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ABSTRACT

A simple, computationally efficient method is proposed as a standard procedure for the routine analysis of
pitch-and-roll buoy wave data. The method yields four directional model-free parameters per frequency: the
mean direction, the directional width, the skewness, and the kurtosis of the directional energy distribution. For
most applications these parameters provide sufficient directional information. The estimation procedure and
error characteristics of the parameter estimates are discussed and illustrated with computer simulated data. An
optional interpretation of the combination of skewness and kurtosis as an indicator of uni-modality of the
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directional energy distribution is suggested and illustrated with field observations.

1. Introduction

Information on the directional characteristics of
wind waves is of great importance for a wide range of
engineering and scientific purposes; e.g., calculation of
wave loads on offshore structures, calculation of sedi-
ment transport, real-time swell forecasting or validation
of wave prediction models. The desired degree of detail
may range from the complete two-dimensional spec-
trum via a limited number of directional parameters
per frequency to a very condensed description in terms
of a few characteristic parameters, such as a dominant
wave direction.

For many applications involving wave directionality
the mean wave direction and the directional width per
frequency provide quite sufficient information. To ob-
tain this information, a large variety of measurement
techniques have been developed. Each of these tech-
niques has its own advantages with respect to analysis
and operations. The technique based on the pitch-and-
roll buoy has undoubtedly been used most frequently
and has now reached an operational stage. This holds
in particular for the directional waverider, the so-called
WAVEC-buoy, which has been in operation since 1984
(Van der Vlugt 1984). For such a pitch-and-roll buoy,
a large variety of analysis methods can be used which
are all based on a cross-spectral analysis of the three
basic heave and slope signals of the buoy (e.g., Longuet-
Higgins et al. 1963; Mitsuyasu et al. 1975; Long and
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Hasselmann 1979; Long 1980; Hasselmann et al. 1980;
Van Heteren 1983; Lawson and Long 1983). Two
classes of methods can be distinguished. In the methods
of the first class, attempts are made to reconstruct the
directional energy distribution (at each frequency),
whereas in the methods of the second class some char-
acteristic directional parameters are estimated (at each
frequency). It should be noted that these methods, in-
cluding the one proposed in the present paper, apply
equally well to other multivariate time series of wave-
related quantities such as surface elevation and sub-
surface orbital velocity in two orthogonal directions
(e.g., Forristall et al. 1978) to estimate wave directional
characteristics.

The reconstruction methods are based on several
principles including truncated Fourier series and para-
metric models. Longuet-Higgins et al. (1963) showed
that only the first four Fourier coefficients of the di-
rectional energy distribution per frequency can be de-
rived from the auto-, co-, and quadspectra of the buoy
signals (appendix A). These four Fourier coeffi-
cients are used to approximate the directional distri-
bution D(#) with a truncated Fourier series (Longuet-
Higgins et al. 1963):

2
D(8) = % [% + T {an cos(nd) + b, sin(no)}]. )

n=l

However, this method may result in an estimated di-
rectional distribution with negative values, whereas
D(8) is positive by definition. To avoid these negative
values Longuet-Higgins et al. (1963) suggested to con~
volve the directional distribution from Eq. (1) with a
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weighting function. This arbitrarily broadens the esti-
mated directional distribution considerably. This es-
timation of D(6) should therefore be avoided.

The methods of parametric models are based on an
a priori assumed shape of the directional energy dis-
tribution. Many different shapes can be assumed but
the number of independent shape parameters should
not be more than four since only four Fourier coeffi-
cients are available. A frequently used two-parameter
model is the one suggested by Longuet-Higgins et al.
(1963):

D(0) = A cos™{(8 — ap)/2} ()

in which ay is the mean wave direction, s is a parameter
which controls the directional width of D(8), and A4 is
a normalization constant. A variation on this model
is the four-parameter double cos*-model used by Has-
selmann et al. (1980) and Van Heteren (1983). An-
other four parameter model has been suggested by
Borgman and Yfantis (1978).

Other methods which attempt to reconstruct the di-
rectional distribution are the variational method of
Long and Hasselmann (1979), the data adaptive
method of Oltman-Shay and Guza (1984) and the
maximum entropy method of Lygre and Krogstad
(1986). These methods provide a relatively detailed
reconstruction of the directional distribution but the
interpretation of the results of these methods does not
seem to be a routine matter. All these methods of the
first class suffer from various shortcomings for routine
applications: they may suggest a misleading directional
resolution, the shape assumptions may not be justified
or the results require skilled interpretation. Recon-
struction of D(6) from pitch-and-roll buoy data should
therefore be undertaken only in a nonroutine manner,
if the distribution of wave energy over directions is a
strictly required quantity in any further processing.

The methods of the second class are not as well es-
tablished as those of the first class. These methods are
used to estimate characteristic parameters of D(#) such
as a mean direction and a directional width. Strictly
speaking one can determine such parameters from an
estimate of D(#) which is obtained with one of the
above indicated reconstruction methods. However, this
would only compound the shortcomings of that type
of analysis. We suggest in the present study a method
which estimates the parameters directly from the Fou-
rier coefficients without model assumptions thus either
avoiding or reducing the above shortcomings. With
this method we wish to arrive at directional wave pa-
rameters that:

(1) are descriptive,

(ii) are model-free,

(iii) can be expressed analytically in terms of the
above mentioned four Fourier coefficients and,

(iv) are readily computed from given pitch-and-roll
buoy data.
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To further enhance the usefulness of these parameters
we will explore their error characteristics. The param-
eters chosen are the mean wave direction 6, the di-
rectional width o, the skewness v and the kurtosis 6 of
the directional energy distribution per frequency. In
section 2 of this paper we inspect various analytical
expressions for these parameters (e.g. Longuet-Higgins
et al. 1963; Borgman 1969; Mardia 1972) and we
argue for a particular selection. The error characteristics
of the parameters are investigated in section 3. Some
aspects of interpretation are addressed in section 4. Our
conclusions are formulated in section 5.

