
Remote Sensing of Environment 253 (2021) 112144

Available online 3 November 2020
0034-4257/© 2020 Elsevier Inc. All rights reserved.

Application of Landsat imagery for the investigation of wave breaking 
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A B S T R A C T   

An algorithm for retrieving the fraction of the sea surface covered by whitecaps (W) from Landsat-8 satellite 
optical reflectance measurements in the near-infrared channel is described. The distribution of W derived from 
approximately 100 Landsat-8 scenes was compared with quasi-synchronous scatterometer measurements of wind 
speed (u10), which allowed us to obtain the W(u10) relation for large whitecaps from high-resolution satellite 
optical measurements. Further, we demonstrate the impact of various phenomena, including- internal waves, 
river plumes, bottom topography, atmospheric stability, ocean fronts, and mesoscale currents on whitecap 
coverage and its spatial variation in different areas of the ocean. These data are analysed using theoretical 
models, suggesting that whitecap coverage is a proxy of wave energy dissipation and reflects disturbances in the 
wind-wave energy balance caused by wave-current interactions and variable wind forcing due to changes in 
atmospheric stratification over ocean temperature fronts and the movement of wind-waves by surface currents 
relative to the atmospheric boundary layer.   

1. Introduction 

Whitecaps are a visualisation of the wind-wave breaking process. 
Entrainment of the air into the breaking crest generates a large number 
of bubbles, which strongly reflect light, making them visible. Wave 
breaking dissipates wave energy and thus plays a key role in the energy 
budget of wind-waves (Phillips, 1985; Kraan et al., 1996; Banner et al., 
2000; Thomson et al., 2009; Babanin, 2009). Breaking waves drive 
mixing below the surface, enhancing the transfer of energy, momentum, 
heat, and gas (Melville et al., 2005), and can noticeably increase tur
bulence in the upper ocean layer (Mellor and Blumberg, 2004; Ardhuin 
and Jenkins, 2006; Kudryavtsev et al., 2008; Toffoli et al., 2012; 
D’Asaro, 2014; Wu et al., 2015) 

The formation of whitecaps is related to wave dissipation and, 
therefore, the spatio-temporal variability of whitecaps reflects the evo
lution of the wave energy balance. The main source of wave energy is 
wind, which dominates whitecap coverage via energy dissipation. After 
Monahan (1971), the fraction of the sea surface covered by whitecaps, W 
(whitecaps fraction hereinafter), is usually parameterised as a power 
function of wind speed at 10 m u10: 

W = a*(u10 − u0)
n  

where u0 is the minimum wind speed when whitecaps appear (u0 ranges 

from 0 to 5 m/s), and a and n are empirical coefficients. Experimental 
estimates of the wind exponent can vary significantly from 1 to 5 (see 
reviews by Anguelova and Webster, 2006, and Brumer et al., 2017). 

Such large scatter of n is related to different methods used to detect 
whitecaps (e.g. choice of the threshold level for identification) and the 
influence of various processes affecting their formation, e.g. atmo
spheric stratification (Monahan and Muircheartaigh, 1980, Monahan 
and O’Muircheartaigh, 1986; Anguelova and Webster, 2006; De Leeuw 
et al., 2011; Salisbury et al., 2013), surface tension, which is dependent 
on water temperature, salinity, and surfactants (Monahan and 
O’Muircheartaigh, 1986; Wu, 1988; Stramska and Petelski, 2003; Sal
isbury et al., 2013; Callaghan et al., 2014; Hansen et al., 2016), wave- 
current interaction (Dulov and Kudryavtsev, 1990; Dulov et al., 1986; 
Kudryavtsev et al., 1995; Kraan et al., 1996; Melville et al., 2005; 
Romero et al., 2017), the wave age of wind seas, and the presence of 
swell (Donelan et al., 1993; Kraan et al., 1996; Dulov et al., 2002; 
Gemmrich et al., 2008; Callaghan et al., 2008; Thomson et al., 2009; 
Kleiss and Melville, 2010; Goddijn-Murphy et al., 2011; Plant, 2012; 
Sutherland and Melville, 2013; Salisbury et al., 2013; Brumer et al., 
2017). 

Wave-current interaction can significantly modify the energy bal
ance of wind-waves, thus leading to spatio-temporal variability in en
ergy dissipation and, consequently, the whitecap fraction (Kudryavtsev 
et al., 1995; Kraan et al., 1996; Melville et al., 2005; Romero et al., 
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2017). The effect of atmospheric boundary layer transformation over sea 
surface temperature (SST) variations related to sub-meso-, meso-, and 
large-scale currents provides an additional contribution to whitecap 
variability in ocean frontal zones (Dulov and Kudryavtsev, 1990; Dulov 
et al., 1991). Particularly, Thomson et al. (2014) and Zippel et al. (Zippel 
and Thomson, 2017; Zippel et al., 2018) showed that intensification of 
wave breaking is observed on river plume fronts, which promotes the 
mixing of plumes with the surrounding waters. Measurements by Dulov 
et al. (1986) and Thorpe et al. (1987) also revealed the significant 
modulations of W caused by the currents induced by internal waves on 
the ocean surface. 

The spectral properties of whitecaps in the visible and infrared bands 
have been investigated in laboratory and field experiments (Whitlock 
et al., 1982; Koepke, 1984, 1986; Frouin et al., 1996; Moore et al., 
2000). In optical and near-infrared bands, out of the sun glitter areas, 
whitecaps are significantly brighter than the ocean surface because of 
the strong reflectance of the incident radiance due to the conglomera
tion of bubbles in the whitecaps. For example, the brightness of white
caps at λ = 800 nm is ~55% that is ten-fold higher than the reflectance 
of “pure” seawater, even during strong winds (0–3%) (Koepke, 1985). 

Owing to such high reflectance, whitecap detection using video, 
photography, and visual inspection from observing platforms based on 
the threshold level is routinely used (Cox and Munk, 1954; Monahan, 
1971; Ross and Cardone, 1974; Monahan and Muircheartaigh, 1980, 
Monahan and O’Muircheartaigh, 1986; Moore et al., 2000; Bondur and 
Sharkov, 1982; Stramska and Petelski, 2003; Mironov and Dulov, 2007; 
Callaghan and White, 2009; Goddijn-Murphy et al., 2011; Kleiss and 
Melville, 2010; Randolph et al., 2016). Such observations have high 
space and time resolution but often lack the coverage needed to better 
understand whitecap properties and their distribution at the scales 
corresponding to ocean sub- and mesoscale processes. 

In the 1970s, an idea to use high-resolution satellite optical imagery 
to observe the whitecaps from space had been suggested (e.g. Maul and 
Gordon, 1975; Gordon and Jacobs, 1977; Koepke, 1985). Later, this 
approach was elaborated and implemented; in particular, Zhang et al. 
(2015) reported the data on spatial variability of whitecap coverage 
induced by submarine sand waves near the Taiwan Banks derived from 
Cartosat-1 satellite measurements. More recently, high-resolution sat
ellite optical datasets have become freely available. Of these, the 
Operational Land Imager (OLI) sensor mounted on the Landsat-8 satel
lite is widely used. Because of the significantly enhanced signal-to-noise 
ratio, Landsat-8 detects relatively small variations in ocean brightness, 
which opens up new opportunities for investigating ocean processes 
(Schott et al., 2016). 

Here, we demonstrate the capabilities of Landsat-8 imagery for 
observing and quantifying whitecap variability caused by different at
mospheric and ocean processes including wind field and atmospheric 
stratification, mesoscale currents, river plumes, internal waves, and 
bathymetry features. The remainder of the paper is organised as follows. 
First, we demonstrate the possibility of using Landsat to observe the 
spatial variability of wave breaking (Section 3.1) and suggest an algo
rithm for the estimation of the whitecap fraction in a pixel from Landsat 
imagery based on reflectance (Section 3.2). We then use more than 100 
quasi-synchronous images of Landsat-8 reflectance and maps of Ascat 
scatterometry winds to compute the dependence of whitecaps on the 
wind velocity u10 (Section 4.1) and demonstrate the impact of wind 
variations due to atmospheric waves on whitecap coverage (Section 
4.2). In Section 5, we demonstrate and investigate the response of 
whitecap coverage to different ocean phenomena, namely bottom 
topography (Section 5.1), internal waves (Section 5.2), river plumes 
(Section 5.3), frontal features (Section 5.4), and “large-scale” ocean 
surface currents (Section 5.5). Conclusions are provided in Section 6. 

