract wind momentum and thereby reduce
the turbulent stress in the wave boundary layer [Makin and
Kudryavtsev, 1999]. Belcher and Hunt [1993] showed for
slowly moving gravity waves that the growth rate depends
on the turbulent stress in the inner layer. The height, L, of
the inner layer is defined such that eddies in the inner region
reach equilibrium before they are advected by the mean
wind, while outside the inner region eddies are rapidly
distorted. Consequently, L depends on the wave number,
the turbulent stress, and the wind speed profile. Further-
more, the analysis by Belcher and Hunt suggests that the
wave-induced stress associated with waves at k decays
across the inner region. Therefore, if the vertical extent of
the stress induced by longer waves exceeds the inner layer
height of shorter waves, longer waves reduce the turbulent
stress that is felt by shorter waves.
[13] Following Hara and Belcher [2002], we introduce

the following three assumptions. First, the growth rate of
waves at k is determined by the local turbulent stress tt

l(k),
i.e., tb(k) = tt

l(k), and that the local turbulent stress is equal
to the turbulent stress evaluated at the inner layer height,
i.e., tt

l(k) = tt(z = L(k)). Alternatively, tt
l might be repre-

sented by an average of tt(z) from the surface to L(k)
[Makin and Kudryavtsev, 1999]. The sensitivity of the
results to different assumptions of the local turbulent stress
will be discussed in section 4.4. Second, the stress induced
by waves at k is constant in the inner layer and zero outside.
This step function approximation may be appropriate con-
sidering that the wave-induced stress rapidly decreases with
height (see, e.g., discussion by Makin et al. [1995]) and is
negligible outside the inner layer according to the theory by
Belcher and Hunt [1993]. Makin et al. [1995] furthermore
showed that approximating the total wave-induced stress as
a step function provides similar predictions for the drag
coefficient as compared to the results obtained with more
complex decay functions. The third assumption is that the
inner layer height L scales as L = d/k, where d is a constant
coefficient. Makin and Kudryavtsev [1999] and Hara and
Belcher [2004] estimate d approximately to 0.1 and 0.05,
respectively. With these assumptions, the total (integrated)
wave-induced stress at a height z is expressed as

tw zð Þ ¼
Z d=z

0

Z p=2

�p=2
cb tlt k

0ð Þ k 03hb qð ÞY cos qdqdk 0: ð7Þ

Inside the constant stress layer the turbulent stress is

tt zð Þ ¼ t0 � tw zð Þ: ð8Þ

Therefore the local turbulent stress, tt
l(k), can be expressed as

tlt kð Þ ¼ tt z ¼ Lð Þ ¼ t0 �
Z k

0

Z p=2

�p=2
cb tlt k

0ð Þ k 03hb qð ÞY cos qdqdk 0;

ð9Þ

where the second term on the right-hand side represents the
integrated waveform drag due to waves with wave numbers
between 0 and k.
[14] Note that the inner layer height L = d/k becomes

equal to the viscous sublayer height zn � 5n/u*n at Ren =
2pu*n/kn � 30/d, where n is the kinematic viscosity of air,
Ren is the Reynolds number defined in terms of the surface
viscous friction velocity u*n = (tn/r)

1/2, and r is the density
of air. Taking d = 0.05, for waves with Ren > 600, turbulence
in the inner layer should in principle play a role in the wave
growth and therefore the sheltering effect is important. For
very short gravity-capillary waves with Ren < 600 the inner
region is dynamically insignificant [van Gastel et al., 1985]
and the sheltering effect is likely unimportant. In our
analysis, however, such short waves contribute less than
13% to the overall momentum flux. Therefore, for simplic-
ity we assume that (9) is valid for the entire wave number
range.
[15] Equation (9) can be differentiated with respect to k to

obtain

dtlt
dk

¼ �cbtltk
3

Z p=2

�p=2
hb qð ÞY cos qdq: ð10Þ

With the boundary condition tt
l(k = 0) = t0 and noting that

tt
l(k = 1) = tn, integration of (10) results in

tn
t0

¼ exp �cIð Þ: ð11Þ

[16] Equations (5) and (11) compactly summarize the
partitioning of viscous and wave-induced stress under the
nonsheltering and sheltering assumptions. For Y ! 0
the total stress equals the viscous stress; that is, the flow
is aerodynamically smooth. Note that the wave-induced
stress can never exceed the total stress under the sheltering
assumption, so that Plant’s [1982] discussion of a limiting
mean square slope in the wind direction becomes obsolete,
on the basis of momentum constraints. For given viscous
and total stress, the value of cb will depend on the sheltering
effect.

