
SIMPLIFIED MODEL OF THE AIR FLOW ABOVE WAVES

V. N. KUDRYAVTSEV
Marine Hydrophysical Institute, Sebastopol, Ukraine

V. K. MAKIN and J. F. MEIRINK
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

(Received in final form 20 November 2000)

Abstract. A simplified model of the air flow over surface water waves propagating at arbitrary phase
velocity as compared to the wind velocity is presented. The approach is based on the subdivision
of the air flow into an outer (OR) and an inner (IR) region. In the OR the wave-induced motion
experiences inviscid undulation, while in the IR it is strongly affected by the turbulent shear stress.
The subdivision of the air flow into two regions considerably simplifies the solution of the problem.
The critical height (the height where the wind speed and the wave phase velocity are equal) is for
most cases located inside the IR. Its singular behaviour is strongly suppressed by turbulence. The
description of the wind velocities in the OR is based on an approximate solution of the Rayleigh
equation. The description of the IR is based on the solution of the vorticity equation accounting for
turbulent diffusion. The local eddy-viscosity mixing length closure scheme is used to parameterize
the turbulent shear stress. Exponential damping of the shear stress variation with height towards
the OR is introduced. This damping describes phenomenologically the basic feature of the wave
boundary layer: a rapid distortion of turbulence in the OR. Wave-induced velocity and shear stress
profiles, and the wave growth rate, resulting from the model show reasonable agreement with those
obtained by a two-dimensional numerical model based on a second-order closure scheme. Moreover,
the velocity profiles are in good agreement with laboratory measurements.
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1. Introduction

Physical phenomena that occur on the air-sea interface are determined, or strongly
influenced by, the air-flow dynamics over the water waves. The exchange of
momentum, heat, moisture and gases between the atmosphere and the ocean is
determined to a large extent by the wind-wave interaction. A significant part of
the momentum flux at the sea surface is formed directly by wind waves. Waves
influence the exchange of heat and moisture by fairly moderate winds when the sea
surface is fairly smooth and continuous. The exchange is enchanced when waves
break and form sea spray (e.g., Makin, 1998). To account for this process, the ver-
tical transport and spreading of spray, defined by the air flow above waves, should
be known. Short wind waves, the key issue in remote sensing applications, are
formed and modulated by the wind. To understand and parameterize the processes
occurring at the sea surface and just above it, an explicit description of the air flow
over waves is needed.
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Starting from Miles (1957) numerous studies were dedicated to the problem
(see, e.g., a review by Belcher and Hunt, 1998). Those studies brought the under-
standing that the modulation of the Reynolds stress close to the wave surface is
responsible for the peculiarities of the wind-wave interaction. Belcher and Hunt
(1993) distinguished two main regions above the waves: an inner and an outer
region. In the inner region – a very thin region adjacent to the surface – the wave-
induced turbulence is in equilibrium with the local wind shear. In the outer region
the turbulent stresses correlated with the wave surface are suppressed due to rapid
distortion effects. Hence, the dynamics of the wave-induced air flow corresponds
to inviscid flow. The action of the Reynolds stress in the inner region causes a
thickening of the streamlines on the downwind slope of the wave. The inner region
is thus asymmetric, leading to a pressure asymmetry in the outer region, which
finally results in wave growth. The subdivision of the air flow into two regions
considerably simplifies the analysis of the air-flow dynamics above waves. Belcher
and Hunt (1993) found an analytical solution for the case of slowly moving waves
(as compared to the wind velocity), while Cohen (1997), Cohen and Belcher (1999)
extended the theory for the case of fast moving waves. Harris et al. (1996) de-
veloped an eddy-viscosity model, in which the turbulent stresses in the inner region
are parameterized by using the eddy viscosity derived from the balance between the
turbulent kinetic energy (TKE) production and its dissipation. In the outer region
the eddy-viscosity coefficient is damped exponentially, and the turbulent stresses
vanish.

We present here a simplified model of the wave boundary layer (SWBL), which
we view as a convenient tool for applied studies that require the detailed structure
of the air flow above waves. As an example we mention the calculation of the
stress modulation in a model of the modulation of short waves by long waves
(Kudryavtsev et al., 1997), or the calculation of the wave-induced velocity field
for modelling sea-spray distributions (Mestayer et al., 1996). The SWBL model
can be useful to support experimental studies, both in the stage of preparation and
measurements, when a quick decision to correct/extend measurements is needed,
and the use of expensive numerical models of the wave boundary layer, like the
model by Mastenbroek et al. (1996), is not feasible. The SWBL model describes
the wave-induced air flow in the neutrally stratified deep turbulent boundary layer,
deep compared with the depth of influence of the wave-induced perturbations. The
model treats the air flow above waves of arbitrary phase speed as compared to the
wind velocity, i.e., from slow- to fast-moving waves. In this our model differs from
those by Belcher and Hunt (1993) and Cohen and Belcher (1999) where the air
flow above slow- and fast-moving waves was analyzed separately.

Following Belcher and Hunt (1993) the main simplification of the problem is
achieved by dividing the turbulent air flow into an outer and an inner region. In
the outer region the wave-induced motion experiences an undulation typical for
inviscid flow. The description of the outer region in our model is based on the
approximate solution of the Rayleigh equation for the vertical velocity suggested
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by Miles (1957) and Lighthill (1957). The amplitude of the vertical velocity is
proportional to the mean velocity profile and decays exponentially with height. The
horizontal velocity is found with the same accuracy from the vorticity conservation
equation, once the vertical velocity is known. Using this approximate solution in
the description of the outer layer considerably simplifies its analysis as compared
to Belcher and Hunt (1993) and Cohen and Belcher (1999).