2. Data 

2.1. Landsat data 

This study is based on Landsat-8 data for the period 2013–2017. 
Landsat-8 has a ground track repeat cycle of 16 days with an equatorial 
crossing time at 10:00 a.m. It contains two main sensors—the opera
tional land imager (OLI) and the thermal infrared sensor (TIRS). The OLI 
is a push broom scanner that measures nine channels in optical, near- 
infrared (NIR), and shortwave infrared (SWIR) bands. It has a swath 
width of 185 km, eight channels at 30 m, and one panchromatic channel 
with a 15-m spatial resolution (Table 1). In this study, to identify 
whitecaps and mask clouds and land, we used bands 5, 6, and 9 centred 
on 865, 1620, and 1375 nm, respectively. One of the important ad
vancements of Landsat-8 sensors compared with previous Landsat series 
is a significantly improved signal-to-noise ratio, which is enhanced by a 
factor of 100 (Schott et al., 2016). The TIRS works in two long- 
wavelength infrared bands centred at 11 μm and 12 μm with a 100-m 
spatial resolution (Reuter et al., 2015). 

Thermal and optical measurements provide simultaneous informa
tion about the optical properties of the surface (e.g. whitecap coverage, 
see Section 3, 4) and the SST features associated with, for example, 
oceanic fronts and dynamics. The Level 1 data used in this study were 
taken from the United States Geological Survey (USGS) Global Visual
isation Viewer (http://glovis.usgs.gov/) and the Amazon S3 web service 
(http://landsat-pds.s3.amazonaws.com). 

Top-of-atmosphere (TOA) ocean radiances and planetary reflectance 
(ρ) were computed from the digital numbers (DN) of the downloaded 
files using L =M1 ×DN +A1; ρl =M2 ×DN +A2, where constants M1, 
M2, A1, and A2 are rescaling coefficients included in the product met
adata file (MTL file). TOA reflectance (ρ) was computed by normalising 
TOA values to the band averaged irradiance: 

ρ =
ρl

cos(θz)

where θz is the average solar zenith angle average for the scene. 

2.2. Other data 

For the analysis of wind characteristics, we used the MetOp-A ASCAT 
Level 2 Ocean Surface Wind Vectors Optimised for Coastal Ocean 
Product (KNMI, 2010; https://podaac.jpl.nasa.gov/dataset/ASCATA-L 
2-Coastal). This dataset contains operational near-real-time Level 2 
coastal ocean surface wind vector retrievals from the Advanced Scat
terometer (ASCAT) on the MetOp-A and MetOp-B satellites with a 12.5- 
km sampling resolution. This product is provided by the European 
Organisation for the Exploitation of Meteorological Satellites (EUMET
SAT) of the Ocean and Sea Ice Satellite Application Facility (OSI SAF) 
administered by the Royal Netherlands Meteorological Institute (KNMI). 
We also used wind velocity data 10 m above the sea surface obtained 
from the Modern Era Retrospective Analysis for Research and Applica
tions (MERRA) reanalysis (Rienecker et al., 2011) with a spatial reso
lution of 1/2◦ × 2/3◦. MERRA is the National Aeronautics and Space 
Administration (NASA) reanalysis dataset for the satellite era in which a 
major new version of the Goddard Earth Observing System Data 
Assimilation System Version 5 (GEOS-5) was used. Data were down
loaded from http://goldsmr2.sci.gsfc.nasa.gov/). 

The mapped geostrophic velocities obtained from the combined 
measurements of several altimetric satellites were used for the surface 
current analysis. The altimeter products were produced by Ssalto/Duacs 
and distributed by Aviso with support from the French National Centre 
for Space Studies (CNES) (http://www.aviso.altimetry.fr/duacs/). The 
spatial resolution of the product is 1/4◦ and the temporal resolution is 
1 day. Bathymetry data from the Gebco dataset with 30-s resolution 
(Becker et al., 2009) were also used in Section 4.1. 
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3. Methods 

3.1. Visual inspection of whitecaps in Landsat data 

In the NIR and SWIR channels, open ocean water acts almost like a 
black body; water absorption is close to 1 and the underwater-leaving 
radiance is low. Whitecaps significantly increase the reflectance of the 

sea surface; the reflectance of whitecaps at a wavelength of 800 nm is 
approximately 0.55, which is more than 10-times higher than that of 
pure water (Koepke, 1984; Whitlock et al., 1982; Frouin et al., 1996; 
Moore et al., 2000; Kokhanovsky, 2004). Although the area of an indi
vidual whitecap is often smaller than the pixel size (30 × 30 m), its high 
brightness makes a noticeable contribution to the pixel reflectance. 
Thus, a field of whitecaps in NIR and SWIR band images should be 

Fig. 1. a) Landsat-8 brightness in channel 5 (0.845–885 nm) in the vicinity of Kuroshio, Pacific ocean on 01 December 2014. Red boxes show the location of 
fragments #1 and #2 shown in plots 1b and 1c. b) Fragment #1 in Fig. 1a showing the whitecaps manifestations in Landsat-8 reflectance data. c) Fragment #2 in 
Fig. 1a showing the features of the spatial distribution of the whitecaps in the vicinity of the thermal fronts (underlined by blue lines) d) The sea surface temperature 
reconstructed from Landsat-8 thermal channel 11. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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exposed as an ensemble of bright pixels randomly distributed over the 
“dark” surface (see examples in Figs. 1–2). In this section, we demon
strate two examples of Landsat images with the manifestation of 
different ocean phenomena in the fields of visually observed whitecaps. 
The method of detection and quantification of whitecaps is considered in 
the Section 3.2. 

Fig. 1a shows a Landsat-8 scene during an intense storm in the vi
cinity of the Kuroshio Current with wind velocities exceeding 22 m/s. 
Randomly distributed white spots of different sizes (i.e., individual 
wave-breaking events) are visible in the enlargement (Fig. 1b) marked 
by box#1 in Fig. 1a. Fig. 1c, which corresponding to box#2 in Fig. 1a, 
demonstrates two distinct linear zones of enhanced whitecapping. 
Referring to the Landsat thermal image in Fig. 1d, these zones of 
enhanced wave breaking are associated with SST fronts, which suggests 
that wave-breaking anomalies trace the ocean frontal features. This is 
consistent with previously reported findings (Kudryavtsev et al., 1995; 
Melville et al., 2005; Romero et al., 2017; Kudryavtsev et al., 2012). 

Fig. 2 demonstrates the manifestation of wave breaking in the 
Landsat-8 reflectance image during an intense katabatic jet wind in the 
Mediterranean Sea (the so-called Mistral winds) on 31 December 2014. 
According to the Ascat data, the wind speed during this event reached 
17 m/s. Fig. 2b demonstrates that the size of the whitecaps and whitecap 
spacing noticeably increased in the offshore direction. This is presum
ably related to the wind-wave development with fetch (Gemmrich et al., 
2008; Kleiss and Melville, 2010). A number of linear zones of enhanced 
whitecaps are visible in the mistral area, shown as red lines in Fig. 2a. 
These are possibly related to wave-current interactions leading to the 
enhancement/suppression of wave energy and, thus, wave breaking in 
the vicinity of the surface current gradients. Detailed inspection of 
waves in the vicinity of one of the current fronts in Fig. 2c reveals the 
wave trains travelling in an “anomalous” southwest direction, while 
ambient waves travel in the Mistral direction. The location of these 
“anomalous” waves is probably linked to the velocity gradient on the 
front. Waves travelling along the front are highlighted by whitecap 
enhancement and may be treated as surface waves trapped by the cur
rent, similar to those observed in ship experiments by Kudryavtsev et al. 
(1995) and, more recently, using Sentinel-2 imagery by Kudryavtsev 

et al. (2017) and Quilfen et al. (2018). 