2.4. Viscous Effects on the Growth Rate

[17] Although cb is assumed to be constant for gravity
waves, the investigation by Meirink and Makin [2000]
indicates that cb depends on the Reynolds number, Re
(Re = 2pu*/kn, where u* = (t0/r)

1/2 is the air friction
velocity). The numerical model of Meirink and Makin was
set up for linear (small slope) monochromatic waves, for
which the sheltering effect is negligible. Therefore the
forcing stress tb in (4) was equated with the total wind stress.
[18] If the value of cb is to be determined from (5) and

(11) for gravity-capillary waves, the parameterization (4)
should also explicitly depend on Re. In our approach we
cannot directly use the cb determined by Meirink and Makin
[2000], since we attempt to estimate the cb that best closes
the momentum flux budget for the experiment by Banner
and Peirson [1998]. Therefore we need to introduce a new
parameterization that on one hand reflects the Reynolds
number dependence found by Meirink and Makin [2000]
and on the other hand has a free parameter that can be
adjusted to best close the momentum flux budget.
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[19] The new parameterization should satisfy the follow-
ing two conditions. First, cb is independent of Re for Re >
104 because viscous effects are negligible in this regime.
Second, the value for cb peaks at Re � 800, since the
combination of viscous and turbulent stresses causes an
enhanced pressure asymmetry, leading to maximal growth
rates. One convenient way of representing these two prop-
erties, is to model the Re dependence of cb as a piecewise
linear function of ln(Re), peaking at Re = 800 and being
constant at cb1 for Re > 104,

cb Reð Þ
cb1

¼

2
ln Reð Þ � ln 100ð Þ
ln 800ð Þ � ln 100ð Þ þ 1 if 100 < Re � 800

2
ln 104ð Þ � ln Reð Þ
ln 104ð Þ � ln 800ð Þ þ 1 if 800 < Re < 104

1 otherwise:

8>>>>><
>>>>>:

ð12Þ

On the basis of the study by Meirink and Makin [2000], we
set cbmax = 3cb1 and cb � cb1 at Re = 100. Furthermore, we
extrapolate cb for Re < 100 by keeping the coefficient
constant. This extrapolation is not critical, since in our study
short waves with Re < 100 contribute less than 1% to the
overall air-water momentum flux. The sensitivity of our
results to a different Reynolds number dependence will be
discussed in section 4.3. With the parameterization (12), we
will estimate the constant coefficient cb1 using experi-
mental data by Banner and Peirson [1998]. Spectral peaks
of the experiment by Banner and Peirson [1998] were in the
range of Re � 1500 to 6000. Therefore it is indeed
important to account for the Reynolds number effect.

3. Estimates of Total Stress, Viscous Stress,
and Wave Spectrum

[20] In order to determine cb via (5) or (11) and (12) we
need the estimates of viscous stress, total stress, and wave
spectrum. Banner and Peirson [1998] developed a particle
image velocimetry technique that allowed laboratory mea-
surements of velocity shear within the viscous sublayer
(<200 mm) of the instantaneous wind-driven air-water
interface. Viscous stress measurements were obtained at
fetches of 0.13, 2.45, 3.10, and 4.35 m under varying wind
conditions (see Table 1). The dominant wind-generated
waves had wavelengths ranging from 78 to 174 mm and
more than half the dominant waves were breaking.
[21] The technique did not allow the determination of

viscous stresses in wave troughs and in the spilling regions
of breaking waves. Phase-averaged mean values for viscous
stresses were estimated from the measured tangential stress
distributions. Where tangential stresses could not be mea-
sured they were calculated by setting the tangential stress to
zero at the toe of the spilling region and in the separated

airflow zone immediately downwind of it. Error estimates
were based on the standard error of the mean, which was
±0.01 Pa (less than 20%) for the viscous stress estimate and
20% for the total stress.
[22] The full two-dimensional wave number spectra are