In the inner region, the dynamics of the wave-induced motion is strongly af-
fected by turbulent stresses. Towards the outer region, those stresses are damped
exponentially with height. Unlike Harris et al. (1996), who introduced damping
of the eddy-viscosity coefficient, we apply damping directly on the stresses (see,
also, Cohen and Belcher, 1999). The local eddy-viscosity closure scheme is used
to parameterize the stresses. The eddy-viscosity coefficient is obtained from the
balance between the TKE production and its dissipation, where the dissipation is
expressed in terms of the mixing length. The description of the inner region is
based on the solution of the vorticity equation, in which the existence of the critical
layer and the Reynolds stresses is accounted for. In Kudryavtsev et al. (1999) this
equation was solved analytically and explicit equations for the velocity and the
shear stress were obtained. However, these equations appeared to be cumbersome.
Aiming at using the model in applied studies we solve the vorticity equation in
the inner region numerically by iterations, which from our point of view is more
convenient.

The solution of the simplified model is compared with the solution of the two-
dimensional numerical wave boundary layer (2D WBL) model by Mastenbroek
et al. (1996), based on a second-order Reynolds stress closure scheme. A good
quantitative and qualitative agreement is found in velocity and stress distributions
for fast and slow waves. The estimate of the growth rate parameter obtained by
the SWBL model is consistent with the 2D WBL model. The results of the SWBL
model are also compared with laboratory measurements of Hsu and Hsu (1983).
The comparison is encouraging; the simplified model reproduces measurements
of velocity and shear stress fields above waves as well as the 2D WBL numerical
model. The main model assumption – the subdivision of the air flow into the outer
and inner region – is supported by measurements.

2. Model Equations

2.1. WAVE-INDUCED VARIATION OF WIND VELOCITY

A fully developed turbulent air flow over a monochromatic surface wave travelling
on the (x′

1, x2) plane along the x′
1-axis with the phase speed c is considered. The

flow is in steady-state in a frame of reference moving with the wave: x1 = x′
1 − ct .

In the present study we analyze the case when waves propagate along or opposite
to the wind, so that any variation in the air flow along the x2-axis is absent. The
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surface elevation η0 is a function of x1 only. The equations governing the air flow
over the wave are

u
∂u

∂x1
+ w

∂u

∂x3
= − ∂p

∂x1
+ ∂τ11

∂x1
+ ∂τ13

∂x3
, (1)

u
∂w

∂x1
+ w

∂w

∂x3
= − ∂p

∂x3
+ ∂τ13

∂x1
+ ∂τ33

∂x3
, (2)

∂u

∂x1
+ ∂w

∂x3
= 0, (3)

where x3 is a vertical coordinate, p is pressure, τ13 is the Reynolds shear stress,
and τ11 and τ33 are the Reynolds normal stresses.

Let us introduce the wave-following coordinate system

x = x1,

z = x3 − η(x1, x3), (4)

where η(x1, x3) = η0(x1) exp(−kx3). The wavenumber is k = ω/c, where ω is
the frequency of the surface wave. The vertical transformation of the x3-coordinate
is defined so that lines z = const. are related to the streamlines of the irrotational
flow over the wave. Equations (1)–(3) can now be rewritten as

u

(
∂

∂x
− η1

∂

∂z

)
u + w(1 − η3)

∂

∂z
u

= −
(

∂

∂x
− η1

∂

∂z

)
P + (1 − η3)

∂

∂z
τ13 +

(
∂

∂x
− η1

∂

∂z

)
(τ11 − τ33), (5)

u

(
∂

∂x
− η1

∂

∂z

)
w + w(1 − η3)

∂

∂z
w = −(1 − η3)

∂

∂z
P

+
(

∂

∂x
− η1

∂

∂z

)
τ13, (6)(

∂

∂x
− η1

∂

∂z

)
u + (1 − η3)

∂

∂z
w = 0, (7)

where P = p − τ33, η1 = ∂η/∂x1, and η3 = ∂η/∂x3.
The slope of the surface wave is assumed to be small, so that the air flow can be

described as a sum of the basic flow and small perturbations

u(x, z) = U(z) + ũ(x, z),

w(x, z) = w̃(x, z),

P (x, z) = P (z) + P̃ (x, z),

τij (x, z) = τ ij (z) + τ̃ij (x, z). (8)
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Here the wind velocity U , and the variables marked by a bar, are related to the basic
flow averaged over the x-coordinate, while a tilde refers to the perturbed flow. For
a small air-flow perturbation equations (5)–(7) can be linearized (hereafter the tilde
over the perturbed variables is omitted) so that

U
∂u

∂x
+ (w − η1U)

∂U

∂z
= −∂P

∂x
+ ∂τ13

∂z
+ ∂

∂x
(τ11 − τ33), (9)

U
∂w

∂x
= −∂P

∂z
+ ∂τ13

∂x
, (10)

∂u

∂x
+ ∂

∂z
(w − η1U) = −η13U, (11)

where η13 = ∂2η/∂x1∂x3. The mean wind velocity profile is assumed to vary
logarithmically with height. In the frame of reference moving with the wave it
reads

U(z) = (u∗/κ) ln(z/z0)sign(U) − c

= (u∗/κ) ln(z/zc)sign(U). (12)

Here κ is the von Karman constant, z0 is the roughness parameter, u∗ is the friction
velocity of the basic flow, and sign(U) accounts for the direction of the wind vector,
so that sign(U) = 1 if the wind is in the wave direction and sign(U) = −1 if it is
in the opposite direction. The critical height zc is defined as

zc = z0 exp

(
κc

u∗sign(U)

)
. (13)

The roughness parameter is taken as the sum of the Charnock relation (Charnock,
1955) and the viscous roughness scale to account for low winds (Smith, 1988)

z0 = 0.014u2
∗/g + 0.11νa/u∗, (14)

where νa is the kinematic viscosity of the air.
The following linearized boundary conditions are imposed:

u, w → 0, (15)

if z → ∞, and

u = us, (16)

w = −c
∂η0

∂x
(17)

at z = z0, where us is the horizontal component of the surface wave orbital velocity.
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The vorticity equation for the perturbed flow can be obtained from equations
(9)–(11) by eliminating P

U
∂�

∂x
+ (w − η1U)U ′′ − η13UU ′ =

(
∂2

∂z2
− ∂2

∂x2

)
τ13 + ∂2

∂x∂z
(τ11 − τ33), (18)

where � = ∂u/∂z − ∂w/∂x is the vorticity, U ′ = dU/dz, and U ′′ = d2U/dz2.
The vorticity equation can be rewritten in the form of the Rayleigh equation for the
vertical velocity using the continuity Equation (11)

U

(
∂2w

∂z2
+ ∂2w

∂x2

)
− wU ′′ = −

(
∂2

∂z2
− ∂2

∂x2

)
τ13 − ∂2

∂x∂z
(τ11 − τ33). (19)

Equation (19) can be solved after the Reynolds stresses are expressed in terms of
the independent variables, i.e., a turbulence closure scheme has to be introduced.