2. Model-free parameters
a. The directional distribution

Wind waves are adequately described for most pur-
poses with the two-dimensional energy spectrum E(f,
) which distributes the wave energy over frequency
(f) and direction (8). Per frequency the normalized
distribution of energy over direction is given by D,(6),
defined by

E(f,9)
= 3
Dy(0) /) (3)
in which E(f) is the frequency spectrum
27
E(f)= E(f, )db. 4)

In the remainder of this paper the analysis takes place
per frequency and the subscript f in D, (6) will be
dropped. Longuet-Higgins et al. (1963) approximate
D(8) as a Fourier series with four terms, the coefficients
of which can be determined from the heave-, pitch-
and roll signals of a pitch-and-roll buoy (appendix A).
However, instead of actually using these coefficients in
an attempt to reconstruct D(68) we prefer to characterize
D(8) in terms of descriptive parameters expressed in
these Fourier coefficients. These parameters are essen-
tially the lowest four moments of D(8) as derived next.

The directional energy distribution D(8) is a density
function with the following properties:

D(6)=0

} for —0<b<+too (5)
D(6 + 2x) = D(9)

and for any interval with length 27
atm
f D@)do=1 for —o<a<+oo. (6)

If D(#) is considered only in the interval (« — =, a
+ ), these characteristics are very similar to those of
a probability density function. Such a function (defined
on a line and not on a circle) is conveniently and com-
monly characterized by its moments from which such
conventional parameters as the mean, standard devia-
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tion, skewness, and kurtosis can be defined. However,
such parameters are not conventionally defined for
distributions on a circle such as D(8). They should be
based on circular moments. These in principle can be
defined in a number of ways, analogous to the defini-
tion of moments on a line, using trigonometric weight-
ing functions. Within the constraints (i) through (iv)
mentioned in the Introduction we have chosen defi-
nitions that are closely related to, or even identical to,
those in the literature on this subject. Longuet-Higgins
et al. (1963) and Borgman (1969) suggest some defi-
nitions and Mardia (1972) addresses the problem of
describing directional data in great detail. In the fol-
lowing we will exploit their suggestions.

b. Line moments

To use the analogy between line distributions and
circular distributions we initially treat D(#) as if it were
a distribution defined on a line interval with length 27
centered around a mean direction ;. This mean di-
rection is defined such that

06+1r
L, (8 — 65)D(8)db = 0 %)

o7
Suitable measures u; for the line moments centered at
this mean wave direction are then written as

,
fo+7

W= E(6-00)) = |

fg—=

(6 — 60)'D(6)d8  (8)

in which E{ } denotes the expected value operator.
The corresponding line parameters, width o, skewness
v, and kurtosis §; can subsequently be defined as

=p,'? )]
= us/ o (10)
& = pal o’ an

These definitions are commonly accepted and in-
tuitively appealing. For symmetrical and fairly narrow
distributions Longuet-Higgins et al. (1963) show that
o,is the rms angular deviation of energy from the mean
direction [their Eq. (93)] and suggest for distributions
that are not too broad a “peakedness’ parameter equal
to §; — 1 [their Eq. (97)]. However, these parameters
a;, v; and §; do not meet the condition that they can
be expressed in terms of the first four Fourier coeffi-
cients of D(8). To define similar parameters which do
meet this condition requires the definition of circular
moments such as suggested by Borgman (1969) and
Mardia (1972).

c. Circular moments

‘Borgman (1969) pointed out that the centrality
measure used by Gumbel et al. (1953), defined as the
vectorial mean of the directional distribution D(8),
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can be expressed in terms of the lowest Fourier coef-
ficients of D(8):

8o = arctan(b,/a,) (12)

in which a, and b, are the lowest Fourier coeflicients
in Eq. (1). Following Borgman (1969) and Mardia
(1972) we interpret this measure as the mean wave
direction. It follows from this definition that, in analogy
with Eq. (7),

Gp+
f sin(8 — 6o)D(8)d8

—

27
- fo sin(8 — 6)D(8) db = 0. (13)

Borgman (1969) therefore suggested to define circular
moments in terms of sm(0 o) or better still, in terms
of 2sin {(8 — 6,)/2 } since this is a better approximation
of (8 — 6y) than sin(8 — 6y). We adopt both suggestions
in a somewhat generalized form by defining (w1thout
implying that we approximate the line moments) cir-
cular moments #; ; as

2x
nij = 2".[) sin‘(8 — 8o) sin’ {(6 — 6,)/2} D(6)db.
(14)

- These moments in turn can be used to define mea-
sures of width, skewness and kurtosis. For reasons in-
dicated below we consider only the following circular
moments:

second order

o2 =2(1 — my) - (15)

Mo = (1 —my)/2 (16)
third order

Mma =20 — Ny = —My 17
fourth order

no4 = 6 — 8m; + 2m, (18)

in which m,, m,, n; and n, are the centered Fourier
coefficients given by

27
m; = f cos(8 — 6,)D(8)db
0

= a, cos(fp) + b, sin(fo) = (@, + b,%)'"* (19)
my = f:' cos{2(6 — 65)} D(8)d8

= a, cos(26y) + b, sin(26,) (20)
n = J:’ siﬁ(0 — 6,)D(68)db

= by cos(by) — a, sin(6p) =0 2n
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2
ny = fo sin{2(8 — 65)} D(8)d8

= b, cos(260y) — a, sin(26,). 22)
The coefficients a;, a,, b, and b, are the lowest four
Fourier coefficients of D(8) (appendix A). The cen-

tered Fourier coefficients have the following property
[see Mardia 1972, his Eq. (3.3.4)]:

1—-m?—m?-2m2*-m*»H=0 (23)

which can be shown to follow from the fact that D(8)
is always positive. The indicated circular moments 7,5,
20, M2 and 794 are approximately equal to their re-
spective line equivalents for narrow directional distri-
butions as sin(6) and 2 sin(8/2) are approximately
equal to 6 for small 4.