3.2. Whitecap fraction retrieval 

A total of 209 Landsat-8 scenes were used to analyse whitecap 
variability in different areas of the world’s oceans. To identify the 
whitecaps from the Landsat images, we detected and counted the intense 
brightness maxima in each scene using an algorithm consisting of the 
following steps: 

Step 1: To avoid contamination by sunlight spots, we considered only 
those scenes with azimuthal angles from 30◦ to 70◦, which were out of 
the sun glint centre. We also excluded data with low solar angles at high 
latitudes. Visual inspection revealed that under these conditions, the 
noise of reflectance measurements increases, which impacts the 
whitecap identification. 

Step 2: The land-affected and cloud-affected pixels were excluded 
from the images using reflectance in bands 5, 6, and 9, and visually 
defined thresholds. The SWIR measurements (band 6) were used to 
distinguish the water area, which is significantly darker than the land 
and thin clouds due to high water absorption. A threshold of R(6) = 0.04 
was chosen for this task. This filtration also excludes pixels with artifi
cially bright objects such as ships and platforms. Band 9 of the Landsat 
satellite, which corresponds to the absorption line for water vapour, was 
included in the OLI sensor for the filtration of thin cirrus clouds. We use 
a threshold value of R(9) = 0.003 to filter cirrus clouds from the images. 
We also excluded the five nearest pixels to land and clouds to remove 
possible errors related to cloud shadows or bottom reflectance. 

Step 3: A portion of “whitecap-affected” pixels is covered by foam or 
actively breaking waves and the remaining portion is clear water. The 
fraction of the whitecaps in the “whitecap-affected” pixels was further 
calculated based on reflectance, using a similar method as suggested by 
Koepke (1986) and Xu et al. (2015). The reflectance of the surface 
without whitecaps in the NIR channels at the satellite orbit depends on 
atmospheric reflectance (Ra), atmospheric transmittance (t), water op
tical properties Rturb (turbidity), and the bidirectional Fresnel reflection 
of the sun and skylight by wave slopes (Rf). Rf is a function of wind speed 
and scan geometry (Koepke, 1986). The reflectance of the “whitecap- 

Fig. 2. a) Landsat-8 brightness at 865 nm in the Gulf 
of Lion, Mediterranian Sea, during the development 
of the Mistral winds at 31 December 2014 (red lines 
underline increased whitecaps zones); b) Fragment of 
the Landsat scene showing the development of kata
batic winds and increase of wave breakers length; c) 
Zoomed Landsat-8 scene, where trapping of surface 
waves by front and sharp change of their direction is 
observed; (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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affected” points (R) and the reflectance of the unaffected pixel (clear 
water, Rc) can be expressed as: 

R = Ra + t ×
( (

Rturb + Rf
)
*(1 − W) + W*Rwc

)

Rc = Ra + t ×
(
Rturb + Rf

) (1)  

where Rwc is the estimated reflectance of active breakers (equal to 0.55; 
Koepke, 1984; Frouin et al., 1996), and W is the area fraction covered by 
whitecaps. Atmospheric transmittance (t) in the NIR region is approxi
mately 0.7–0.8 (Selby, 1978), with a value of 0.75 applied here. 

Step 4: The reflectance of “whitecap-affected” pixels is significantly 
higher than the reflectance of clear water, visible as bright outliers over 
the dark surface (see Figs. 1 and 2). To identify these outliers, we high- 
passed reflectance by applying Wiener-2d adaptive noise-removal 
filtering (Lim, 1990) based on the computation standard deviation 
against the local mean. Following a series of tests, we applied a filter 
with a window size of 20 × 20 pixels (600 × 600 m). This allowed us to 
exclude large-scale background variation in the reflectance field and 
detail only extreme values. Positive extreme values correspond to 

whitecaps and are further used in Step 5. Negative extreme values are 
mostly related to cloud shadows and are excluded from the analysis. 

Further, to define the reflectance of clear water (Rc) we use the 
“darkest” point method. We assumed that background optical and at
mospheric properties (Rc) are relatively uniform across scales of 5 km. At 
these spatial scales, out of the direct influence of sun glint, the impact of 
the change in the observation angle on total reflectance can also be 
assumed to be small. 

To determine the reflectance of clear water, we computed minimal 
values of the filtered reflectance in boxes with a size of 150 × 150 pixels 
(4.5 × 4.5 km) and obtained the spatial distribution of Rmin. Then, Rmin 
was filtered by median filtration with a size of 3 × 3 pixels to exclude 
possible remaining outliers. These outliers are mostly related to cloud 
shadows, which may still be present after Step 3. The computed distri
bution of Rmin is further used as Rc. 

An example of the analysis of the computed distribution of Rmin for 
the scene taken in the Mediterranian Sea on 31 December 2014 (see 
Fig. 2) in comparison to the quasi-synchronous wind field obtained by 

Fig. 3. Illustration of the algorithm of the calculation of whitecap fraction from Landsat-8 for 31 December 2014 in the Gulf of Lion: a) Rmin calculated as an estimate 
of background reflectance of clear water. Black rectangle shows the area with decreased Rmin cause by the impact of the cloud shadows. b) Wind velocity (m/s) from 
quasi-synchroneous Ascat measurements; с) Reflectance at channel 5 (0.845–885 nm) in the zoomed part of the scene in Fig. 3a. d) Low-passed reflectance after 
wiener-2d filtration; e) High-passed reflectance after Wiener-2d filtration; f) Whitecaps fraction calculated from Landsat data and smoothed by 10*10 moving 
average filter. 
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Ascat is shown in Fig. 3a. The spatial variability of Rmin mainly reflects 
the variation in mean surface slope (Fresnel reflection) caused by wind 
variability (see the Ascat wind map in Fig. 3b). According to Cox and 
Munk (1954), Fresnel reflection can be represented as a linear function 
of wind. Fig. 3a demonstrates that in this example, Rf rises to 0.01 when 
the wind changes at 10 m/s. In the eastern storm area where the wind 
velocity is 15 m/s, Rmin reaches 0.024. To the west of 3.2◦E, where the 
wind velocity is less than 4–5 m/s, Rmin is approximately 0.0013. This 
gives estimates of the atmospheric contribution, Ra, which is roughly 
equal to the reflectance of the calm waters (Ra = 0.01). 

Step 5. The whitecaps-affected pixels are the positive extreme values 
of reflectance. After Weiner filtration in Step 3, the pixels with filtered 
reflectance values higher than the chosen threshold equal (cf = 0.002) 
are taken as “whitecap-affected” pixels with reflectance Rw. We choose 
this threshold empirically on the basis of manual comparison of the 
results with the visual analysis of more than 100 Landsat-8 scenes. The 
effective reflectance of the foam in the NIR band is approximately 0.22 
and the reflectance of active breakers is approximately 0.55 (Koepke, 
1984; Frouin et al., 1996). Therefore, the chosen threshold only retains 
those pixels with a foam ratio greater than 0.002/0.22–1% or active 
breakers (whitecaps) with a ratio of more than 0.3%. This corresponds to 
0.01 × 900 m2 = 9 m2 of a foam-covered area in a pixel or approximately 
3 m2 covered by active breakers where Rwc = 0.55. As this method is 
based on a fixed threshold of average pixel reflectance (30 × 30 m), it 
does not allow the differentiation of active breakers and foam (or stages 
A and B of wave breaking). 

Figs. 3c–e show the raw, low-passed, and high-passed reflectance for 
the Landsat-8 scene given in Fig. 3a. Individual whitecap affected pixels 
are bright points, which are clearly distinguished in the enlargement in 
Fig. 3c. 

From Eq. (1), the fraction of the whitecaps, W, for the point with 
reflectance R can be defined as: 

W = (R − Rc)
/

t
(
Rwc − Rturb − Rf

)

As demonstrated in Fig. 3a, Rwc = 0.55 is significantly higher than Rc 
and can be written as: 

W = (R − Rc)/(tRwc) (2) 

This formula is used to calculate the spatial distribution of the total 
whitecap fraction (including both foam and active wave breakers) for 
the Landsat scenes at the original resolution. The whitecap fraction is 
calculated only in the “whitecap-affected” pixels as defined in Step 5. 
For other points, W is set to zero. Therefore, our approach only included 
a fraction of the relatively large whitecaps on the ocean surface. An 
example of the calculated whitecap fraction maps is given in Fig. 3f, in 
which the whitecap fraction was low-passed using a 10 × 10 pixel 
running-average filter. The distribution of whitecaps in Fig. 3f is 
significantly non-uniform, which is related to both wind changes and 
dynamical effects, as demonstrated in Fig. 2c and Fig. 3b. 