2.2. INNER AND OUTER REGIONS

Belcher and Hunt (1993) developed scaling arguments to describe how turbulence
in the air flow is affected by the surface wave. They introduced two main time
scales. The advection time scale, TD ∼ k−1/ |U(z)|, characterizes the time for
turbulent eddies to be advected and distorted by the mean flow over the wave.
The eddy-turnover time scale, TL ∼ κz/u∗, characterizes the time for turbulent
eddies to be adjusted to the local wind shear. The height at which these scales are
comparable, TD ∼ TL, is defined as the height of the inner region l. Belcher and
Hunt (1993) estimated this height as

kl = 2κu∗
|U(l)| . (20)

In the case of very fast waves kl = 2κu∗/c. In the inner region (IR), defined as
z < l, turbulence is in equilibrium with the local wind shear. In the outer region
(OR), defined as z > l, turbulent eddies are advected too fast to be correlated
with the local wind shear. The turbulent stresses are smeared out, i.e. they are not
correlated with the surface wave, and the wave-induced air flow in the OR is largely
inviscid.

The inner region has an important physical meaning. It is a thin region in the
boundary layer above the waves where disturbances of turbulent stresses, caused by
the interaction of the air flow with the surface, are located. Experimental evidence
of the existence of the IR and the OR above waves was presented by Mastenbroek
et al. (1996).

The height of the IR is the key parameter in the present model. Its height as
a function of the inverse wave age parameter Uk/c (Uk = U(k−1)) is shown in
Figure 1. For a given wind, the IR height increases with increasing phase speed of
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Figure 1. The vertical structure of the turbulent boundary layer over a wave as a function of Uk/c.
The solid line is the IR scale kl, Equation (20); the dashed line is the critical height kzc, Equation
(13); the dotted line is the roughness scale kz0, Equation (14).

the wave and reaches its maximum in the vicinity of Uk/c ∼ 1. This value of the
inverse wave-age parameter corresponds to waves at the peak of the wave spectrum
of a fully developed sea. For faster waves the IR height decreases again.

The subdivision of the boundary layer above waves into an inner and an outer
region allows considerable simplification of the parameterization of the Reynolds
stresses. In the OR the turbulent stresses are simply neglected, and the air flow
experiences inviscid undulation. In the IR a simple local eddy-viscosity scheme is
used. In this region the air flow is strongly affected by wave-induced variations of
the turbulent stresses. The OR and IR are introduced via asymptotic regimes of
the wave-induced dynamics. Hence, the height of the boundary h separating these
regions is defined in the order of magnitude only, i.e., h ∼ l. In the simplified
model the boundary between the two regions is specified at given height (which is
an artefact of the present model) related to the IR scale as h = nl, where n is a
constant of O(1). At height z = h the wind velocity and its vertical gradient are
continuous.

2.3. CRITICAL LAYER

The critical layer plays a crucial role in quasi-laminar models of the air flow above
waves (Miles, 1957). This type of models assume that the turbulent stresses can
be neglected. In the terminology of the rapid distortion theory above waves this
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assumption is only valid when the height of the critical layer is situated in the outer
region. The height zc of the critical layer, defined by the condition U(zc) = 0,
Equation (13), is shown in Figure 1. In the range of Uk/c > 1 the critical layer is
located inside the inner region, so that turbulence should influence the dynamics of
the critical layer.

Miles (1962) indicated that viscous effects become important and break the
assumption of the quasi-laminar model when the viscous scale of the critical layer

δc =
(

νaκzc

u∗k

)1/3

(21)

is of order zc or more, i.e., δc ≥ zc. If the critical layer is situated inside the IR, the
eddy viscosity takes the role of molecular viscosity in (21). In this case an estimate
of the height δc can be obtained by replacing the viscosity νa in equation (21) by
the wave-induced eddy viscosity K = 2κu∗z at z = zc (see Equation (42) below).
Then Equation (21) can be written as

δc = (2κ2z2
c/k)1/3, (22)

and the condition δc ≥ zc is equivalent to

kzc ≤ 2κ2.

It follows from Figure 1 that both conditions, zc < l and kzc ≤ 2κ2, are satisfied
in the range of Uk/c > 1. It means that in this range turbulence dominates the dy-
namics of the air flow in the vicinity of the critical height. Hence, the applicability
of the quasi-laminar model in the description of the air-flow dynamics is restricted
to a range of the inverse wave-age parameter Uk/c ≤ 1. However, for this range of
the inverse wave-age parameter the critical height rapidly grows and hence, cannot
effect the air flow dynamics.

3. Solution of Equations

We assume that the wave steepness ak (a is the wave amplitude) is small. Hence,
any air-flow variable Y in the presence of waves experiences a small variation Ỹ ,
which can be expanded in powers of ak

Ỹ (x, z) = 〈Y 〉 (akY (1)(x, z) + O(a2k2)), (23)

where 〈Y 〉 is a scale. To normalize the variation in the air-flow parameters, ū∗/κ is
chosen as a scale for the wind velocities (including the mean wind speed), and u2

∗
as a scale for the Reynolds stresses and pressure. The wave profile is introduced as
the real part of

η0(x) = aeikx . (24)
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The solution is then presented in the form of normal modes

Y (1)(x, z) = Ŷ (z)eikx, (25)

where Ŷ (z) = Ŷr(z) + iŶi(z) is the complex amplitude.
The second small parameter of the problem is the dimensionless height of the

IR kl. As a variable Ŷ could depend on kl, we expand Ŷ (z) in powers of kl (for
details see Belcher and Hunt, 1993; Cohen and Belcher, 1999)

Ŷ (z) = Ŷ0(z) + klŶ1(z) + O(k2l2). (26)

Expansion (26) is valid if kl � 1. The real part of Ŷ (z) is the amplitude of the
wave-induced variation in the air flow, which is correlated with the wave elevation.
The imaginary part of Ŷ (z) is the amplitude of the variation, which is correlated
with the wave slope. Notice that, if Ŷi(z) is positive, then the maximum of the
wave-induced variation is displaced towards the backward slope of the wave. As
the surface wave is described by cos(kx), only the real part of (25) has a physical
sense.