Other values of i/ and j to define moments of D(8)
are not used in the present study since the correspond-
ing circular moments [based on Eq. (14)] cannot be
expressed in terms of the available four Fourier coef-
ficients. :

The above expressions for 72, 720 and 704 are also
given by Borgman (1969), except for a different nor-
malization. Mardia (1972), using another method
based on series expansions, obtains the same expres-
sions for 702, M2, 104 as Egs. (15), (17) and (18),
except for a different normalization. On the basis of
these circular moments Mardia (1972) defines mea-
sures for directional width, skewness and kurtosis,
which are partly based on results obtained with a
wrapped normal distribution. They are therefore not
entirely model-free. Instead of following Mardia (1972)
further we therefore now continue with model-free
formulations. :

To obtain measures of skewness and kurtosis, we
must normalize the third-order and fourth-order mo-
ment (7, and 794). Since we find two second-order
moments (7o, and 7,0) which can be used for this
purpose we obtain two sets of definitions for directional
width, skewness and kurtosis:

(1) based on o2

oo =np? = {2(1 - m)}'? (24)
Ye = M2/ o¢ {2(1 — ml)}3/2 (25)

6 —8m +2m

S, = b= 7272
= Mol 0 = ST 1 (26)

(il) based on 7,9
of = ni¢ = {(1 —my)/2}'2 @7
* — *3 nm

Ye ma/a? {(1 — m2)/2}3/2 (28)
5:‘ = ,,0,4/02#4 w (29)

T —m2y
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These two sets of definitions [Eqgs. (24)~(26)] and [Egs.
(27)-(29)] are equivalent to each other in the sense that
in both sets the parameters are model-free and ex-
pressed in terms of the first four Fourier coefficients.
The parameters from both sets are approximately equal
to their respective line equivalents for narrow direc-
tional distributions, However, with a broadening of the
directional distribution the differences between these
circular parameters and their line equivalents obviously
increase. We select from the above alternatives (24)
through (29) those that remain closest to their line
equivalent. To this end we investigate the differences
in the following. For reasons of brevity in the text we
will refer to such a difference between a circular pa-
rameter and its line equivalent as its “deviation”.

d. Comparison between circular parameters and line
parameters

The deviations of the circular parameters can be in-
vestigated analytically and numerically. In the analyt-
ical approach (which was suggested by one of the re-
viewers of this paper) these deviations are quantified
by expressing the circular parameters in terms of the
line moments with a Taylor series expansion, whereas
in the numerical approach the deviations are quantified
numerically for a large number of chosen directional
distributions.

To express the circular width parameters o. and
o? in terms of the second-order line moment u;, we
write the term sin’(8 — 8,) sin’/{(6 — 6,)/2} in Eq.
(14) as a Taylor series up to (and inclusive) fourth
order in (8 — 6y) and we take 8 = 65 in the definition
of the line moment to have a common center of the
distributions. We then find, correct to second order in
g, that the second-order circular moments are some-
what smaller than the second-order line moments: 7,
= py — s/ 12 and n20 =~ py — pa/ 3. The corresponding
deviation in the circular widths ¢, and o follows di-
rectly by taking the square root of these second-order
circular moments. The result can be simplified with a
two-term Taylor series expansion and the final result
is

O, ~ 0] — 61351/24} . (30)

a:‘ ~ 0] — 0‘1351/6
Obviously, the deviation thus determined is always
smaller for ¢, than for o¥.

We have carried out a similar second-order analysis
for the third- and fourth-order circular moments, i.e.
an analysis in which the error is of second order in p;
and u4, respectively. It involves a Taylor series expan-
sion of up to (and inclusive) sixth order in (8 — 6).
The results are consequently expressed in terms of all
line moments up to (and inclusive ) sixth order (squares
and cross-products ). However, the fifth- and sixth-or-
der moments cannot be determined with pitch-and-
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roll buoy data and we will therefore not consider these
corrections any further.

On the basis of the above analysis of g.and o¥, one
might be tempted to prefer the first set of definitions
[Egs. (24), (25) and (26)] over the second [Eqgs. (27),
(28) and (29)] since, after all, o, and o¥ are used to
normalize the higher order moments. This analysis
however is based on a Taylor series expansion which
can be expected to produce reasonable results only for
narrow directional distributions. Moreover, such a
choice would ignore the differences in deviation of the
higher-order moments. The numerical approach, ad-
dressed next, does not suffer from these drawbacks.

In the numerical approach we determine the circular
moments and the line moments for a large number of
fairly realistic, but otherwise arbitrarily chosen direc-
tional distributions. The circular moments and the
value of 6y are determined from the first two Fourier
components of the distributions following their above
definitions, Eqgs. (15), (16), (17) and (18). The line
moments are determined following their definition, Eq.
(8) taking 6y equal to #,. We carry out these com-
putations for 222 directional distributions of the fol-
lowing three types: the cos*-model defined by Eq. (2),
a double cos*-model defined by

D(8) = A4, cos®(8/2) + Ay cos®*?{(8 — a)/2} (31)

in which A4, and 4, are normalization coefficients, and
a skewed cos*-model (analogous to the model used
by Regier and Davis 1977) defined by

D(8) = A cos®*(8/2)-exp(—ub?) for 0<b <=
D(8) = A cos®*(0/2)-exp(—vh*) for -1 <0<0
' ’ (32)

in which 4 is a normalization coefficient. Per model
all possible combinations of the parameter values given
in the upper part of Table 1 (indicated with “compar-
ison”) are used. Some of the resulting distributions are
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the mirror-image of other distributions thus generated.
Of each such mirror-pair one distribution has been ig-
nored in the analysis. The circular moments and the
circular parameters of these distributions are plotted
against their line moments and line parameters in Fig.
1, except the second-order moments 79, and 7,4 to
avoid cluttering the illustration with trivial information
(the transformation from second-order circular mo-
ment to circular width is trivial). Qur comments are
as follows. '

As for the circular width, Fig. 1, panels b and ¢ show
that the circular width ¢ is generally closer to the line
width ¢, than the circular width ¢¥. In fact, an in-
spection of the numerical values (not given here) shows
that on the average the deviation in o, is about four
times smaller than the deviation in ¢¥, which is in
agreement with the results of the analytical results,
Eq. (30).