The proposed method for the detection of whitecap coverage has 
several possible sources of errors that should be acknowledged. First, 
cloud shadows can still affect the distribution of Rmin (or Rc) after several 
filters are used. In the example given in Fig. 3, this error causes a 
decrease in Rmin in the northwest part of the scene (the black rectangle in 
Fig. 3a) of approximately 0.005–0.01. The reflectance of the whitecap- 
affected pixels in this area was 0.03 on average. Thus, according to 
Eq. (2), W in the pixels affected by cloud shadows may be 15–30% 
higher due to the uncertainties in Rmin. A more robust algorithm for the 
detection of cloud shadows is, therefore, needed to fully exclude their 
impact on optical reflectance. The spatial variability of turbidity in 
coastal waters, especially during strong winds, and variability in at
mospheric reflectance (e.g. due to terrestrial dust or cyanobacterial 
blooms) can be high even at scales of less than 5 km. These effects were 
significant in the coastal zone of approximately 5% of the analysed 
scenes, which were further excluded from the analysis. At high latitudes, 

melting ice or small-scale ice floes can make a large contribution to 
reflectance and may be incorrectly detected as whitecaps. Finally, at
mospheric transmittance may vary due to the presence of strong 
absorptive aerosols, which broadly varied between 0.7 and 0.8, giving 
an uncertainty of approximately 15%. 

4. Whitecap coverage and wind speed 

4.1. Background dependence 

First, we checked the capability of the proposed method to reproduce 
the known dependence of whitecap coverage on wind speed. As a 
reference wind speed, we used the Ascat-A/B scatterometer wind 
product coinciding with Landsat data within ± − 1.5 h. Several examples 
of whitecap coverage, wind speed fields, and corresponding scatterplots 
are shown in Fig. 4. For comparison, the whitecap fields were binned on 
a 1/8◦ grid coinciding with the wind data grid for the scatterplots. 

The first example (Fig. 4a, left-hand panel) demonstrates the ability 
of the method to describe the spatial variability of whitecaps associated 
with wind. In this case, a “wind jet” of u10 = 12–15 m/s blows westward 
along the South African coast (Fig. 4a, centre panel) and generates an 
intense wave-breaking field visible in the southern part of the Landsat-8 
scene in the vicinity of the Cape of Good Hope. To the north (latitudes 
>34.5◦S) the wind field decelerates (< 6 m/s), leading to the disap
pearance of the whitecaps in the Landsat-8 image. Another feature of the 
spatial variability of W seen from the Landsat data is the increased wave 
breaking (indicated by the red oval in Fig. 4a) that extends from the 
coast from ~34.4◦S, 19◦E. This is probably associated with the small- 
scale coastal jet, which is not represented in the wind data. Although 
the scatterometer winds are of the highest possible resolution, this is still 
not sufficient to capture small-scale wind variability, which is resolved 
in the maps of the Landsat whitecap fraction. Fig. 4a (right-hand panel) 
demonstrates the dependence of W(u10) in this scene, which shows a 
robust correlation of 0.8, and can be approximated by the cubic function 
in agreement with the existing literature (e.g. Monahan, 1971). 

The example in Fig. 4b demonstrates two offshore wind jets (with 
u10 > 15 m/s) associated with the Mistral event in the Gulf of Lion. The 
intense wave-breaking field generated by the Mistral along with the 
absence of whitecap events between the two jets in the low-wind area 
are well captured on the Landsat-8 image using the proposed algorithm 
(Fig. 4b). 

A more complex spatial distribution of whitecap coverage was 
observed in the vicinity of Cape Nao, Spain (Fig. 4c), where up to four 
local zones of enhanced wave breaking are revealed. The position of 
these zones is correlated with the local features of the wind field caused 
by mountain shadowing at Cape Nao. Fig. 4c (right-hand panel) provides 
a quantitative relationship between the observed wind speeds and 
derived whitecap coverage. 

Lastly, Fig. 4d demonstrates the ability of Landsat-8 to map whitecap 
coverage in high latitudes. A strong wind speed area along the westward 
side of Greenland is observed in the Ascat data, and the whitecap field 
broadly corresponds to the observed wind field. However, some 
remarkable differences can be seen, attributed to the “small-scale” 
structure of the wind field, which is not resolved by the scatterometer 
but is detected in the whitecap field. The second important reason for 
the strong spatial variability of W is the dynamic effect that can signif
icantly alter the wave-breaking patterns (see Section 4). In addition, the 
presence of small areas of sea ice can complicate the identification of 
whitecaps at high latitudes. Nevertheless, the differences in this example 
between u10 and W are quite robust (Fig. 4d, right-hand panel). 

In total, 117 quasi-synchronous Landsat-8 scenes and Ascat wind 
data were selected for the analysis, which correspond to more than 
40,000 quasi-synchronous measurements of wind velocity and the 
whitecap fraction averaged in 1/8◦ bins. All the collected W data are 
shown in Fig. 5a as a function of wind speed, where colors show a 
number of data points in the box, and the black curve shows the average 
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dependence W(u10). 
Most of the data correspond to the wind velocity interval 

u10 = 7–11 m/s with less data available for stronger winds 
(u10 = 12–15 m/s) and few cases of extremely strong winds 
(u10 > 15 m/s) (Fig. 5). The data are then fitted by the function 
W = a * (u10 − U0)n, where the fitting parameters defined by the least- 
squares method are a = 8.9 × 106, n = 2.5, and u0 = 3 m/s (shown by 
the red curve in Fig. 6), giving the following empirical relationship: 

W = 8.9*10− 6*(u10 − 3)2.5 (3) 

The obtained parameterisation (the red line in Fig. 6) broadly fits the 
data (the black line in Fig. 6); however, under moderate wind conditions 
(u10 = 8–12 m/s), the whitecap coverage is slightly overestimated, and 
it is slightly underestimated during stronger winds (Fig. 5a). 

A comparison of this parametrisation with those reviewed by 
Anguelova and Webster (2006) and (Brumer et al., 2017) is shown in 
Fig. 5b. This suggests broad consistency in the dependence W(u10), 
indicating that the proposed method offers a reasonable quantification 
of whitecaps. However, the fitted curve plots in the lower region of the 
family of curves, suggesting an underestimation of whitecap coverage, 

Fig. 4. (Left column) Examples of the derived whitecaps fraction, W; (mid column) Ascat-wind fields, u10; (right column) dependence of W on u10 for four Landsat-8 
scenes (a) near the Cape of Good Hope, (b) in the Gulf of Lion, (c) near the Cape Nao, and (d) western Greenland coast. The black line in right column shows average 
dependence of W(U10) in 0.5 m bins. 
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especially in comparison with recent studies reviewed in (Brumer et al., 
2017) (see the red lines in Fig. 5b). 

Such underestimation is related to the relatively poor spatial reso
lution of the Landsat data, as the proposed algorithm identified only 
relatively large whitecaps above 3 m2 (see Section 2.3). Small whitecaps 
that are more or less uniformly distributed at the sea surface will also 

affect the background values of Rc but will not be detected as “large” 
whitecaps using the described method. The subtraction of Rc, which 
includes reflectance caused by small whitecaps, will further decrease the 
reflectance of whitecaps-affected pixels and the computed whitecap 
fraction using a fixed threshold. 

Also, a noticeable scattering of data around the fitting line is 

Fig. 5. a) Relation between whitecaps fraction W and the wind velocity u10 computed using quasi-synchronous Landsat-8 scenes and Ascat wind data. Colors shows 
number of used measurements; Average empirical dependence of W(u10) is shown by black curve, the red curve is fitted parameterization 
W = 8.9 * 10− 6 * (u10 − 3)2.5. b) Comparison of the parameterization obtained in the present paper (black dashed line) with the others listed in (Anguelova and 
Webster, 2006 – blue line) and (Brumer et al., 2017 – red line) in logarithmical scale. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. a) Landsat reflectance centered at 865 nm near the Bosporus strait for 12 January 2016. b) Zoomed fragment of the Landsat reflectance (shown by red 
rectangle in Fig. 6a) demonstrating impact of the atmospheric wave on the whitecap development. c) Calculated whitecap fraction d) Ascat wind velocity (m/s) for 
12 January 2016; (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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observed. For example, in Fig. 5a, at u10 = 14 m/s W, values range from 
0.001 to 0.007 for the different Landsat scenes. There are several 
possible reasons for this scatter. First, the algorithm used is based on 
several assumptions that bring uncertainties to whitecap identification 
(see Section 2.3). Second, many other factors, such as atmospheric 
stratification, wave age, wave-current interaction, and bathymetry, can 
strongly impact (in addition to wind) wave breaking, as discussed in the 
following sections. 