The analysis is done to first-order in ak (hereafter the superscript 1 is omitted),
and to zero-order in kl (we shall call this solution the zero-order solution). For
the vertical velocity the first order kl-correction of the zero-order solution has a
significant physical sense (see Section 3.2.4), and will be considered additionally.

3.1. INVISCID AIR FLOW

When the air flow experiences inviscid undulation over the surface wave, Equation
(19) is reduced to the Rayleigh equation

U

(
∂2ŵ0

∂z2
− k2ŵ0

)
− ŵ0U ′′ = 0 (27)

with the boundary conditions for the vertical velocity (15) and (17). This equation
was studied in details in numerous papers starting from Miles (1957). Miles (1957)
and Lighthill (1957) suggested an approximate solution of the Rayleigh equation
in the form

ŵ0(z) = γ U(z) exp(−kz), (28)

where γ is a constant of proportionality. As was mentioned by Phillips (1966), this
constant should have a different value above and below the critical height. At z <

zc the constant must be equal to i to satisfy the boundary condition (17). At z > zc

the constant should differ from i due to the expected influence of the critical layer.
A direct substitution of (28) into Equation (27) shows that this solution satisfies the
Rayleigh equation with the accuracy of (kz ln(kz/kzc))

−1 at large distance from the
surface (kz ∼ 1), and with the accuracy of kz close to the surface (kz � 1).
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The applicability of the estimate (28) can be checked through direct comparison
of the approximate solution with the ‘exact’ numerical solution of the Rayleigh
equation. Approximation (28) is valid with accuracy a2k2 in both the wave-
following and the Cartesian coordinate system. In the latter case z in (27) and (28)
should be replaced by x3. For comparison we used the code solving the Rayleigh
equation in the Cartesian coordinate system. In Figure 2, the approximate solution
(28) is compared with the numerical solution of the Rayleigh Equation (27) for the
inverse wave-age parameter U10/c = 5 and 2. To fit (28) to the numerical solution,
the tuning constant γ is chosen as

γ = i, if x3 < zc, (29)

γ = 1

2
(1 + i), if x3 > zc. (30)

This choice gives a reasonable agreement between the approximate solution (28)
and the numerical solution.,

The approximate solution for the horizontal velocity in the Cartesian coordinate
system

û0(x3) = iγ
[−U + k−1U ′] e−kx3 (31)

obtained via w0 (28) from the continuity Equation (3), and the numerical solu-
tion are also shown in Figure 2. The approximate solution for the horizontal and
the vertical velocity compares reasonably well with the numerical solution. This
comparison illustrates the possibility to describe the structure of the wave-induced
velocity field in the inviscid air flow by the approximate solution (28).

3.2. OUTER REGION

The turbulent stresses in the outer region are not correlated with the surface wave.
Hence the vertical wave-induced motion in the OR should be close to that of the
inviscid air flow. That gives us the possibility to apply the approximation of ŵ0 (28)
for the description of the outer region in the turbulent boundary layer. However, in
Section 2.3 we argue that the singular behaviour of the critical layer dynamics has
to be significantly suppressed by turbulence. This means that the constant γ in the

, Notice that, at the critical height, Equation (28) gives ŵ0r (zc) = 0. However, in fact ŵ0r (zc)

is slightly positive. Its value defines the energy transfer from the shear flow to waves in the quasi-
laminar theory of Miles (1957). Miles (1957) estimated the magnitude of the vertical velocity at the
critical height through the approximate solution (28) by integrating Equation (10) from infinity to zc ,
and substituting the obtained relation for the imaginary part of P̂ into Equation (9)

ŵ0(zc) = Re(γ )
κkzc

u∗

∫ ∞
zc

U2e−kx3 d(kx3).
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Figure 2. Inviscid shear flow: profiles of real and imaginary parts of vertical ŵ(z) and horizontal
û(z) velocities. The wind speed is U10=15 m s−1. The inverse wave-age parameter is U10/c = 2 (left
column), and U10/c = 5 (right column). The approximate solution, Equations (28) and (31), is shown
by dashed lines. The solid lines show the numerical solution of the Rayleigh Equation (27) with the
horizontal velocity defined through the continuity Equation (3). The velocities are normalized with
aku∗/κ . The critical height is kzc = 0.018 for U10/c = 2, and kzc = 0.004 for U10/c = 5.
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approximate solution (28) should be uniform throughout the whole wave boundary
layer, without a singularity at zc. Taking into account the boundary condition (17)
we suggest that the vertical motion in the OR is described by Equation (28) with
γ = i throughout the whole wave boundary layer, i.e.,

ŵ0(z) = iU(z)e−kz. (32)

This solution describes the basic behaviour of the wave-induced vertical motion –
its decay with height – in the turbulent wave boundary layer. It can be shown that
this solution is correct only in zero-order while the Reynolds stresses inside the IR
induce a vertical velocity that is of kl-order (Belcher and Hunt, 1993). To obtain
the solution of û0 with the same accuracy as ŵ0, we use here the vorticity Equation
(18). In terms of normal modes this equation has the form

ikU

(
∂û0

∂z
− ikŵ0

)
+ (ŵ0 − ie−kzU)U ′′ + ike−kzUU ′ = 0. (33)

Substituting (32) for ŵ0 into the vorticity equation and integrating the obtained
expression for ∂û0/∂z from ∞ to z with the boundary condition û0(∞) = 0, we
obtain the following approximate solution for the horizontal velocity

û0(z) = Ue−kz + 2
∫ ∞

z

e−kz′
U ′dz′. (34)

Thus, the general feature of the wave-induced motion in the outer region is
described by Equations (32) and (34) for the vertical and the horizontal velocity
respectively. This is the zero-order solution in the sense of expansion (26). The
kl-correction of the solution for û0(z) does not introduce new essential elements
in the description of the horizontal velocity in the OR. However the kl-correction
of the vertical velocity is important as Re(ŵ) determines the energy transfer from
wind to waves, and will be considered later.