As for the skewness, panel d of Fig. 1 shows that the
third-order circular moment 7, , is considerably lower
(in absolute value) than the third-order line moment
us, at least for [us| > 0.1, say. To obtain the circular
skewness this third-order circular moment is normal-
ized with the circular width. Since the values of both
these quantities are generally lower than the values of
their line equivalent these deviations may compensate
each other through this normalization. Such compen-
sation does in fact occur (Fig. 1, panels € and f). The
relatively large deviation of 5, , appears to be better
compensated by the deviation of ¢ ¥, which is also rel-
atively large (Fig. 1, panel c) than by the relatively
small deviation of o, (Fig. 1, panel b).

As for the kurtosis, similar effects as above occur,
except that now the deviation of ¢¥ overcompensates
the deviation of 74 and that the normalization with
a.provides a more favourable compensation than with
o* (Fig. 1, panels g, h and i).

Considering the results of the above analyses, we
choose the following circular parameters from the

TABLE 1. Parameter values and model number of the models used in the intercomparison
of circular and line quantities and in the Monte-Carlo simulation.

cos*-model Double cos*-model Skewed cos*-model
ap s s Model Az/A, K3 $ g s ” v
all combinations all combinations all combinations
Comparison 0 0.2 5.0 0.1 4 4 0 2 0 0
0.5 10.0 0.2 20 20 30 4 0.1 0.1
1.0 15.0 0.5 50 50 - 60 10 0.5 0.5
1.5 20.0 1.0 90 1.0 1.0
2.0 40.0 120 5.0 5.0
4.0 50.0
Simulation I 1.0 12 12 0
II 1.0 12 12 920
11 0.1 12 12 90
v 0.2 SO 50 120
A\ 0.1 50 50 120
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FIG. 1. The circular moments and optional circular parameters for a large number of model directional distributions
as a function of the line moments and the line parameters.
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The dependencies of o, v and 6 on the centered Fou-
rier coefficients m;, m, and n; are illustrated in Fig. 2
where it is seen that the values of the skewness v and
the kurtosis § are sometimes very sensitive to variations
in the values of m;, m, or |n,|. This occurs for low
values of | ny| (less than 0.2, say) combined with high
values of m, (higher than 0.4, say) and for high values
of m; (higher than 0.7, say) combined with positive
values of m,. It is readily shown that the inequality
given by Mardia (1972), Eq. (23), implies that § = 1
and m,? + n,2 < 1. The values of y and § for physically
realizable distributions are therefore always located
within the regions indicated in Fig. 2 (full lines). The
physically nonrealizable values are also indicated
(dashed lines) but only because they occur in numerical
simulations of the circular moments (see section 3a).

One might consider to introduce alternative circular
parameters that are closer to the line parameters than
o, v and & by adding the second-order deviations to
the original definitions. For instance, with the rela-

tionships between the circular moments 7o, and 7g4 -

and the line moments u, and 4, which are found in
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the above second-order analysis, and taking us ~ 794,
it is readily shown that uy = 792 + 104/ 12, so that the
line width ¢; may be approximated with
o = (mo2 + moa/12)'/2. 37
To illustrate the correspondence between ¢’ and oy, the
value of ¢’ is given in panel a of Fig. 1 as a function of
o for the above 222 distributions. Since o, = n{/Z, ¢
may be seen as a corrected version of o.. A similar
analysis may be carried out for v and § but the resulting
expressions would include circular moments of fifth
and sixth order which are not available from pitch-
and-roll buoy data. Of the indicated potential alter-
natives one can therefore only consider ¢ to be prac-
tical. However, a comparison between panel a and
panel b of Fig. 1 shows that for the more common
distributions (directional width typically less than 45°,
say) the effect of the correction on the directional width
is marginal and small compared to the sample error of
o, and & (section 3a and Table 2). Moreover, we
do not require that the circular parameters approximate

1
mz
08 |
, 0 1
m; (a) 08
08 & -
: {f
. II
i 04
06 fil
4 /”
g
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04 6-—-3 // {
/1 l’
| |
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{n,)

FIG. 2. The directional width ¢ (panel a), absolute value of skewness v (panel b) and kurtosis é (panel a) as a
function of the centered Fourier coefficients m,, m, and absolute value of n,; physically nonrealizable values are

indicated with dashed lines.
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TABLE 2. Comparison of results of Monte-Carlo simulations with theoretical estimates of rms errors of directional parameters
for five model distributions. Mean direction 8, and widths ¢ and ¢ in degrees. For model numbers, see Table 1.

Rms error
k, kq
Eqs. (40) and (43) Egs. (40) and (41)
Model Parameter True value (Borgman et al.) sim (Long) sim
I N 0 3.64 3.49 3.64 3.49
o 2248 2.37 2.12 3.07 . 2.82
' 22.88 —_ 2.35 — 2.86
v 0 — 0.38 — 0.44
8 2.78 — 2.59 — 1.35
i} By 45.0 9.80 9.11 9.80 9.11
o 47.71 2.94 3.03 4.19 4.34
d 49.87 — 345 —_ 4.61
v 0 — 0.43 — 0.45
] 1.60 — 0.53 —_ 0.42
I 8 5.72 4.92 5.00 4.92 5.00
o 32.09 457 400 3.85 3.74
d 33.82 — 4.44 —_ 3.97
¥ 1.23 — 0.69 —_ 0.59
] 4.24 — 1.38 —_ 1.58
v i 100.86 5.45 5.77 5.45 5.77
o 40.64 6.22 5.36 491 5.08
d 4451 — 5.65 — 5.44
. 4.16 _ 1.88 - 1.31
& 4.74 1.47 —_ 1.77
\' 0o 95.19 3.60 3.70 3.60 3.70
T 31.33 6.68 5.63 4.15 4.30
7 34.41 —_— 6.05 — 4,68
Y 5.60 - 2.85 — 1.44
b) 8.27 —_ 2.97 — 3.04

the line parameters (they do so only for narrow distri-
butions; we only exploit the analogy) and we prefer to
use a consistent set of definitions [i.e., based on Eq.
(14)]. We therefore do not consider & as an alternative
in the following.

e. Expressions for the cos*-model

Since the cos*-model of Eq. (2) is a widely used
model for D(#) it seems appropriate to give o, vy and
& in terms of the parameters of this model. The cos*-
model is a symmetrical model so that the skewness vy
is zero. The centered Fourier coefficients m; and m;,
can be determined in terms of the directional width
parameter s by substituting Eq. (2) in Egs. (A1) through
(A4) of appendix A and subsequently using Egs. (12),
(19) and (20). The result for the directional width is

2 1/2

’ (s + l) ’

The theoretical maximum value of ¢ in this model is

81.03°. It occurs for a uniform directional dis-
tribution (s = 0). For the kurtosis we find:

_3(s+1)
C(s+2)°

(38)

é 39)

This means that for a cos®*-model (for which 0 < s
< o), the kurtosis is limited to the interval (1.5, 3).
Obviously, kurtosis and width are not mutually inde-
pendent parameters for the cos?-model.