4.2. Wind speed variations: atmospheric waves 

Bands of whitecaps oriented perpendicular to the wind direction can 
occasionally be seen in Landsat-8 images. In Fig. 6a and b, show Landsat 
reflectance at 865 nm near the Bosporus Strait on 12 January 2016 when 
storm south winds with a velocity of 15 m/s were blowing over the Black 
Sea (Fig. 6d). Wind blowing from the mountainous areas of Turkey 
generated atmospheric internal waves, which induced oscillations in 

near-surface wind speeds. These oscillations modulated the whitecap 
field with a wavelength of 20 km (Fig. 6c). Spatial variability in the 
number of bright spots (i.e. whitecaps) in the atmospheric waves is seen 
in the enlargement in Fig. 2b. The calculated whitecap coverage varies 
between 0.7% and 1.2% (Fig. 6c). According to Eq. (3), this corresponds 
to wind speed variations from 17 m/s to 20 m/s, i.e. wind speed mod
ulation with an amplitude of 3 m/s in the atmospheric internal waves. 
Such wind-field features are not detectable by the scatterometer owing 
to their relatively low spatial resolution (Fig. 6d) but can be observed 
using a manifestation of whitecaps in high-resolution optical imagery. It 
should be noted that the variations in wind velocity change the mean 
surface slope, which affects the Fresnel bidirectional reflectance Rf. This 
effect also modulates the observed striped structure of R. However, 
whitecap reflectance is significantly higher than the Fresnel reflectance, 
which is related to the mean surface slope at moderate azimuth angles. 
The whitecap coverage is proportional to the cube of wind velocity, 
while the mean surface slope can be represented as a linear function 

Fig. 7. a) Reflectance in channel 5 (865 nm) of Landsat-8 scene on 25 December 2014 over the Fundy Bay. Red rectangles #1 and #2 mark the areas used for the 
zoomed pictures shown on the right side of the figure. Blue lines highlight zones of maximal wave breaking; b) Whitecap fraction calculated from Landsat data. Black 
lines show the position of isobaths. White line indicates position of the section shown in Fig. 8e. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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(Cox and Munk, 1954). Therefore, whitecaps should play a major role in 
the observed reflectance variations during such strong winds (17–20 m/ 
s), which is clearly seen in the enlargement in Fig. 2b. 

5. Manifestations of sub- and mesoscale ocean variability in 
whitecap fields 

5.1. Bathymetry 

Spectacular spatial variability in whitecaps caused by wave-current 
interactions in shallow water was observed in the Landsat-8 scene for 
25 December 2014 in Fundy Bay near the eastern coast of Canada 
(Fig. 7). On this day, western storm winds with speeds of up to 15 m/s 
were blowing over the basin. Visual inspection of Fig. 7a reveals the high 
variability in whitecap distribution over the observed scene. This visual 
observation is confirmed by the calculated whitecap coverage map 
(Fig. 7b). In particular, in the northern part of the scene (indicated by 
red box #1 in Fig. 7a), several alternative bands of increased and 
dampened whitecaps are observed. These are possibly the result of the 
modulation of the whitecaps by trains of internal waves, which are 
discussed in more detail in Section 5.2. A curved band of increased 
whitecaps can also be seen in the western portion of this box. The po
sition and form of this band show good agreement with the bathymetric 
slope in the area (shown by the black isolines in Fig. 7a). 

The highest whitecap coverage values (Fig. 7b), which exceed 1%, 
were observed inside the areas marked by red rectangle #2 in Fig. 7. In 
enlargement Fig. 7a, it is seen that the increase in reflectance is caused 
by the strong increase in the number of randomly distributed bright 
spots (i.e. whitecaps). This spatial structure is different from the 
reflectance in convergence zone caused e.g. by the accumulation of 

floating debris, which looks like a continuous line with increased 
reflectance. By comparing the whitecap map (Fig. 7b) with the ba
thymetry map (Fig. 8b), these enhanced whitecap areas are spatially 
linked to the bottom slopes of two oblong-shaped banks with depths of 
less than 30 m. This is also confirmed in the isobaths overlay in Fig. 7b. 

Transects of whitecap coverage, bathymetry, and wind speed across 
the bay (shown as white lines in Fig. 7a and b) demonstrate these fea
tures in more detail (Fig. 8c). Three sharp peaks (P1, P2, and P3) in W 
(black line) exceeding 1% are situated at latitudes 44.18◦N, 44.27◦ N, 
and 44.5◦N, respectively. Peaks P2 and P3 are located at the peripheries 
of the deep part of the bay in zones with sharp bottom slopes where the 
depth changes from 200 m to 50 m (see the red line in Fig. 8c). Their 
positions closely correspond to the zone of isobath convergence in 
Fig. 7b and coincide with the same peaks in bathymetry gradients (see 
the magenta line in Fig. 8c). The southern peak (P1) is located on the 
periphery of a shallow bank (depth = 30 m) that extends from Long Is
land and Brier Island. This maximum W is located not in the shallowest 
area of the bank but over the bank slope with high bathymetry gradients 
in its northern part. 

The correlation between enhanced whitecap coverage and depth 
gradients has a clear physical explanation. First, we found that white
caps visualise the process of wave-breaking dissipation in wind-waves, 
and a fraction of the whitecap coverage is proportional to the wind 
energy input (Phillips, 1985). Wave-current interaction acts as an en
ergy input or energy sink to waves, which should be compensated by the 
increase or decrease in wave-breaking dissipation, respectively. In the 
latter case, clear signatures of currents form on the sea surface. 

As argued by Kudryavtsev et al. (2005), among different components 
of the surface current velocity shear, the main impact of currents on 
variations in wind-wave parameters integrated over the azimuth, such 

Fig. 8. a) SST (◦C) from Landsat-8 channel 11 in the Fundy Bay at 26 December 2014; b) Gebco bathymetry (m); c) Transect of the whitecap coverage (black line), 
Gebco bathymetry (red line), bathymetry gradients (magenta line), and Ascat wind (blue line). The position of the section is shown by the white dashed line in Fig. 7, 
8a. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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as whitecap coverage, is due to current divergence. In this case, 
whitecap coverage in the presence of non-uniform currents is described 
as follows: 

W = W0(u*)

(

1 − b
g1/2

u2
*k3/2

b

∇⋅u

)

(4)  

where u* is the air friction velocity, W0(u*) is the background (i.e. no 
current) value of the whitecap coverage, kb is the wavenumber of the 
shortest breaking waves forming whitecaps, b is a constant, u* =

̅̅̅̅̅̅
Cd

√
* 

u10 with Cd = 1.5e-3, and ∇ ⋅ u is the surface current divergence. Ac
cording to observations (e.g. Korinenko et al., 2018), the phase velocity 
of the shortest gravity waves generating observable whitecaps is 
approximately 2.5 m/s. Using the dispersion relation, kb in Eq. (4) 
should be kb = 1.6 rad/m. This cut-off wavenumber is in accordance 
with the minimum size of breakers detectable in Landsat imagery (see 
Section 2.2). Following Kudryavtsev et al. (2012, see Eq. 17), the con
stant b in Eq. (4) can be assigned as 400. Using these numbers, we es
timate that the surface current convergence of a current with the 

magnitude ∇(u) = 0.5 * 10− 3 1/s at a wind speed of 10 m/s should lead 
to whitecap enhancement by a factor of 3. Current divergence with the 
same magnitude should lead to the disappearance of the whitecaps. 
These estimates are similar to those reported by Dulov and Kudryavtsev 
(1990). 