3.3. INNER REGION

3.3.1. Reynolds Stresses
In the IR the Reynolds shear stress is in equilibrium with the local gradient of the
wind velocity. Consequently, it can be described by the local eddy-viscosity closure
scheme

τ13 = K

(
∂u

∂z
+ ∂w

∂x

)
. (35)

Here K is the eddy viscosity, which is expressed via the square root of the turbu-
lence kinetic energy e and the turbulence length scale, which is proportional to the
distance from the surface

K = κze1/2. (36)
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The normal Reynolds stresses in the IR are assumed to be proportional to the shear
stress

τ11 = −αuτ13, (37)

τ33 = −αwτ13, (38)

where αu and αw are empirical constants (Townsend, 1972). The shear stress can
be found from the TKE conservation equation, in which a local balance between
the TKE production and its dissipation is assumed

τ13
∂u

∂z
− e3/2

κz
= 0. (39)

Inside the IR, the wave-induced variation of the vertical gradient of the horizontal
velocity is (kl)−1 times larger than the variation of the horizontal gradient of
the vertical velocity. In kl-order, the linearized Equation (39) written in terms of
normal modes is

K̂

(
∂U

∂z

)2

+ 2K
∂U

∂z

∂û

∂z
− 3

K
2
K̂

κ4z4
= 0. (40)

The solution of this equation with K = κu∗z is

K̂ = κ2z2 ∂û

∂z
sign(U), (41)

and the shear stress is derived from (35) and (41)

τ̂13 = K̂
∂U

∂z
+ K

∂û

∂z

= 2κzu∗
∂û

∂z
. (42)

This relation is valid well inside the IR (at z < l). According to rapid distortion
theory, the shear stress attenuates towards the outer region. To take this effect into
account we introduce a vertical damping of the shear stress and rewrite (42)

τ̂13 = 2κzu∗
∂û

∂z
e−z/ l . (43)

At small z/ l this equation reduces to (42), while at large z/ l the shear stress
vanishes.
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3.3.2. Vorticity Equation in the IR
Let us introduce a new dimensionless vertical coordinate inside the IR

ζ = z/ l, (44)

and rewrite the vorticity Equation (18) in terms of normal modes accounting for
the shear and normal stresses (43), (37) and (38)

iU(
∂û

∂ζ
− iklŵ) + (kl)−1(ŵ − ie−klζ U)U ′′

ζζ + ie−klζ UU ′
ζ

= |Ul|
[

∂2

∂ζ 2
+ (kl)2 − ikl(αu − αw)

∂

∂ζ

] (
ζe−ζ ∂û

∂ζ

)
. (45)

We are reminded that all velocity variables here are normalized with u∗/κ . The
continuity equation (11) in the ζ coordinate reads

iklû + ∂ŵ

∂ζ
− ie−klζ U ′

ζ = 0, (46)

where U ′
ζ = dU(ζ )/dζ and U ′′

ζζ = d2U(ζ )/dζ 2.
Figure 1 shows that the height of the IR kl is small except in a narrow range in

the vicinity of U10/c ≈ 1.2. Outside this narrow range the terms of kl-order can be
neglected in equation (45), which then takes the form

∂2

∂ζ 2

(
ζe−ζ ∂û0

∂ζ

)
− i

U

|Ul|
∂û0

∂ζ
= S(ζ ), (47)

where the function S(ζ ) is

S(ζ ) = |Ul|−1

[
(ŵ − ie−klζ U)U ′′

ζζ

kl
+ ie−klζ UU ′

ζ

]
= |Ul|−1

[
ŵ1U

′′
ζζ + ie−klζ UU ′

ζ

]
. (48)

To obtain the second equality, the expansion (26) in powers of kl for the vertical
velocity is used, so that ŵ0 is defined by (32) and ŵ1 is the kl-order correction. The
term S describes the source of vorticity caused by the vertical motion in the shear
flow.

3.3.3. Solution of the Problem: Shear Stress and Horizontal Velocity
It is more convenient to rewrite Equation (47) in terms of the shear-stress variation

∂2τ̂0

∂ζ 2
− m2(ζ )̂τ0 = 2S(ζ ), (49)
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where τ̂0 = 2ζe−ζ ∂û0/∂ζ is the dimensionless shear stress variation and m2(ζ ) is
a function defined as

m2(ζ ) = i
U

|Ul|
eζ

ζ
. (50)

The kl-order correction of the vertical velocity can be found from the continuity
equation (46) if the zero-order solution û0 for the horizontal velocity is known

ŵ1(ζ ) = −i

∫ ζ

ζ0

(̂u0 − Ue−klζ ′
) dζ ′. (51)

Equation (49) is an ordinary non-uniform differential equation of the second order
with respect to the shear stress τ̂0, or of the third order with respect to the horizontal
velocity û. The boundary conditions have to be specified. At the upper boundary
of the IR, ζ = n (in the present study we adopt n = 3), the solution of the equation
has to match the horizontal velocity ûn and its vertical gradient in the OR, i.e.,

û0(n) = ûn, (52)

τ̂0(n) = 2ne−n ∂û

∂ζ

∣∣
ζ=n. (53)

At the lower boundary ζ = ζ0 ≡ z0/ l, the solution of (49) has to match the
horizontal component ûs = κc/u∗ of the orbital velocity of the surface wave

û0(ζ0) = ûs . (54)

Accounting for the boundary condition (54), the relation between the wave-
induced variation of the shear stress τ̂0 and the wind velocity û0 is

û0(ζ ) = ûs + 1

2

∫ ζ

ζ0

τ̂0(ζ ′)eζ ′
d ln ζ ′. (55)