3. Error characteristics of the proposed parameters
a. Sample properties of proposed parameters

An important aspect of the presentation and inter-
pretation of the proposed parameters is their statistical
sample variability. Formulas for the standard deviation
and for the rms error of the estimated mean wave di-
rection 8y and directional width ¢ have been derived
by Long (1980) and Borgman et al. (1982). Borgman
et al. (1982) also carried out a theoretical investigation
of the statistical properties of the centered Fourier coef-
ficients m,, m,, n; and n,. Their work indicates that
the bias of 6, and ¢ is usually an order of magnitude
smaller than the rms error of 6, and o, respectively.
We therefore ignore in the following the theoretical
estimates of the bias of 6y and o. .

The formulas of Long (1980) for the standard de-
viation (s.d.) of the mean wave direction 8, and the
directional width ¢ can be simplified by a simple ro-
tation of the coordinate system such that the mean
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wave direction is equal to zero. If this is done, the
expressions of Long (1980) can be written as

s.d. (6) = p~' 2 {(1 — m2)/(2 m*)}'/?  (40)

mlz

- =172
sd. (6)=p~Y 20 —m)

{m?+(K?~ 1)/4
172

+ (1 +mz)(m1‘2—2)/2}] (41)
in which K, = (m,% + n,%)'/? and p is the equivalent
number of degrees of freedom of the spectral estimates
at the frequency considered. In deriving his equivalent
of expression (41), Long (1980) used the wavenumber
estimated from the buoy data (k,, see appendix A)
rather than the wavenumber from the linear dispersion
relation (k,, appendix A) for the calculation of the
Fourier coefficients. Incidently, the original equation
of Long (1980) for the standard deviation of ¢ [ his Eq.
(19)], which is the basis of Eq. (41), was found to
contain a misprint: the term (1 — K;)~! should read
(1 — K;)™% this was confirmed by R. B. Long (personal
communication, 1984).

We note that Eq. (40) for the standard deviation of
the mean wave direction can be expressed in terms of
o and é, using Eqgs. (33) through (36):

s.d. (6p) = p~!/2 {1 —28d%/4}'2, (42)

7
(1 -d%/2)

Equation (41) for the standard deviation of the direc-
tional width cannot be written as a similarly simple
expression.

Borgman et al. (1982) derived formulas for the rms
error of the mean wave direction 6, and the centered
Fourier coefficients 1, , m, and n,. These formulas are
very complex and they will not be repeated here. How-
ever, as with the formulas of Long (1980), they can be
simplified by a rotation of the coordinate system. It
should be noted that Borgman et al. (1982), in contrast
to Long (1980) used the theoretical wavenumber k; in
their derivation. The expression for the rms error of ¢,
obtained from Borgman et al. (1982) after the rotation
is identical to Eq. (40). However, Eq. (40) represents
the standard deviation of §, rather than the rms error.
In spite of this we will refer in the following to the
. results of Long (1980) as rms error estimates consistent
with neglecting the bias. To obtain from Borgman et
al. (1982) an expression for the rms error of the direc-
tional width ¢ one can use their expression for the rms
error of m; [their Eq. (91)] since it can be shown that
the rms error of ¢ is approximately equal to 1 /¢ times
the rms error of m; [Eq. (34)]. The result can be
simplified by the above indicated rotation, resulting in

_ 29172
1+ m, 2m1 } (43)

o =172
s ()= [4(1-m.>
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or, in terms of ¢ and §:
rms (o) =~ p~26(8 — 1)/?/2. (44)

From Egs. (40), (41) and (42) we see that Borgman
et al. (1982) use only the centered Fourier coefficients
m; and m, whereas Long (1980) uses in addition the
centered Fourier coefficient n;,.

To test the above expressions for the rms errors of
6y and ¢ and to obtain some estimates of the rms errors
of the skewness v, the kurtosis 6 and the corrected cir-
cular width ¢’ (see section 2d), we carry out a Monte-
Carlo simulation. This simulation is applied to five
directional distributions of the double cos*-type. The
parameter values of these five distributions, denoted
with I through V, are given in the lower part of Table
1 (indicated with “simulation™).

Of these five distributions the ones with og = 0° (i.e.
a unimodal cos?-model) and the ones with o = 90°
were also used by Borgman et al. (1982) in their Monte-
Carlo study to test the theoretical estimates of the rms
error of the mean wave direction 6, and the centered
Fourier coefficients m,, m, and #,. The two other di-
rectional distributions are added to include larger val-
ues for the skewness and kurtosis than those used by
Borgman et al. (1982).

For each of the above model distributions the Monte-
Carlo simulation generated from a multidimensional
Gaussian distribution a set of 400 unbiased auto- and
cross-spectral values each with 40 degrees of freedom
representing the pitch-and-roll buoy wave data. This
simulation technique is described in Borgman et al.
(1982) and Borgman (1982), but we added the in-
equality due to Mardia (1972), Eq. (23). Each set of
auto- and cross-spectral values thus generated was an-
alyzed to compute the corresponding values of §,, o,
¢, v and & based on the four Fourier coefficients [ Egs.
(33) through (37)]. For the computation of these Fou-
rier coefficients both k, and k, were used since the theo-
retically estimated rms errors are based on either k; or
k,. The rms error of the directional parameter values
thus obtained are shown in Table 2, the heading “sim”
referring to the results of these simulations. The theo-
retical estimates of the rms error are given in the col-
umns labeled “Egs. (40) and (43)” and “Egs. (40)
and (41)” to indicate the formulas that are used.