estimated from the combination of one-point wave height
measurements and an empirical parametric model. As
explained in Appendix A, we define the low–wave number
spectrum for waves with k < 200 rad m�1 and the high wave
number spectrum for k > 200 rad m�1. In order to obtain the
low–wave number part of the spectrum, we first determine
the frequency spectrum, which is calculated from the time
series of wave height measurements. The frequency spec-
trum is then converted to the omnidirectional wave number
spectrum, based on the dispersion relation for linear surface
waves. At higher wave numbers the frequency spectrum is
contaminated by Doppler shifted frequencies. Therefore we
estimate the high–wave number part of the spectrum with a
parametric model, based on previous observations of high–
wave number spectra. The directional spreading is modeled
with the parametric model from Donelan et al. [1985].
Details are discussed in Appendix A.

4. Results

4.1. Estimated Value of cB
[23] The coefficient cb1 is determined from the wave

spectrum and the set of experimentally determined viscous
and total stress measurements via a least squares fit from (5)
or (11) and (12). With the sheltering assumption cb1 is 9.4
(cbmax = 28.2), while without sheltering cb1 is 6.7 (cbmax =
20.1). Our model results of the viscous stress are compared
with the measurements in Figure 1 with these two selected
values of cb1. Naturally, the predicted viscous stresses
under the sheltering assumption agree with the observations
with cb = 9.4 (left panel), while the predictions without
sheltering agree with the measured viscous stresses with
cb = 6.7 (right panel). An important point here is that our
predictions with both assumptions may reproduce the
observations quite well (they agree within the error bars),
but that the values of cb are significantly different.
[24] As cb increases, the wave-induced momentum flux is

enhanced, so that the modeled viscous stress must decrease.
Modeled viscous stresses are larger under the sheltering
assumption, because the momentum transfer from wind to
waves is less efficient for sheltered waves than for non-
sheltered waves. The difference between the sheltered and
nonsheltered waves is especially pronounced for the experi-
ments with greater total stress. For greater cb, the viscous
stresses can be significantly underestimated under the non-
sheltering assumption. In fact, as cb increases, the modeled
viscous stress may reach an unphysical negative value in the
nonsheltering case, while the modeled viscous stress is
bound between 0 and t0 in the sheltered case.

4.2. Error Analysis of cB
[25] In order to estimate the error of our cb, we calculate

cbi for the ith experiment (Table 1) and take the standard
deviation of the set of cbi. This procedure results in a
relative error of about 20%, which corresponds approxi-
mately to the 90% confidence intervals as determined from
the linear regression analysis (assuming the stress ratio is

Table 1. Summary of Stress Measurements by Banner and

Peirson [1998]

Experiment
Number 1 2 3 4 5 6

fetch, m 4.35 2.45 3.10 4.35 2.45 4.35
u*, m/s 0.26 0.32 0.35 0.37 0.40 0.46
t0, Pa 0.083 0.125 0.150 0.168 0.199 0.261
tn, Pa 0.052 0.074 0.073 0.074 0.088 0.082
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normally distributed and the wave spectrum given). The
difference between the cb determined for the sheltering and
nonsheltering cases is significant, especially considering
that the errors of both cases are correlated. This error
estimate exceeds errors in cb that are due to the uncertainties
of the stress measurements or uncertainties of the wave
spectrum. Gaussian error propagation of the error in the
stress measurements results in a relative error of cb below
13%. The uncertainty of the wave spectrum is mainly due to
the parameterization at high wave numbers and the direc-
tional spreading. A 50% error in the omnidirectional short-
wave spectrum causes a relative error of <11%. Assuming
the extreme situation of a uniform directional spreading for

waves with k > 150 rad m�1, changes cb at most by 9%. The
variation of the parameter that determines the width of the
directional spreading function causes a small relative error
of less than 2% (b was varied between 0.7 and 1.7 for k >
200 rad m�1, see (A5) in Appendix A).