Thus, the divergence of a surface current with an arbitrary origin 
should impact spatial variations in whitecap coverage, leading to the 
enhancement of a convergent zone (where ∇ ⋅ u < 0) and suppression in 
divergence (where ∇ ⋅ u > 0). In shallow water, divergence of surface 
currents can be caused by the interaction between the main flow and 
bottom topography. Continuity of the water masses integrated over the 
depth suggests that interaction between the current velocity field, u, and 
bottom slope, ∇h, produces surface current divergence, thus: 

∇⋅u = h− 1u⋅∇h (5) 

Eqs. (5) and (4) explain the visual correlation between the bottom 
slope and whitecap coverage anomalies in Fig. 7b and Fig. 8c. 

Similar features were also detected in Synhtetic-Aperture Radars 
data (SAR) in (De Loor, 1981; Yu et al., 2016). The divergence of depth- 

Fig. 9. The effect of internal wave on the wave breaking: a) Landsat 8 measurements of the reflectance in channel 5 for 11 June 2013; White arrow shows the 
dominant direction of the wind. Fig. 9d and Fig,9e showed zoomed part of the scene. b) Whitecap fraction calculated from the reflectance data; c) SST brightness 
temperature in the Landsat 10 channel; f) Transect of the whitecap fraction (black line), SST (red line), and Ascat wind (blue line). The position of the Section is 
shown in Fig. 9a-c. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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gradient-induced currents results in wave-breaking anomalies, which 
impact the radar scattering and lead to a bottom topography signature in 
the SAR images. 

5.2. Internal waves 

Convergence/divergence of the surface currents induced by internal 
waves (IWs) on the ocean surface leads to strong modulations in 
whitecap coverage (e.g. Dulov et al., 1986; Thorpe et al., 1987; Dulov 
and Kudryavtsev, 1990). This effect is well seen in the vicinity of the 
Gibraltar Strait in the Landsat scene for 11 June 2013 (Fig. 9a). Intense 
IWs in this area are primarily generated by the interaction of tidal flows 
with prominent underwater bottom features (Boyce, 1975; Brandt et al., 
1996). 

In the Landsat images at a reflectance of 865 nm (Fig. 9a), trains of 
IWs manifest as alternating bright/dark bands associated with the 
enhancement/suppression of wave breaking. The increase in the number 
of bright-spot whitecaps in the zone of convergence and their almost 
complete absence in the zone of divergence caused by internal waves is 
seen in the enlargements Fig. 9b and e. Whitecap coverage derived from 
this image exhibits strong modulation in wave-breaking intensity, with a 
peak-over-trough ratio in the order 10 (Fig. 9b). The wind speed at the 
moment of the Landsat survey was approximately 7 m/s, with an east
ward direction. According to Eq. (3), the whitecap coverage for such a 
wind speed should be small, approximately 0.1%. However, the modu
lation of whitecaps by the IWs led to a significant deviation in W from 
this background value. Referring to Fig. 9b, W in the convergence zones 
is approximately 1% and effective zero in the divergence zones (Fig. 9e). 

Fig. 9f demonstrates a transect of whitecaps, wind, and SST fields 
along the line shown in Fig. 9b and c. Despite the almost uniform wind 
speed distribution, the whitecap coverage oscillates in the range 
0.02–1%. W peaks (1.2%) at longitudes of 5.16◦E and 5.105◦E. This area 
corresponds to a local decrease in surface temperature (shown by the red 
line). The formation of this cold area is likely due to intense upwelling or 
mixing at the periphery of the Atlantic Jet (Sarhan et al., 2000). The 
maximal values of W are slightly displaced to the west, from the mini
mum SST, and are located in the zones of high SST gradients, i.e. in the 
vicinity of the frontal zones where horizontal current shear is probably 
high and dynamics modulate the wave breaking (see Eq. 4). 

Field observations of wave-breaking modulation by IWs were re
ported by Dulov et al. (1986). These authors report that the divergence 
of IW-induced surface currents led to strong modulations in wave 
breaking with transfer functions (the ratio of wave breaking contrasts to 
the thermocline displacement amplitude over depth) in the order of 10, 
which is similar to our observations. In this context, the divergence of 
IW-induced currents and thermocline displacement using observed 
modulations of whitecaps and Eq. (4) can be assessed. Based on Eq. (4), 
divergence in IW-induced currents on the surface can be expressed based 
on the observed white caps modulations as follows: 

∇⋅u =

(
W
W0

− 1
)

u2
*k3/2

b

bg1/2 (6) 

When kb = 1.6 rad/m, b = 400, wind speed u10 = 7 m/s, the 
whitecap background value (W0) = 0.3%, and the mean peak value 
(W) = 1%, we obtain the following estimate of divergence: 
∇u = 6 * 10− 4 1/s. For the pycnocline displacement described by har
monic oscillations, h(x, t) = h0 + a cos (K ⋅ x − Ωt), the amplitude of the 
surface IW-induced current divergence is as follows: 

∇∙u =

(
a
h0

)

Ω =

(
a
h0

)

KC (7)  

where a and h0 are the amplitude and undisturbed value of pycnocline 
depth; K, Ω, and C are the IW wavenumber, frequency, and phase ve
locity linked by the dispersion relation C =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(Δρ/ρ)gh0

√
; Δρ/ρ is the 

density drop over the pycnocline scaled by the mean density value. 

Based on Fig. 9, IW wavelength varies from 400 m to 1 km. Evaluating 
Δρ/ρ and h0 from climatic data (Ovchinnikov and Plakhin, 1976; Bras
seur et al., 1996), where Δρ/ρ= 0.003 and h0 = 150 m, then C = 2 m/s, 
giving an estimate of a = 9–18 m, which is in broad agreement with 
previous studies on internal waves in the study area (e.g. Vlasenko et al., 
2009). This suggests that measured modulations in whitecaps can pro
vide useful information about the dynamic properties of IWs. 

5.3. River plumes 

Fig. 10 shows the whitecap distribution during the development of 
an intense northwest katabatic wind jet (Mistral) in the Mediterranean 
Sea with wind velocities of more than 20 m/s on 25 January 2015. 

The prominent feature in Fig. 10 is the effect of the Rhone River 
plume on wave breaking. Inside the plume, the whitecap fraction de
creases noticeably compared to the surrounding waters. W in the plume 
is approximately 0.1% or less, which is lower than in the surrounding 
area by a factor of four (W = 0.5%) (Fig. 10a and c). One of the most 
plausible reasons for this is the effect of atmospheric stratification, 
which is more stable over cold plume water. The temperature at the 
Rhone River mouth is 7 ◦C, which is lower than the surrounding waters 
with a SST of approximately 10 ◦C (Fig. 10b). The cold river waters alter 
the atmospheric stratification, leading to the suppression of turbulence 
and surface wind stresses, and consequently, wind-wave forcing and 
dissipation via wave breaking. This phenomenon has been observed and 
reported in several studies. In particular, field experiments by 
Kudryavtsev et al. (1996) revealed changes in the vertical shear of wind 
velocity and air temperature, which correlated well with spatial differ
ences in SST. Coincident shipborne radar measurements revealed 
stronger radar scattering from locally warm surface areas and weaker 
scattering from locally colder surface areas. Beal et al. (1997) reported a 
similar depression in radar returns on the cold side of the Gulf Stream 
front and enhancement on its warm side. 

To provide quantitative estimates of the impact of stratification on 
whitecap distribution, we first observed that variations in the whitecap 
coverage, W̃, are caused by changes in friction velocity, ũ*. The empir
ical relation in Eq. (3) suggests that W depends on u* as W ∝ u * 

3 

(following Phillips, 1985), and thus W̃/W = 3ũ*/u*. If we assume that 
the parameters of the free atmosphere (geostrophic wind speed and 
temperature) are horizontally uniform at the scale of SST fronts, then 
any variations in surface stress result from planetary marine atmo
spheric boundary layer transformation over the spatially variable SSTs. 
The response of friction velocity to SST variations, T̃w, is described by 
Kudryavtsev et al. (2005, see Eq. (59) and Fig. 9) as ũ*/u* =

[1/(2CD)∂CD/∂Tw ]T̃w. Assuming that atmospheric stratification outside 
the plume is neutral, we estimated the transfer function 1/2∂(lnCD)/∂Tw 
for the considered wind conditions as 1/2∂(lnCD)/∂Tw ≈ 0.08 
(Kudryavtsev et al., 2005). Thus, the relationship between variations in 
whitecap coverage and W0 outside the plume (where SST = 11 ◦C) can 
be written as: 

W
W0

= 1+ 0.24(Tw − 11) (8) 

Although this is a linear estimate, it is in quantitative agreement with 
W as shown in Fig. 10, predicting a decrease in W0 = 3.5% outside the 
plume to W = 0.5–1% in the plume where Tw = 7.5–8 ◦C. 