Table 2 shows that there is a good agreement between
the formulas for the rms errors of 6, and ¢ of Long
(1980) and Borgman et al. (1982), on the one hand,
and the results of the Monte-Carlo simulations on the
other. The rms error of the mean direction 6, is about
5°-10°, independent of the type of wavenumber esti-
mation (k, or k), as may be expected since the estimate
of 6, itself is independent of wavenumber. The other
rms errors vary from about 10%-15% for the directional
widths ¢ and ¢ to about 30%-50% for the skewness vy
(with a lower limit of about 0.4) to 25%-100% for the
kurtosis 6. There seems to be no systematic difference
between these results when using either k, or k;.
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The inclusion of the above indicated criterion of
Mardia (1972), is rather essential for the results of the
computations based on k,. When repeating the simu-
lation with this criterion removed, we found that the
rms errors of v and 6 based on k, increased consider-
ably. A closer inspection of these results showed that
these large rms errors are due to the occurrence of some
outliers in the value of v and & which is in turn due to
the very high sensitivity of these parameters for small
changes in the values of m,, m, and |n,| for certain
combinations of these moments (see Fig. 2 and section
2d). The application of the criterion of Mardia (1972)
removes these outliers but also quite a few other values,
in fact, with this criterion included we had to simulate
about 600 sets of values to retain the above indicated
400 required values. This indicates that some of the
original assumptions of Borgman et al. (1982) under-
lying the simulations may require modifications (e.g.,
use X2-distributions rather than Gaussian distribu-
tions). For our purposes we feel that the inclusion of
Mardia’s (1982) criterion in the simulations is suffi-
cient. Incidentally, we verified that all 222 distributions
used in section 2d comply with this criterion. The sim-
ulations based on k, are only marginally affected by
the inclusion of this criterion. Considering these results
we recommend for the routine analysis of pitch-and-
roll buoy data (if realistic values of y and & are required)
to include the above criterion of Mardia (1972), and
perhaps risk losing some data, and to use k; rather
than k, in the computation of the four Fourier coeffi-
cients (appendix A). It is anyway more convenient
to use k, rather than k, since the determination of k,
requires, in general, information on water depth and
currents which is not always reliably available.

In the above we discussed the sampling error of the
proposed parameters. However, in practice other effects
also cause errors in the proposed parameters, such as
instrument noise or errors in the computation of the
wavenumber. These aspects are discussed below.

b. Errors in estimates of 8, and o due to noise

The data of pitch-and-roll buoys will always be con-
taminated to some extent with noise (e.g., instrument
noise, horizontal motion of the buoy which is not ac-
counted for, spectral leakage). The effect of noise on
the estimation of the mean wave direction and the di-
rectional width is illustrated here with a simple ap-
proach. We assume that only the autospectra are con-
taminated as follows:

ézz =b;C,
Crx = by* Crx (45)

éyy = by C)y

where by, b, and b, are greater than 1 and in which C
refers to the true values and C to the contaminated
values of the autospectra. When the wavenumber k;, is
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used and b, = by is assumed, i.e. the noise in x-slope
is equal to that in y-slope, we find that the estimated
mean wave direction 6, is not affected:

~

00 = 00 (46)
whereas the estimated directional width & is affected:
F2=0>+(1 — )2 - ) 47)

in which € = (b,b,)!/? and ¢ is in radians. Equation
(47) is obtained by substituting Egs. (45) and (A5) in
Egs. (Al) and (A2), see appendix A, for the Fourier
coefficients a; and b,, and from the expression for the
directional width, Eq. (34). Relation (47) is illustrated
in Fig. 3. It shows a rapid increase of the estimated
directional width when noise is present on one or more
of the three buoy signals, in particular for low values
of the directional width ¢. For instance, for ¢ = 20°
and 1% to 5% noise on all signals (b, = b, = b, = 1.01
to 1.05) we find a 7.5% to 30% increase in the estimated
directional width (¢ = 21.5° to 26.4°).

c. Errors in estimates of 8, and o due to errors in the
estimated wavenumber

Errors in the estimated mean wave direction and the
estimated directional width may also be introduced by
errors in estimating the wavenumber. For instance,
when the wavenumber is determined with the disper-
sion relationship from linear wave theory while infor-
mation on depth or current is not correct.

To estimate the effect of such errors on the estimated

80 F
G(°)
bR s
60 |
50 150
40 }
120
30 b
110
20l 108
19
19
10 |
€=1 099 097095 090 0.80 0.50
- —— i’
0 10 20 30 40 50 60 70 80

G
F1G. 3. Sensitivity of the directional width to errors (instrument
or analysis); o: true directional width, &: directional width contam-
inated with noise; € is a measure for the error (noise, wavenumber
estimation or buoy response).
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directional width we write the estimated wavenumber
k as

k=uk (48)
where k is the wavenumber defined in appendix A.
The estimated mean wave direction 6 is not dependent
on the wavenumber and therefore it is not affected by
errors in the estimation of k. For the effect on the di-
rectional width the same expression is found as Eq.
(47) with € replaced by ™' (Fig. 3). This figure clearly
illustrates the strong sensitivity of the estimated direc-
tional width to small errors in the estimation of wave-
number, in particular for narrow distributions. Fur-
thermore, for some values of ¢ it is not possible to
compute ¢,¢e.g. for o = 5° and u = 0.99 (i.e. e = 1.01).

d. Errors in the estimates of 0y and o due to buoy re-
sponse

Although pitch-and-roll buoys are designed to follow
the sea surface as a free water particle, departures from
this behavior will occur due to the finite dimension
and mass of the buoy and the anchoring system. To
study these effects we assume a linear system response
~ for both heave and slope. Furthermore we assume the
slope response to be isotropic. In the time domain we
therefore adopt the following response model:

2(1) = ho(2)*z(2) (49)
X(8) = hy(t)xx(1) (50)
(1) = ho()» (1) GD

where z(1), x(¢) and y(t) are the heave, x-slope and
y-slope of the sea surface and # is the convolution op-
erator. The buoy signals for heave, x-slope and y-slope,
indicated with Z(¢), X(¢) and j(¢) respectively are ob-
tained through the linear pulse response functions of
the buoy for heave, 4.(t) and slope, A,(t). After some
algebra the nine auto-, co- and quadspectra of the buoy
signals can be expressed in terms of the auto-, co- and
quad-spectra of the sea surface heave and slopes and
the spectral response functions corresponding to /.(t)
and h,(t). Substitution of these spectra into Egs. (A1)
through (A4) of appendix A and using the wavenumber
estimate from the three autospectra, k;, leads to the
following estimates of the Fourier coefficients:

a = a, cos(¢; — ¢.) (52)
by = by cos(¢s — @) (53)
d = a (54)
b, = b, (55)

where the tilde indicates the estimates of the Fourier
coeflicients as influenced by the buoy response. Equa-
tions (52) through (55) show that the Fourier coeffi-
cients of the first harmonic of D(#) are only affected
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by the difference in phase shift of heave and slope in-
troduced by the buoy response (¢, and ¢, respectively)
whereas the Fourier coefficients of the second harmonic
are not influenced at all (in the present approximation
of a linear and isotropic buoy response ). Substituting
d; and b, into Egs. (19) through (22) and (33) and
(34) gives the same expressions for the corresponding
estimates of 6; and ¢ as in the case of noise: Egs. (46)
and (47) with ¢ now given by € = |cos(¢s — ¢,)|. This
implies that the estimated mean wave direction is not
affected by an isotropic linear buoy response but that
the directional width is (see Fig. 3). Since |¢; — ¢.|
is roughly estimated to be about 5° (i.e. ¢ = 0.996) for
a WAVEC buoy, the corresponding error in ¢ may be
realistically estimated to vary from less than 0.5° (for
o > 25°, young sea states) to about 1.0° (for ¢ = 10°,
swell).

In the above analysis the use of k, removes in a very
straightforward algebraic manner some undesirable re-
sponse characteristics which would not be removed if
k, were used. This reinforces our recommendation in
section 3a to use k, in the analysis of pitch-and-roll
buoy data rather than k,.

4. Interpretation of the proposed parameters

In section 2 we have chosen 6, as the mean wave
direction following the suggestion of Mardia (1972)
who shows that 6, can be interpreted as the vectorial
mean of a set of unit vectors distributed as D(68). We
have also shown that the other chosen directional pa-
rameters o, v and 6 can for many directional distri-
butions be interpreted as line quantities for width,
skewness and kurtosis. The first two parameters, 6, and
o, usually provide sufficient directional information on
the waves. However, one may be tempted to consider
D(8) to be symmetric and unimodal if only these mea-
sures for mean direction and directional width are used.
To warn against such an assumption we suggest a sim-
ple criterion based on the values of skewness v and
kurtosis 6. Such a warning is also relevant to the in-
terpretation of the values of 6, and o as these parameters
are fairly sensitive to the occurrence of small, secondary
maxima in D(6) far from the mean wave direction
(bimodality or multimodality ). Bimodal distributions
occur in practice often for a local sea with a swell com-
ing from a distant source. The sensitivity of 6, and o
to bimodality or multimodality is illustrated with the
double cos®*-model (Eq. 31). We take s, = s, = 12,
with aq varying from 0° to 180° and the ratio 4,/4,

varying from 0.05 to 0.4. The directional parameters

#, and o for these distributions are shown in Fig. 4. In
particular ¢ appears to be sensitive for the occurrence
of bimodality. For instance, for a moderately small
secondary lobe in the directional distribution (A4;/4;
~ 0.2, say) located far from the main lobe (o ~ 120°,
say), the mean wave direction shifts by about 10 de-
grees whereas the directional width nearly doubles
(from about 22° to about 45°).
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FIG. 4. Variation of (a) the mean wave direction 6, and (b) di-
rectional width ¢ for the double cos®-model for various magnitudes
of the secondary lobe (4,/4,) as a function of difference in peak
directions (ap).

The criterion to warn against the assumption of a
unimodal, symmetric distribution is found from further
analyzing the 222 model distributions of section 2d
(see Table 1) which we supplemented with 48 model
distributions of the cos-type to include very skewed
distributions (by adding ap = 150° and 165° to Table
1). From these 270 distributions, which are each strictly
speaking either unimodal or bimodal, we selected those
that are (nearly) unimodal and symmetric with the
procedure of appendix B. The absolute values of the
skewness, |vy| and the § values of these distributions
are indicated in Fig. 5, panel (a) whereas the |v| and
* 8 values of the other distributions are given in panel
(b). It is obvious that these two sets of |y | and § values
are fairly well separated by the following expression
(also indicated in Fig. 5):

Iyl < 4}

6=2+ |y]| for (56)
for |y| >4

6=26

We therefore consider an arbitrarily shaped direc-

KUIK, G. PH. vAN VLEDDER AND L. H. HOLTHUIJSEN

1031

tional distribution to be approximately unimodal and
symmetric only if its §-value is larger than the d-value
from Eq. (56). To illustrate the use of this criterion
we consider a situation with a bimodal frequency spec-
trum that occurred after a turn in wind direction (Fig.
6, location is off the Dutch coast near the research plat-
form Noordwijk, 52°12'N, 4°15'E, and time is 1400~
1430 UTC 8 July 1980). The measurements were car-
ried out with a WAVEC pitch-and-roll buoy. These
measurements indicate the existence of two distinct
wavefields, one from northwest and one from north-
east. The numerical values of the estimated directional
parameters are given as a function of frequency in Ta-
ble 3. A warning against the assumption of a unimodal,
symmetric distribution, based on the proposed criterion
is issued only for the transition frequencies between
the two wavefields (see Fig. 6). Since the directional

ni (a)