At small ζ in the lower part of the IR the shear stress is approximately constant
with height (for example, see Figure 5). Hence, the profile of the wind velocity
variation according to (55) has a logarithmic shape. This thin sublayer adjacent
to the surface is usually referred to as the inner surface layer (Belcher and Hunt,
1993). The magnitude of the shear stress at the surface τ̂0(ζ0) is unknown, and
should be found so that the solution of Equation (49) with the upper boundary
condition (53) obeys the condition

ûn − ûs = 1

2

∫ n

ζ0

τ̂0(ζ ′)eζ ′
d ln ζ ′. (56)

Equation (49) (with (48), (50), and (51)) can be solved with the upper boundary
(53) and integral condition (56) either analytically or numerically. In Equation (49)
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the vorticity source S depends on the kl-correction of the vertical velocity ŵ1 in
(51), which in turn depends on the solution of (49). An example of the analyt-
ical solution of the problem is given by Kudryavtsev et al. (1999). However, the
simplest way to solve these coupled equations is to use an iterative method. The
following procedure was applied: (1) A first guess for τ̂0 at ζ = ζ0 is taken; (2)
Equation (49) with the upper boundary condition (53) and τ̂0(ζ0) is solved numer-
ically; (3) the profile of the shear stress found is integrated over the IR according
to the right hand side of (56). This results in an estimate of the horizontal velocity
difference over the IR 2û0; (4) depending on the difference between 2û0 and the
true value (ûn − ûs), τ̂0 is corrected and the iteration is repeated from step (2). The
iterations are continued until

∣∣2û0 − (ûn − ûs)
∣∣ /

∣∣ûn − ûs

∣∣ is small enough. Then
ŵ1(ζ ) in (51) is updated with the new û0 and the iteration starts again. The profile
of the horizontal velocity is found from (55).

3.3.4. Vertical Velocity
The kl-order correction of the vertical velocity has an important physical meaning.
It gives the real part of the vertical velocity, which determines the energy flux to
waves. The vertical velocity correlated with the wave elevation produces the slope-
correlated variation of the air pressure. The pressure correlated with the wave slope
provides the energy transfer from the air flow to waves.

The first-order solution for the vertical velocity inside the IR follows from
Equation (51) with û0 defined by (55). However, this solution does not provide the
attenuation of the vertical velocity above the IR. It is clear that such a behaviour of
the vertical velocity is not physical, which is explained by the fact that the solution
for û0 used in (51) is valid for small kz only, i.e., inside the IR. Outside the IR all
wave-induced variables of the air flow decay exponentially with height. To account
for this fact the exponential decay is introduced in Equation (51), which then takes
the form

ŵ1(ζ ) = −ie−klζ

∫ ζ

ζ0

(̂u0 − Ue−klζ ′
) dζ ′. (57)

Equation (57) helps us to understand the mechanism of wave generation (see a
review by Belcher and Hunt, 1998). The imaginary part of the horizontal velocity,
produced by the action of the shear stress inside the IR, generates the real part
of the vertical velocity, which is in phase with the wave elevation. This velocity
penetrates into the inviscid OR and generates the slope-correlated pressure. The
pressure then penetrates the thin IR and forms at the surface the energy flux from
the air flow to the wave.
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3.4. ENERGY TRANSFER FROM WIND TO WAVE

The growth of the wave energy Ew due to the energy transfer from wind to waves
is described by equation

∂Ew

∂t
= ρac

〈
Ps

∂η0

∂x

〉
+ ρa 〈τsus〉 , (58)

where Ew = 1/2ρwga2 is the energy of the gravity wave, ρa and ρw are the
densities of air and water respectively, Ps = P (z0) is the surface pressure (in-
cluding normal turbulent stresses), τs = τ13(z0) is the surface shear stress, and
brackets denote horizontal averaging over the wave length. The first term in (58)
on the right-hand side describes the energy flux due to the work of pressure on
the vertical orbital velocity. The second term describes the work of the surface
tangential stress on the horizontal orbital velocity. The dimensionless growth rate
parameter β is defined as

β = 1

Ewω

∂Ew

∂t
. (59)

In terms of normal modes (59) takes the form

β = ρa

ρw

u2
∗

c2

[
Im(P̂0s) + Re(̂τs)

]
, (60)

where P̂0s = P̂0(ζ0), and τ̂s = τ̂0(ζ0). The surface pressure can be found from (10)

Im(P̂0s) = k

∫ ∞

z0

(
URe(ŵ1)

κ2
− Re(̂τ0)

)
dz, (61)

where the vertical velocity is defined by (57), and the shear stress results from the
solution of Equation (49).

4. Results

4.1. WIND VELOCITY AND SHEAR STRESS PROFILES

In this section we present a comparison of the wave-induced velocity and the Reyn-
olds stress calculated by the simplified model (SWBL) with those calculated by the
two-dimensional numerical wave boundary layer model (2D WBL). The 2D WBL
model is described in detail by Mastenbroek et al. (1996). Here we only mention
that the second-order Reynolds stress turbulence closure scheme developed by
Launder et al. (1975) is used to model the turbulent stresses. A comparison is made
for four cases specified by the parameters listed in Table I. For the first three runs
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TABLE I

Parameters of runs.

Run U10/c c/ū∗ kzc kl kz0

1 0.83 36.6 32.8 0.05 1.4 × 10−6

2 1.66 18.3 8.5 × 10−2 0.28 5.5 × 10−5

3 5 6.1 5.7 × 10−3 0.11 5.0 × 10−4

4 1.5 15.9 – 0.03 5.6 × 10−5

Figure 3. Profiles of real and imaginary parts of the horizontal velocity û(z), (left column), the
vertical velocity ŵ(z), (middle column), and the shear stress τ̂ (z) (right column). The solid lines
show the solution of the simplified model; the dashed lines show the solution of the 2D WBL model.
Inverse wave age is U10/c = 0.83. Wind velocities are normalized with aku∗/κ , and the shear stress
is normalized with aku2∗.

the direction of the wind coincides with the direction of the wave propagation;
for run 4 the wave propagates against the wind. The vertical profiles of the velocity
and the Reynolds stress are shown in Figures 3–6. Heights of the IR and the critical
level are also shown in these figures.