4.3. Comparison to Previous Estimates

[26] Figure 2 shows our results of cb with the two
(sheltering and nonsheltering) assumptions against the Rey-
nolds number. Our cb is generally smaller than the cb
determined by Meirink and Makin [2000]. Under the
sheltering assumption, our results agree within two standard
deviations with their numerical modeling results. For Re

Figure 1. Comparison of modeled versus measured viscous stresses for two different cb1 (measured
(asterisks), modeled with (11) under the sheltering assumption (stars), and modeled with (5) without
sheltering (circles)): (left) cb1 = 9.4 and (right) cb1 = 6.7. The errors of the measurements are based on
estimates by Banner and Peirson [1998]; the model errors are determined by the errors of the measured
total stress, which is the dominant source of error.

Figure 2. Comparison of our results for cb with previous estimates. Modeling results by Meirink and
Makin [2000] are roughly independent of u*, for u* = 0.14 to 0.9 m/s, and only the result of u* = 0.45 m/s
is shown.
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close to the spectral peak (Re � 1500 to 6000), cb is
consistent with the lower limit of Plant’s [1982] estimate
of cb = 32 ± 16. Without sheltering, the estimates for cb are
significantly lower than the cb determined by Meirink and
Makin [2000] or Plant [1982]. The measured growth rates
from Uz et al. [2003] agree reasonably well with model
results from Meirink and Makin [2000]. Unfortunately, a
direct comparison with the growth rates obtained by Larson
and Wright [1975] and Kawai [1979] is ambiguous. Larson
and Wright [1975] reported total surface stresses only after
the wave field reached equilibrium. Kawai [1979] reported
viscous stresses; however, Banner and Peirson [1998] point
out the methodological problems in the measurements. Yet,
for the sake of completeness we also include the measure-
ments from Kawai and Larson and Wright (stresses were
corrected after Meirink and Makin) in Figure 2. Then their
results are also consistent with the cb from Meirink and
Makin [2000], except for a few cases.
[27] These comparisons clearly indicate that the shelter-

ing effect is real and important, even for laboratory wind
waves, since without sheltering our estimated value of cb is
significantly lower than all previous results.
[28] Makin and Kudryavtsev [1999] calculated the ratio

of wave-induced to total stress for a fully developed sea
and found reasonable agreement with the ratios from
Banner and Peirson’s experiment. However, the wave
spectrum for a fully developed sea differs drastically from
the short-fetch wave fields of Banner and Peirson’s exper-
iment. According to (5) or (11), the stress ratios could agree
nevertheless if the coefficients cI coincided for different
wave spectra.
[29] Even for sheltered waves, our cb appears to be

underestimated. Note also that breaking waves likely in-
crease the total stress because of the enhanced surface drag
because of air flow separation [Banner, 1990]. In our
approach this enhanced drag has not been considered
separately. If the effects of breaking waves are to generate
additional form drag without modifying the form drag of
nonbreaking waves, as in the study by Kudryavtsev and
Makin [2000], the value of cb estimated here must decrease
further.
[30] With hindsight, we can examine our assumption that

a significant fraction of the momentum flux is supported
by shorter waves away from the frequently breaking
dominant wave. By first estimating the low–wave number
part of the spectrum that contains longer breaking waves,
we calculated how much of the wave-induced stress is
supported by the remaining shorter waves (see Appendix B
for details of this calculation). We find that these shorter
waves contribute between 50% to 95%, on average about
65%, to the wave-induced stress. Therefore a significant
fraction of the momentum flux is indeed supported by
shorter waves.
[31] Our cb might be underestimated because of the

following reasons. First, we might have underestimated
the total surface stress. Although the experiment by Banner
and Peirson [1998] was designed to avoid pressure gra-
dients, a horizontal pressure gradient would cause a height
varying total stress that is largest at the surface. Secondly,
the effects of sidewalls might decrease the wave growth rate
for waves that propagate with an angle to the wind direc-
tion, because of the reduced wind stress close to the wall

(see discussion by Uz et al. [2003]). Thirdly, the Re
dependence of cb might differ from model (12). It is
important to investigate the sensitivity of our results on
different Reynolds number dependence parameterizations.
As an extreme example, we have examined a case when cb
is assumed to be independent of Re (i.e., viscous effects are
totally neglected). The value of cb amounts to 19.7 and 13.5,
for sheltered and nonsheltered waves, respectively. In this
case, the value of cb increases at high Reynolds numbers but
decreases at Reynolds number around 800. Fourthly, the
sheltering effect might be greater than represented here. The
sheltering effect has been modeled in the spectral domain
based on the assumption that all wave components are
forced by the wind and propagate independently of other
scales. However, parasitic capillary waves are usually
located ahead of the wave crest, so that they might be
sheltered differently from waves at the same wave number
that are directly forced by winds. The sheltering effect is
also greater than represented by (11) if the turbulent stress
tb in (4) is smaller than the local turbulent stress tt

l at the
height of the inner layer. This possibility is examined next.