S 6 7 8 9 10 N 12 13 % 15

I
12
nt
5 3
ol
ol
8L
7%
0 1 2 3 4 5 6 7 8 § 0w 1z 3 1% 1
I

FIG. 5. Scatter diagram of ({v|, §)-values of a large number of
model directional distributions. Panel a shows those directional dis-
tributions which are deemed to be (nearly) unimodal and symmetric.
Panel b shows those directional distributions for which this is not
the case. The solid line represents the chosen criterion of Eq. (56).
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distribution in this transition region may be expected
to be bimodal because of the probable shape of the
two-dimensional spectrum, these warnings seem to be
proper. This example illustrates that the combination
of values of ¥ and & provides more information than
the individual values separately. It also illustrates that
the method used in this paper provides more infor-
mation than an analysis of the same buoy data based
on an assumed symmetric and unimodal distribution
such as the cos*-model. '

5. Conclusions

A method for the routine analysis of pitch-and-roll
buoy data is described which yields four directional

~
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FIG. 6. Observed (a) energy density spectrum and observed (b)
mean wave direction as a function of frequency. Observed with a
WAVEC-buoy at 1400-1430 UTC 8 July 1980 near research platform
Noordwijk. Dashed lines for some minor low-frequency swell.
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TABLE 3. Values of directional parameters and warning against
unimodal, symmetric model assumption as a function of frequency.
Observed with a WAVEC-buoy at 1400-1430 UTC 8 July 1980 near
research platform Noordwijk.

Frequency 6o o Warning
(Hz) (deg) (deg) ¥y 8 issued
0.200 329 33 091 3.61 no
0.225 336 30 1.41 4.40 no
0.250 337 38 0.65 391 no
0.275 335 50 0.28 1.79 no
0.300 17 55 1.12 1.97 yes
0.325 53 41 241 4.18 yes
0.350 56 21 2.22 11.59 no
0.375 58 27 2.40 9.45 no
0.400 54 28 0.65 5.92 no
0.425 50 25 1.54 7.08 no
0.450 56 34 1.30 4.12 no
0475 58 27 1.12 8.35 no

parameters per frequency, viz. the mean wave direction
6o, the directional width ¢, the skewness ¥ and the
kurtosis 6. These parameters are obtained analytically
from the first four Fourier coefficients of the directional
distribution D(8) without any a priori assumption as

. to the shape of D(#).

The combination of skewness and kurtosis values
gives an indication as to whether or not the directional
distribution is (nearly) unimodal and symmetric.

Based on the work of Long (1980) and Borgman et
al. (1982), simplified expressions are given for the rms
error of observations of the mean wave direction and
the directional width due to statistical sample vari-
ability. These expressions agree well with the results of
Monte-Carlo simulations. Order-of-magnitude esti-
mates of the rms errors of skewness and kurtosis ob-
servations are also provided by Monte-Carlo simula-
tions. Other errors in the observed mean direction and
width introduced by various effects such as buoy re-
sponse, measurement noise, and wavenumber deter-
mination are discussed and to a large extent quantified.

The method proposed here is model-free, readily
implemented, and computationally efficient. The error
characteristics of the main parameters are well under-
stood and readily determined. The proposed method
is therefore well suited for the routine analysis of pitch-
and-roll buoy wave data.
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" APPENDIX A
Basic Fourier Analysis

A pitch-and-roll buoy measures the vertical elevation
and the two slope components of the buoy as a function
of time. By applying standard cross-spectral analysis
to these signals, resulting in 9 auto-, co- and quad-
spectral density functions, the first four Fourier coef-
ficients of the directional distribution per frequency
can be estimated directly (Longuet-Higgins et al. 1963):

a(f) = fo - cos(8)D(0)do = H%—"% (A1)
b= [ sn@poa - 220 )
a(f) = fo - cos(20)D/(8)db = Cxlig;;c:(y}()f )
(A3)
b(f) = f:ﬂ sin(20) D, (6)dd = E(—;%E(% (A4)

where C represents the auto- and co-spectra and Q the
quadspectra, respectively, with x and y indicating the
two orthogonal components of the buoy slope and z
indicating the heave. The wavenumber &, defined as
27 divided by the wave length of a harmonic wave
traveling in (x, y)-space can be determined in two
ways. It can be obtained with the dispersion relation
of the linear wave theory (k;); it can also be estimated
from the autospectra (k;):

_ (St + cyy(f)}'“
kalf) [ o) ‘
APPENDIX B

Shape Analysis

Consider the directional distribution of Fig. Bl as a
characteristic example of the distributions inspected in

(AS5)

D(e)

FIG. B1. Example directional distribution to illustrate symmetry.
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FIG. B2. Example directional distribution to illustrate unimodality.

section 4 of the main text (see also section 2d and

Table 1). The distribution is deemed to be (nearly)

symmetric if the ratio of the surface area of the left

side of the distribution (indicated as A in Fig. B1) and

the surface area of the right side (indicated as B in Fig,.

B1) is within certain limits, or in more formal terms,
Chl

1 t+7r
; < s D(B)a’B/J;l D(8)ds <p (B1)

in which 6, is the direction of the (highest) peak
of D(6).

If strictly speaking the distribution is bimodal (see
Fig. B2 for a characteristic example), then it is deemed
to be (nearly) unimodal if the modulation of D(#) is
relatively shallow, in other words, if

D(Bumin) > gD(62) (B2)

in which 6, is the direction of the lowest peak of D(#8),
Omin is the direction of the secondary minimum of D(6)
(between 6, and 6,) and the coefficient g is somewhat
smaller than 1. It is also deemed to be (nearly) uni-
modal if the surface area of the secondary lobe (indi-
cated as C in Fig. B2) is small compared with the sur-
face area of the main lobe (indicated as D in Fig. B2),
or in more formal terms,

fs " Do) / f0 :'"ﬂ D(6)db

(B3)

After some trial and error with values of p, ¢ and r
which we consider realistic, we found that the (nearly)
unimodal, symmetric distributions were well separated
from the others in the (|v]|, §)-plane if p = 2.0, ¢
= 0.8 and r = 0.2 (Fig. 5).

greater than r or less than 1/7.
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