In the outer region (z > l) the wave-induced motion is defined mainly by
the elevation-correlated (real part) component of the horizontal velocity and the
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Figure 4. The same as in Figure 3, but the inverse wave age is U10/c = 1.66.

Figure 5. The same as in Figure 3, but the inverse wave age is U10/c = 5.
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Figure 6. The same as in Figure 3, but for the wave moving opposite the wind. Inverse wave age is
U10/c = 1.5.

slope-correlated (imaginary part) component of the vertical velocity, which char-
acterize the inviscid nature of the flow above the wavy surface. Their quadrature
components (Im(̂u) and Re(ŵ) respectively) are small. Notice, that in the OR the
approximate solution by the SWBL model based on Equations (32) and (34) is in
excellent agreement with the 2D WBL model for all four cases.

Run 1 (Figure 3) relates to waves in the vicinity of the spectral peak of a fully
developed sea (inverse wave age U10/c = 0.83). In this case the critical height is
located outside the wave boundary layer, so that the influence of the critical layer on
the air-flow dynamics is absent. The dynamics of the OR is mainly defined by the
inviscid air-flow undulations over the wave profile, while the structure of the IR is
fully determined by the action of the shear stress. At the surface the stress provides
the matching of the air-flow velocities to the orbital velocities of the wave. This
results in the generation of the slope-correlated horizontal velocity inside the IR,
and hence, through the continuity equation, the elevation-correlated component of
the vertical velocity. The latter is of kl-order and small but plays a crucial role in
the energy exchange between wind and waves. The vertical profiles of the shear
stress obtained by the simplified and the numerical models are in qualitative and
quantitative agreement. Both models predict a strong enhancement of the surface
stress in the region of the wave trough.
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Run 2 (Figure 4) corresponds to a case when the frequency of the wave is twice
the frequency of the spectral peak of a fully developed sea (inverse wave age is
U10/c = 1.66). In this case the height of the IR is kl = 0.28, which is close
to its maximal value as follows from Figure 1. The height of the critical layer
is kzc = 0.085. This is comparable to the IR height, which could give rise to
complications. The accuracy of our approximation is of kl-order, and one could
anticipate a significant deviation of the solution of the SWBL model from the
2D WBL model. However, the comparison is encouraging. The local maximum
in Re(̂u) and the local minimum in the shear stress, both occurring in the vicinity
of the critical layer, are well reproduced by the simplified model. Notice, that as
the critical layer is located inside the IR, the singular behaviour of the air-flow
dynamics, which is well expressed in the left column of in Figure 2, is significantly
blurred by turbulent stresses.

Run 3 (Figure 5) corresponds to a case of a slow wave (inverse wave age
U10/c = 5). Again a good agreement of the velocity distribution between the mod-
els is found. The structure of the IR is characterized by a speed-up of the horizontal
velocity over the crest. Both models predict the maximum of the horizontal velocity
(as well as the real part of the vertical velocity) in the vicinity of the IR height.
The 2D WBL model gives a somewhat stronger acceleration of the flow than the
simplified model. The vertical profile of the shear stress is in qualitative agreement,
though the local extremum in Re(̂τ ) seems to be underestimated by the simplified
model. Furthermore, unlike the simplified model, the 2D WBL model predicts the
existence of the slope-correlated stress Im(̂τ) in the OR. The critical layer for this
run is located in the lower part of the IR, where the shear stress dominates the air-
flow dynamics, and there is no manifestation of the singular behaviour of the air
flow at the critical height.

Finally, run 4 (Figure 6) corresponds to a case of swell propagating against the
wind. In this case the minimum of the horizontal velocity occurs over the trough
of the wave. Inside the IR the action of the shear stress shifts the region of the
accelerated air flow to the downwind slope. The maximum of the stress is in the
vicinity of the wave trough. Again, the simplified description of the turbulent wave
boundary layer is well consistent with the one obtained by the 2D WBL model.

The comparison of the results shows that the simplified model correctly repro-
duces the general peculiarities of the air flow dynamics over surface waves in a
wide range of wind-wave conditions as compared to the 2D WBL model.

4.2. GROWTH-RATE PARAMETER

In Figure 7, a comparison of the growth-rate parameter resulting from the sim-
plified and the 2D WBL models is shown. In the IR the air-flow dynamics is
governed mainly by the shear stress. The stress generates the real part of the ver-
tical velocity in kl-order (57), which in turn generates the slope-correlated surface
pressure (61), providing the energy transfer from wind to wave. This is the so-
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called non-separated sheltering wave-growth mechanism described by Belcher and
Hunt (1993).

Figure 7. The growth-rate parameter as a function of c/u∗. The solid line denotes the solution of the
simplified model; the dashed line denotes the solution of the 2D WBL model.

Qualitatively, the simplified model reproduces well the growth-rate dependence
on wave age c/u∗ resulting from the 2D WBL model. Quantitatively, the SWBL
model gives somewhat lower values of β. This is explained by the fact that the
simplified model predicts a smaller magnitude of the vertical velocity Re(ŵ1) and
hence Im(P̂0s) than that predicted by the 2D WBL model. In the range 15 < c/u∗ <

22 the growth-rate parameter has a peak. Its origin can be explained by the fact that
the critical height here approaches the upper boundary of the IR, and peculiarities
of the critical layer dynamics, though still suppressed by weakened turbulence,
become important. In the range of fast waves the growth-rate parameter is negative,
which means that the energy flux is from the wave to the air flow.

4.3. COMPARISON WITH MEASUREMENTS

In this section results of the simplified and the 2D WBL models are compared with
the laboratory measurements of velocity and stress fields by Hsu and Hsu (1983).
They used a mechanically generated wave with the phase velocity c = 1.6 m s−1.
Other parameters of three runs of this experiment are shown in Table II. U∞ is
the wind speed in the centre of the wave tank, and ū∗ exp is the friction velocity
presented by Hsu and Hsu. The wind velocity U(k−1) and the friction velocity ū∗
are determined by fitting a logarithmic profile to the observed mean wind speed.
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TABLE II

Parameters of runs of the experiment by Hsu and Hsu (1983).