4.4. Enhanced Sheltering Effect

[32] With our sheltering assumption the turbulent stress
that governs the wave growth of a wave component is the
local turbulent stress, i.e., the turbulent stress in the inner
region [Belcher and Hunt, 1993]. For simplicity, we have
assumed that this local turbulent stress can be taken as the
turbulent stress evaluated at the height of the inner region.
The turbulent stress, however, decreases toward the surface.
Therefore it is plausible that the local turbulent stress is
given by the average turbulent stress in the inner region, i.e.
tb(k) = tt

l(k) = L�1
R
0
L(k)tt(z)dz [see also Makin and

Kudryavtsev, 1999]. To further simplify the algebra, we
approximate this average by the mean of the viscous stress
(i.e., the turbulent stress just outside the viscous sublayer),
tn, and the turbulent stress tt at height L,

tb ¼
tt z ¼ Lð Þ þ tn

2
: ð13Þ

Following similar steps as discussed above leads to the
differential equation

dtlt
dk

þ cYtlt ¼ �cYtn; ð14Þ

where

cY kð Þ ¼ cbk
3

2

Z p=2

�p=2
Yhb qð Þ cos qdq: ð15Þ

The analytic solution is given by

tn
t0

¼ 1

I 1ð Þ þ
R1
0

cYI dk
ð16Þ

with the integrating factor I(k) = exp(
R
0
kcYdk

0). The cb
determined with enhanced sheltering effect agrees better
with the modeling results from Meirink and Makin [2000]
(see Figure 2). Note that the cb for high Re also matches
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well with the modeling results for high-Re flow by
Mastenbroek et al. [1996].

5. Conclusions

[33] We have investigated the stress partitioning of the
total stress into wave-induced and viscous components at an
air-water interface in the presence of wind-driven gravity-
capillary waves. Simple analytic formulas for the ratio of
viscous to total stress have been derived under the sheltering
and nonsheltering assumptions. In the sheltered case, it is
assumed that the wave-induced stress of longer waves
penetrates farther into the wave boundary layer than the
wave-induced stress of shorter waves, thereby reducing the
turbulent stress felt by shorter waves. The wave-induced
stress was calculated from the wave growth rate, which is
proportional to the turbulent stress divided by the wave-
phase speed squared. The constant of proportionality, cb,
was then determined using the viscous and total stress
measurements by Banner and Peirson [1998]. The value
of cb determined here is close to Meirink and Makin’s
[2000] numerically determined values and previous mea-
surements under the sheltering hypothesis. Without shelter-
ing, cb is significantly lower than previous estimates. Thus
our results indicate that the wave growth rate depends on the
local reduced turbulent stress rather than the total stress.
[34] As shown earlier by Meirink and Makin [2000] the

observed initial wave growth rate agrees reasonably well
with theoretical predictions for lower Reynolds number
range (less than a few thousands). Our results (with shel-
tering effect included) further show that the growth rates of
the spectrum of waves is also consistent with the theory and
observations for a similar Reynolds number range. At very
high Reynolds numbers, however, the theoretical estimates

of the wave growth rate (cb � 15) as well as our new
estimates are less than half of observed growth rates (see
discussion by Belcher and Hunt [1998]). This discrepancy
remains one of the outstanding questions regarding the wind
wave growth rate.
[35] Finally, if a significant fraction of smaller waves

were breaking, airflow separation could disrupt the inner
layer of longer waves. Then, the theory of smooth airflow
over waves, on which our approach is based, would need to
be modified to take the airflow separation effects into
account. This will be a subject of our future investigation.

Appendix A: Wave Spectrum

[36] The omnidirectional wave spectrum is independently
determined for long and short waves. The directionality of
the wave number spectrum is estimated from an empirical
parameter model.