An additional factor that can lead to a decrease in W in the plume is 
the increase in water viscosity due to the presence of surfactants, and 
decreases in water temperature. These effects increase the surface ten
sion and dampen the generation of bubbles during wave breaking 
(Monahan and O’Muircheartaigh, 1986; Callaghan et al., 2014; Hansen 
et al., 2016). 

Another prominent feature in Fig. 10a and c is a linear zone of 
enhanced reflectance at the southern boundary of the river plume ori
ented perpendicular to the wind direction. Wind moves the plume to the 
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south, where riverine brackish waters collide with salty seawater. A 
strong salinity front causes convergence, which intensifies the wave 
breaking in this area. It should be noted that another possible reason for 
the rise in reflectance is the accumulation of floating material, e.g. 
blooms of cyanobacteria at the plume front. In this case, cyanobacteria 
or floating debris are distributed in thin extended lines along the front 
(Aleskerova et al., 2019; Qi et al., 2020). However, in the given example, 
the rise in reflectance during the strong winds was caused by an increase 
in the number of bright whitecaps (see the enlargement in the upper 
right-hand corner of Fig. 10a). This wave-breaking enhancement traces 
the linear zone of convergence separating the inflowing river water, 
accelerating via the action of wind from the surrounding water. A 
similar effect was detected and studied experimentally by Thomson et al. 
(2014) and Zippel et al. (2018). The strong impact of surface current 
convergence on wave-breaking intensity has also been previously sug
gested and experimentally demonstrated (Dulov and Kudryavtsev, 1990; 
Kudryavtsev et al., 2005, 2012, 2014; also see Section 5.4). 

In Fig. 10d, the transect of the whitecap fraction and SST across the 
plume (shown as a black line) demonstrates that W was very small in the 
low-temperature area (SST = 2–10 ◦C) and increased to 0.3% where SST 
reached 10 ◦C. Whitecap coverage sharply increased up to 1% in the 
vicinity of the plume boundary (convergence zone) and, outside the 
plume (on the seaward side), maintained a constant value of 0.5%. Such 
strong wave breaking around the plume boundary may significantly 
strengthen the mixing of river and sea waters, weakening horizontal 
salinity and temperature gradients (Thomson et al., 2014; Zippel et al., 
2018). 

5.4. Convergence/divergence zones and SST frontal features 

Enhancement of wave breaking in the vicinity of ocean fronts is 
routinely observed in Landsat scenes. One example is shown in Fig. 11, 
where two linear zones of enhanced W in the Gulf Stream area were 
observed on 20 November 2014 (Fig. 11a and b). The linear zone 
adjoining the northern edge of the Gulf Stream is the most prominent 
feature of the whitecap field (Fig. 11b and Fig. 11c). The other linear 
zone adjoins the temperature gradient in an area of cold shelf waters. In 

the front area, the whitecap fraction is twice as high (1.1%) as in the 
surrounding waters (0.6%). 

Wind fields, in this case, were almost uniform and directed to the 
northeast (u10 = 10–11 m/s). It is worth noting that the whitecap 
coverage in the cold Labrador water area is larger (mean W = 1%) than 
in the area of warm SSTs (mean W < 0.5%). Such whitecap behaviour 
conflicts with the anticipated trend discussed in Section 5.3, as the effect 
of atmospheric stratification should lead to larger W over warm waters. 
This “aberration” is probably caused by other factors and mechanisms 
including non-linear Ekman pumping, which can suppress wave 
breaking. Notably, this effect has also been observed in association with 
the Gulf Stream (Liu et al., 2016). 

Based on Eq. (4), the convergence/divergence of surface currents is 
one of the governing parameters causing enhancement/suppression of 
wave-breaking intensity. The divergence field can be estimated from 
Landsat thermal data using the approach suggested by Kudryavtsev et al. 
(2012). Following this approach, convergence/divergence of surface 
ocean currents can result from the interaction of wind-driven currents 
with the vorticity of surface quasi-geostrophic (SQG) currents. Recon
structing SQG from a snapshot SST image (Isern-Fontanet et al., 2006) 
and using a classical solution for the Ekman current (slab-model), the 
following relationship for surface divergence (in Fourier space) was 
obtained (see Kudryavtsev et al., 2012, and Section 3.1 for more details): 

∇̂u =
iα

γ1/4n1/2
b

∙gv*

f 2 sin(φw − φ)K2 T̂s (9)  

where a hat operator denotes Fourier transform; nb =N/f is the Prandtl 
ratio for the Brunt-Vàisala frequency, N, determining mesoscale prop
erties of the flow; f is the Coriolis parameter; g is gravity acceleration; α 
is the thermal expansion coefficient; γ = 0.2, v* is the friction velocity in 
the water; φw is the wind speed direction; and K and φ are the modulus 
and direction of the wavenumber vector, respectively. Eq. (9) describes 
the relationship between current divergence and SST in Fourier space. 
The inverse Fourier transform of Eq. (9) provides current divergence in 
physical space. Consequently, as K2 T̂s corresponds to the Fourier 
transform of the SST Laplacian, convergence/divergence of mesoscale 

Fig. 10. The effect of river plume on whitecaps field: a) Landsat-8 reflectance at channel 5 0.845–885 nm over the Rhone mouth, Mediterranian Sea, during the 
development of the Mistral winds on 25 January 2015. Red rectangle shows zoomed part of the scene. b) SST from Landsat 10 channel; c) Calculated whitecap 
fraction; d) Section of the whitecaps fraction (black line – whitecap fraction smoothed with 10-point filter) and SST (red line). X-axis is in km. The position of the 
section is shown in Fig. 10a-c. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ocean current broadly trace the Laplacian of the SSTs, the full equation 
for which is given by Kudryavtsev et al. (2012). This qualitative estimate 
is confirmed by the location of the model convergence/divergence 
zones, which are linked to the maximum SST gradients (compare 
Fig. 11d and c). 

The calculated divergence (Fig. 11d) corresponds well to the 
enhanced whitecap anomalies depicted in Fig. 11b. The divergence 
along the northern edge of Gulf Stream is quite high, with values varying 
from 0.006 to 0.01 1/s, and is related to the very sharp temperature 
front, which changes by 6 ◦C in a 200-m-wide frontal zone. Thus, the 
sharp increase in the wave breaking illustrates the significance of ver
tical motion in the vicinity of the fronts and their strong potential for the 
weakening and destruction of the front, and mixing of physical and 
biochemical properties, in the frontal zone. Note that Eq. (9) describing 
the divergence of secondary circulation, which results from the inter
action of Ekman flow with SQG currents, is essentially based on the 
assumption that the Rossby number is small. However, considering local 
ocean current features with a sharp velocity gradient (as in Fig. 11 and 
Fig. 12, described below), one may anticipate that this assumption no 
longer holds. In this context, Eq. (6) must be used to derive qualitative 
estimates, particularly as a physical basis for the interpretation of the 
link between wave-breaking anomalies and SST features. Quantitative 

aspects of this link require more elaborate model development. 
Another notable example of a similar effect was observed in the Azov 

Sea on 13 November 2015 when intense northeast winds (> 10 m/s) 
were blowing. These winds probably caused upwelling on the eastern 
periphery of the Azov Sea, which cools its northeast part. From the east 
coast of the Azov Sea, upwelling waters elongate to the east and form a 
filament with a well-defined cold mushroom structure (M1) at its end 
(Fig. 12c). The length of the filament was approximately 50 km and its 
width was approximately 40 km. 