Run U∞ ū∗ exp U(k−1) ū∗ U(k−1)/c

m s−1 m s−1 m s−1 m s−1

1 1.37 0.043 1.4 0.06 0.87

2 2.12 0.073 2.0 0.08 1.28

3 2.92 0.110 2.9 0.13 1.84

The wave-induced horizontal velocity and the shear stress measured in the
wave-following coordinate system are shown in Figures 8–10. The vertical velocity
is not shown in the figures as there is an apparent bias in these data of which the
cause is unknown (Mastenbroek, 1996).

Runs 1 and 2 relate to cases when the wave moves somewhat slower and faster
than the wind respectively; run 3 represents a slowly propagating wave. In cases 1
and 3 the measurements were done in both outer and inner regions, while in case
2 the IR depth is large, and most of the data are confined to the inner region. The
data confirm the existence of the outer and the inner regions. For case 1 and 3 no
significant variation of the shear stress is observed inside the OR, while inside the
IR a systematic trend in the shear stress is clearly seen. In run 2 the IR is high, and
the stress varies throughout the whole domain. Peculiarities of the wave-induced
horizontal velocity are dependent on the ratio of the wind speed to the wave phase
velocity. If the wave runs faster than the wind, then the air flow accelerates over the
trough (run 1). Otherwise, the air flow accelerates over the crest (run 2 and 3): the
larger the speed difference between wind and wave, the stronger the acceleration.

The simplified model reproduces the behaviour of the wave-induced disturb-
ances of velocity and stress fields above the wave well. The only significant
deviation of the model predictions from the data can be observed in the lower
part of the vertical profile of Im(̂τ ). The reason for this is unclear; however, the 2D
WBL model suffers from the same deficiency. In fact, it is not possible to judge
which of the two models behaves better as compared to the measurements.

5. Discussion and Conclusions

A simplified model for the neutrally stratified wave boundary layer over a surface
wave propagating along or opposite to the wind at an arbitrary phase velocity as
compared to the wind velocity is presented. The main simplification of the problem
is achieved by the division of the wave boundary layer into an outer (OR) and
an inner (IR) region, as suggested by Belcher and Hunt (1993). In the OR the
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Figure 8. Comparison of simplified model (solid lines) and 2D WBL model (dashed lines) with
laboratory measurements of Hsu and Hsu (1983) (open squares). Run 1: Uk = 1.4 m s−1; Uk/c =
0.87 (see Table II for details). The horizontal velocity is normalized with aku∗/κ , and the shear stress
is normalized with aku2∗.

wave-induced motion experiences inviscid undulation, while in the IR the motion
is strongly affected by the turbulent shear stress.

The IR depth is relatively small (kl ∼ 0.1) for all waves, except for those
running with the phase speed close to the wind velocity (i.e., the inverse wave-age
parameter is 1 < U10/c < 1.2). In this narrow range the height of the IR is kl ∼ 1.
An important conclusion resulting from the analysis of the IR depth is that the crit-
ical height (the height where the wind speed equals the phase velocity of the wave)
is almost always located inside the IR. This means that the singular behaviour of
the critical layer dynamics is strongly suppressed by the turbulent stress for all
waves, with exception of those with inverse wave age U10/c < 1.2. However, for
this range of the inverse wave-age parameter the critical height rapidly grows and
hence, cannot effect the air-flow dynamics.

The fact that the singular behaviour of the critical layer dynamics does not
influence the inviscid outer region allows a simple description of the velocity in the
OR. This description is based on the approximate solution of the Rayleigh equation
suggested by Miles (1957). The solution for the vertical velocity is proportional to
the mean wind velocity and an exponential decay function. The approximate solu-
tion for the horizontal velocity results from the integration of the inviscid vorticity
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Figure 9. The same as in Figure 8, but for run 2: Uk = 2.0 m s−1; Uk/c = 1.28.

Figure 10. The same as in Figure 8, but for run 3: Uk = 2.9 m s−1; Uk/c = 1.84.
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equation with the known vertical velocity. Using the approximate solution of the
Rayleigh equation in the description of the OR represents the new element of the
present work. It significantly simplifies the description of the OR as compared to
the asymptotic solutions by, for example, Belcher and Hunt (1993), and Cohen and
Belcher (1999).

The description of the IR is based on the solution of the vorticity conservation
equation, which takes into account the turbulent diffusion of vorticity. The turbulent
shear stress is parameterized using the mixing length closure theory. Introduc-
tion of exponential vertical damping of the wave-induced shear stress leads to a
further simplification of the problem. The damping of the shear stress describes
phenomenologically the basic feature of the wave boundary layer: the rapid dis-
tortion of turbulence in the OR. The zero-order solution (in terms of a kl-power
expansion) of the vorticity equation can be found either numerically or analytically.
An example of the analytical solution of the problem is given in Kudryavtsev et al.
(1999); in the present study the vorticity equation is solved numerically.

Correction of the IR solution in kl-order has a physical significance only for
the real part of the vertical velocity. This component of the vertical motion, being
generated inside the IR due to the action of the shear stress, penetrates into the
OR and generates the slope-correlated component of the air pressure. The pressure
penetrates into the thin IR and forms the energy and momentum flux between wind
and waves (the non-separated sheltering mechanism of wave generation by Belcher
and Hunt (1993)).

The comparison of results obtained by the simplified and the 2D WBL models
is encouraging. A reasonable agreement is found for the wave-induced velocity,
the shear stress and the growth-rate parameter. The dynamics of the wave-induced
air flow depends critically on the turbulence closure, e.g., Belcher and Hunt (1993,
1998). For example, an unmodified mixing-length closure would fail to correctly,
and sufficiently, damp the wave-induced stresses in the outer region and would
typically strongly overpredict the resultant wave growth. In the present paper we
use a phenomenological approach and directly suppress the turbulent stress with
height towards the outer region. Such an admittedly, rather crude, approach nev-
ertheless gives results which are in good agreement with those found by using the
second-order Reynolds stress closure scheme.

The results of the simplified model are consistent with data of Hsu and Hsu
(1983) obtained in a laboratory experiment. The experimental data confirm the
existence of outer and inner regions above waves.
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