A1. Long-Wave Spectrum

[37] The wave frequency spectrum was calculated from
wave height measurements made at a sampling frequency of
1000 Hz and a record length of about 360s (Figure A1).
Since the mean squared height is conserved, the frequency
spectrum of linear surface waves can be converted to the
omnidirectional wave number spectrum Ŷ through

Ŷ kð Þ ¼ F wð Þcg ðA1Þ

where cg = @w/@k is the group velocity. Simultaneous
measurements of Ŷ and F by Hara et al. [1997] confirm the
approximate validity of (A1) at low wave numbers. Doppler
shifted frequencies displace the observed spectral energy to
higher-frequency waves [see, e.g., Plant and Wright, 1980].
Furthermore, the conversion (A1) is only valid for linear

Figure A1. Frequency spectra calculated from wave height measurements (f: fetch).
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surface waves. Steep short gravity-capillary waves, how-
ever, may transfer energy nonlinearly to capillary waves
ahead of the crest [Longuet-Higgins, 1963]. Considering in
addition the likely contamination of the high-frequency
wave signal due to the intrusive measurement of the
impedance wire probe, it is sensible to parameterize the
wave number spectrum for high wave numbers.

A2. Short-Wave Spectrum

[38] The fetch dependency of the high–wave number
spectrum can be investigated with measured wave number
spectra of gravity-capillary waves by Jähne and Riemer
[1990], Zhang [1995], and Hara et al. [1997] at fetches of
100 m, 24 m, and 13 m, respectively. A simple model of

Ŷ kð Þ ¼ aum
*
kn ðA2Þ

is used in this study, where the coefficients a (in IS units),
m, and n are first independently calculated for wave data
from each study (see Table A1). On the basis of the results
of this first iteration, we then set n = �2.8 and m = 1 and
determine a as a function of fetch. This second iteration
indicates that a increases with fetch, although the increase

is ambiguous for the shorter fetch cases. The value of a is
influenced by the nonlinear energy transfer from short
gravity waves to parasitic gravity-capillary waves [Longuet-
Higgins, 1963; Kudryavtsev et al., 1999], which might be
relatively large at shorter fetches because of the relatively
small peak wavelength. In light of these uncertainties, we
set a to 3 � 10�3 for any fetch smaller than 5 m and assume
a generous relative error of ±50%. A comparison of
measured and parameterized high–wave number spectra is
shown in Figure A2. Our values of m and n are in agreement
with Jähne and Riemer’s finding that Ŷ is proportional to
k�2.5 and u* for small gravity waves under high wind
speeds. The wave number dependency is also consistent
with Elfouhaily et al.’s [1997] short–wave number param-
eter form, which also converges to Ŷ / k�2.5 for capillary
waves. The short omnidirectional wave number spectrum
from Kudryavtsev et al. [1999] is in close agreement with
the measurements by Hara et al. [1997] and thus consistent
with our omnidirectional spectrum estimate. The reason
why we did not use the short-wave spectrum by Elfouhaily
et al. is that their corresponding a value is fetch-independent
and matches best the long-fetch data from Jähne and Riemer.
Following Elfouhaily et al. [1997], we model viscous
damping of very short waves by multiplying the high–wave
number spectrum by the damping function Fm

Fm ¼
exp � 1

4

k

km
� 1

� �2 !
for k > km

1 for k � km

8><
>: ðA3Þ

Figure A2. Comparison of high–wave number spectra for different u*; circles, Jähne and Riemer
[1990] (100 m fetch); diamonds, Zhang [1995] (24 m fetch); stars, Hara et al. [1997] (13 m fetch); and
solid line, parametric model (A2), with m = 1, n = �2.8, and 50% error in a (dashed lines).