This structure was clearly manifested in the whitecap field near IR 
reflectance in Fig. 12a and b. The position of the whitecaps strictly 
corresponds to the “stipe” of M1 (Fig. 12b). We can also observe the 
north-south asymmetry of the whitecap distribution. In the northern 
part of the stipe of M1, the whitecap coverage decreases whereas it in
creases in the southern part. At the same time, as in the previous case, 
wave breaking was almost absent in the relatively warm waters to the 
north and south of the structure. Very complex dynamic processes seem 
to take place at the mushroom “cap” (see boxes #1 and #2 at the top of 
Fig. 12). A zone of increased whitecaps surrounds the “cap” at its edge, 
while at its centre, relatively calm waters are observed with no white
caps. This can also be explained by divergence/convergence patterns in 
this complex dynamic structure. Fig. 12d demonstrates the divergence 

Fig. 11. The manifestation of the small-scale ocean fronts in the vicinity of the Gulf Stream on 20 November 2015: a) Landsat brightness in channel 5; b) whitecaps 
fraction calculated from Landsat data; c) SST from Landsat-8 channel 11; d) current divergence derived from Landsat-8 thermal channel 11 following (Kudryavtsev 
et al., 2012; their Eq. (16)). 
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field computed from Landsat thermal data using the SQG computation 
method described above (Kudryavtsev et al., 2012). The position of the 
divergence zone (blue colour) is in agreement with low W values at the 
north side of the mushroom current and in the centre of its “cap”. The 
position of the convergence zone coincides with intense wave breaking 
at its south part and around the “cap”. 

Usually, mushroom currents are formed as a result of the rapid 
slowing down of offshore currents (Fedorov and Ginsburg, 1989). This 
should be accompanied by the emergence of zones of intense conver
gence where the filament collides with surrounding waters, as observed 
on the outer periphery of the computed field. Due to current decelera
tion, in the centre of the “cap”, the water began to diverge, flowing north 
and south to form two eddy structures on each side of M1. The strain of 
the flow induced by the forming dipole eddy is the probable reason for 
the observed divergence and decrease in W in the centre of the “cap”. 

North-west asymmetry in the convergence-divergence pattern is 
probably caused by the interaction of the current in M1 with the wind 

field. The currents in the northern part of the “cap” are directed 
downwind; therefore, the total wind stress is reduced (see Section 5.5) 
and divergence is observed in the northern part of the M1 “cap”. At the 
same time, in the stipe, current and wind are opposite, and wave 
breaking intensifies. 

5.5. Impact of “large-scale” surface motion on the wind stress 

Wind stress depends on the wind velocity relative to the moving 
surface. If the direction of the winds and intense currents are opposite, 
wind stress will increase; otherwise, it will decrease. This can be 
accounted for by the modified resistance law, thus: 

u2
* = CD(μ)|G-U|

2 (18)  

where G is the geostrophic wind velocity and U is the velocity of the 
surface currents. This effect can be significant in whitecap formation as 

Fig. 12. Impact of mushroom current on whitecaps distribution: a) Landsat brightness in channel 5 in the Azov Sea on 13 November 2015; Red rectangles #1 and #2 
mark the areas used for the zoomed pictures shown on the top side of the figure. b) Whitecap fraction calculated from Landsat data; Black arrow show the direction of 
the wind. c) SST from Landsat-8 channel 11; d) Divergence of currents calculated from Landsat-8 thermal channel 11 using (Kudryavtsev et al., 2012). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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W ~ u3 especially for low-to-moderate winds. 
This effect can partly explain the decrease in whitecaps over the 

warm Gulf Stream waters discussed in Section 5.4. The larger part of the 
Landsat-measured scene, SST, and calculated whitecap field for the 
scene on 20 November 2014 over the Gulf Stream are shown in Fig. 13a 
and b. The whitecap coverage was generally lowest (W < 0.3%) over 
cold Labrador waters (SSTs <16 ◦C). Another W minimum is observed in 
the warmest waters, denoted by the area with SSTs >22 ◦C. Over the 
Gulf Stream (with SSTs approximately 20–22◦), the whitecap fraction 
(W) significantly decreases 0.1–0.4% and later increases at a distance of 
40 km from the front (Fig. 13a and b). This area with the warmest waters 
corresponds to the centre of the Gulf Stream jet (Fig. 13c), as confirmed 
by the satellite altimetry data. A map of geostrophic velocities in 
Fig. 13d shows that the Gulf Stream is directed to the northeast and has a 
velocity of 1–1.6 m/s. 

The velocity of geostrophic winds calculated from the Merra rean
alysis changes from 11 m/s in the southern part of the scene to 14 m/s in 
the northern part (Fig. 13d). Geostrophic winds show no visible features 
related to the Gulf Stream impact, although they are directed in the Gulf 
Stream course. Therefore, the velocity of airflow relative to the surface 
over the Gulf Stream (see Fig. 13e) will be less on the current velocity. 
According to Eq. (18), the wind stress will be G2/(G-U)2 = 12.5/ 
(12.5–1.5)2 = 1.3 times lower. As whitecap coverage is proportional to 
u2 W will be lower by a factor of 2. Fig. 13f shows W computed from 
wind velocity using Eq. (3), as described in Section 4.11. This map 
demonstrates a two-fold decrease in whitecap coverage in the Gulf 
Stream, especially in its southern part. This is in agreement with the 
Landsat data in Fig. 13b and confirms the important role of “large-scale” 
surface motion on wave breaking in the areas of strong currents. 

The highest W values (0.8–1.2%) were observed on both sides of the 
Gulf Stream, especially in a strong, relatively warm cyclonic meander 
with SSTs of 18–20◦, which detaches from the western border of the Gulf 
Stream. This meander is clearly visible in the SST map in Fig. 13c but 
absent in the relatively low-resolution altimetry data. The geometry of 

the meander suggests that its currents are directed to the south, against 
the wind, which will increase wave breaking. This is indeed observed in 
the Landsat data (Fig. 13b); however, the meander is absent in the 
altimetry data and, as such, cannot be adequately described using wind 
reanalysis and satellite altimetry in Fig. 13f. 

6. Conclusions 

Landsat-8 measurements with a high signal-to-noise ratio provide a 
good opportunity to observe wave breaking from space over the global 
ocean. One Landsat scene covers an area of approximately 
200 km × 200 km, which cannot be properly captured even by airborne 
photography. Freely available high-resolution Landsat-8 and Sentinel-2 
data provide the possibility to study the variability of whitecaps over a 
wide range of scales, from hundreds of metres to meso- and global- 
scales, and to investigate the dependence of this variability on envi
ronmental atmospheric parameters (e.g. wind speed and stratification) 
and ocean processes (e.g. currents of different origin and ocean fronts). 
A method of retrieving the fraction of the ocean surface covered by 
whitecaps from reflectance measurements in the NIR channel with 
30 × 30 m2 spatial resolution has been proposed in this study. A com
bination of satellite scatterometer data and Landsat-8 optical imagery 
provides unique information on quasi-synchronous wind and whitecap 
distribution in the open ocean. We obtained more than 40,000 quasi- 
synchronous wind-whitecap estimates averaged into 1/8◦ bins to esti
mate the dependence of the whitecap fraction on wind speed. Such a 
large amount of data may lead to significant improvements in our 
knowledge of wave breaking and wave dissipation in the open ocean 
under different wind conditions. 

Due to its specific measurement capabilities, Landsat data provide a 
unique opportunity to investigate the impact of sub- and mesoscale 
ocean dynamics, and ocean SST fronts, on wave breaking fields. We have 
suggested a framework for investigating the impacts of various ocean 
phenomena and processes on whitecap variations including shallow 

Fig. 13. Effect of the surface motion on whitecap distribution: a) Landsat brightness in channel 5 in the vicinity of the Gulf Stream on 20 November 2015. Whitecaps 
are dampened in the warm Gulf stream jet. b) Whitecap fraction calculated from Landsat data c) SST from Landsat-8 channel 11; d) Geostrophic wind velocity relative 
to the surface currents from Merra reanalysis (G); e) Altimetry-derived geostrophic currents at 20 November 2015; f) Whitecap fraction (W) calculated from wind and 
altimetry data using eq.1. 
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water bathymetry, internal oceanic and atmospheric waves, quasi- 
geostrophic currents, SST fronts, and ageostrophic fronts (i.e. river 
plumes). All of these examples demonstrate a variety of factors impor
tant for understanding variations in whitecaps and wave energy 
dissipation. 

The ability to observe whitecaps directly from space opens new op
portunities to advance existing whitecap- and wave-breaking-retrieval 
algorithms based on passive microwave and SAR measurements. This 
also provides the possibility of correcting for the impact of wave 
breaking and foam on optical, infrared, active, and passive microwave 
measurements under moderate-to-high wind conditions. 
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