Table A1. Least Squares Fit Results for the Coefficients in (A2)

a m n a(m = 1, n = �2.8)

Hara (fetch 13 m) 1.7 � 10�3 0.36 �2.80 3.24 10�3

Zhang (fetch 24 m) 2.2 � 10�3 1.09 �2.69 3.25 10�3

Jähne (fetch 100 m) 48.3 � 10�3 1.41 �3.01 9.86 10�3
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where km is the wave number at minimum phase speed.
Finally, the parameterized high–wave number spectrum is
given by

Ŷ kð Þ ¼ a� 0:5að ÞFmu*
k�2:8: ðA4Þ

[39] For a continuous omnidirectional spectrum, low–
and high–wave number spectra are combined via a simple
power law interpolation centered at k = 200 rad m�1. The
choice of the wave number k = 200 rad m�1, which
separates the low– and high–wave number spectra, can
be justified as follows. Assume that the surface current
penetrates to a depth l, so that waves with k > 1/l are
significantly advected by the surface current. The viscous
sublayer reaches approximately a depth of 5n/u*nw �
0.5 mm (u*nw is the viscous friction velocity in the water
side). We further assume a linear subsurface current profile
in the viscous sublayer and an aerodynamically smooth
turbulent flow outside the viscous sublayer. For the reported
surface current and viscous stress, the subsurface current is
roughly 4 mm deep. Thus waves with about k > 200 rad m�1

should be significantly Doppler shifted. The directionality of
the wave spectrum is described next.

A3. Directionality

[40] Donelan et al. [1985] showed that a hyperbolic
secant distribution can describe accurately the directional
spreading of gravity waves for laboratory and field mea-
surements. The sech function is motivated by the analogy to
soliton wave groups whose energy in the transverse direc-
tion of propagation is distributed like sech2. We modify
Donelan et al.’s spreading function to allow a uniform
spreading in the directions from �p/2 to p/2 relative to
the wind for wave numbers that are greater than a wave
number kt

hY ¼
sech2 bqð Þ=

Z p=2

�p=2
sech2 bqð Þ for k � kt

1

p
for k > kt

8>><
>>: ðA5Þ

Donelan’s spreading function is defined such that kt ! 1,
and b = 1.24 away from the peak. Note that the parameter b
(Donelan et al.’s b) is a function of k, such that spreading is
minimal close to the spectral peak. The uniform spreading
component has been introduced because Zhang [1994]
found that wind-forced gravity-capillary waves spread more
uniformly such that b can be as small as b � 0.8. According
to Zhang’s study, mean b values are around 1.1, and display
only a weak dependence on wind speed. In section 4 results
are reported for a wave number spectrumwith b = 1.24 for k <
200 rad m�1, b = 1.1 for k > 200 rad m�1, and kt ! 1 by
default.

Appendix B: Contribution of Short Waves to
Wave-Induced Stress

[41] To examine what fraction of the momentum flux is
supported by shorter waves away from the frequently
breaking dominant wave, we divide the wave spectrum into
two parts, a low–wave number part that includes frequently
breaking dominant waves and a remaining high–wave
number part, with kb as the dividing wave number. In four

experiments the breaking fraction of the dominant wave is
larger than 85%, according to Banner and Peirson [1998,
Table 1]. For simplicity, we will here only consider these
four most extreme cases and we will assume that all waves
with k < kb are breaking. First, we need to estimate kb, i.e.,
the part of the spectrum that contains longer breaking
waves.
[42] A rough approximation of the mean squared height

of the dominant breaking wave follows from a breaking
slope criterion. According to Banner and Peirson [1998],
the mean wave slope is less than 0.3. Banner and Phillips
[1974] showed that a surface drift, us, decreases Stokes’
limiting wave slope by a factor of (1 � us/c)

2. To derive this
result, Banner and Phillips assumed as the breaking criterion
that the particle speed at the breaking wave crests exceeds
the phase speed. Miller et al. [1999], however, showed that
the particle speed at the breaking wave crest can be as small
as half the phase speed, reducing the limiting wave slope
even further (by as much as 60% of the value predicted by
Banner and Phillips [1974]). With us � 0.1 m/s, we
estimate that the dominant waves likely break at a slope
of abkp � 0.2, where ab is the breaking wave amplitude and
kp the wave number of the dominant wave (estimated by
Banner and Peirson [1998]). Therefore kb may be deter-
mined by

a2b
2
¼ 0:2ð Þ2

2 k2p
¼
Z kb

0

Z p=2

�p=2
Ykdqdk: ðB1Þ

We find that kb is close to the peak wave number with a
maximal deviation from kp of less than 35%. Shorter waves
with k > kb contribute a significant fraction ranging from
50% to 95%, on average 65%, to the wave-induced
momentum flux.
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