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Abstract

A new unstructured grid two-dimensional, depth-integrated (2DDI), morphodynamic model is presented
for the prediction of morphological evolutions in shallow water. This modelling system consists of two cou-
pled model components: (i) a well-verified and validated continuous Galerkin (CG) finite element hydrody-
namic model; and (ii) a new sediment transport/bed evolution model that uses a discontinuous Galerkin
(DG) method for the solution of the sediment continuity equation. The DG method is a robust finite
element method that is particularly well suited for this type of advection dominated transport equation.
It incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep bathymet-
ric gradients that may form in the solution, and it possesses a local conservation property that conserves
sediment mass on an elemental level. In this paper, we focus specifically on the implementation and veri-
fication of the DG model. Details are given on the implementation of the method, and numerical results
are presented for three idealized test cases which demonstrate the accuracy and robustness of the method
and its applicability in predicting medium-term morphological changes in channels and coastal inlets.
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1. Introduction

The transport of sediment as bed load is an important process that occurs in rivers, estuaries,
and coastal regions. In many situations, this process and the resulting morphological changes of
the bed can have a detrimental impact on the coastal infrastructure and environment. For exam-
ple, dredged navigational channels and coastal inlets can be rendered almost entirely useless by
the accumulation of transported sediment. Returning these structures to operational status,
through dredging operations or the construction of jetties, represents a significant cost to the
agencies that maintain them. As another example, the structural integrity of bridges and piers
may be compromised due to excessive scour of the bed around abutments. In addition to these
infrastructure problems, there is host of environmental issues of concern, such as the transport
of pollutants with or as sediment, that can cause serious ecological damage. Accurate numerical
models that can predict sediment transport and the resulting bed morphology can help manage
these costly problems.

Clearly, the processes of sediment transport and morphological evolution of the bed are deter-
mined by the properties of the fluid flow, which in turn are affected by the changes in the morphol-
ogy of the bed that they induce. Thus, the motion of the fluid and the motion of the bed form an
interdependent two-phase phenomenon that must be analyzed using a model system made up of
two distinct but interdependent model components: (i) a hydrodynamic component defining the
evolution of the flow; and (ii) a sediment transport/morphological component defining the evolu-
tion of the bed. Such a modelling system is often referred to as a morphodynamic model. A
description and comparison of some existing morphodynamic model systems is given by Nichol-
son et al. (1997). Typically, these model systems use structured computational grid methods. To a
lesser extent, unstructured grid methods have also been implemented and can, in fact, be highly
advantageous based on their ability to provide local grid refinement near important bathymetric
features and structures. The ability to provide local grid refinement where it is needed leads to
improved accuracy for a given computational cost as compared to models that use structured grid
methods. However, both structured and unstructured grid method solutions to the governing
morphological equation can experience numerical robustness and accuracy problems manifested
in the form of spurious spatial oscillations, especially in the presence of steep bathymetric gradi-
ents (see for example Johnson and Zyserman, 2002).

In this paper, we describe the development of a new unstructured grid morphodynamic model
system that uses a new class of highly accurate finite element methods for the solution of the gov-
erning morphological equation. The hydrodynamic model component of our system is provided
by the well-verified and validated unstructured grid model ADCIRC, developed by the second
author and a number of collaborators (Luettich and Westerink, 2004). ADCIRC is both a
two-dimensional, depth-integrated (2DDI) and three-dimensional (3D) free surface flow model.
In this paper, we focus specifically on the 2DDI ADCIRC model, which solves the shallow water
equations using the standard or continuous Galerkin (CG) finite element method in space. To
overcome well-known problems in solving the shallow water equations using equal-order interpo-
lating spaces with the CG finite element method, the continuity equation is replaced by the
so-called generalized wave continuity equation (GWCE) (Lynch and Gray, 1979; Kinnmark,
1986). The solution strategy used in ADCIRC has proven to be robust and computationally
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efficient, and it has been validated in a large number of cases (see for example Blain et al., 1994;
Westerink et al., 1994, in review; Mukai et al., 2002).

Working with a well-established hydrodynamic model then, the main focus of this paper is the
development and verification of a bed load sediment transport/morphological model component
to work in conjunction with ADCIRC. Mathematically, the morphological evolution of the bed is
defined by the so-called sediment continuity or Exner equation. This equation simply states that
the time rate of change of the bed elevation is equal to the divergence of the sediment flux, which
can be expressed in terms of the local flow properties through the use of an empirical sediment
transport formula. As is well known, solving advection dominated transport equations of this
type using the CG finite element method will frequently lead to spurious spatial oscillations in
the solution. To overcome these shortcomings, a number of so-called advection schemes can be
employed (see Iskandarani et al., 2005 for a review and comparison of some of the more popular
schemes). One such scheme that has received considerable recent attention and that has been
applied successfully to a wide variety of problems is the discontinuous Galerkin (DG) finite
element method.

Originally developed by Reed and Hill (1973), but more recently expounded on in a series of
papers by Cockburn et al. (see the review article by Cockburn and Shu, 2001 and the references
therein), the DG method uses trial and test function spaces that are continuous over a given ele-
ment but which allow discontinuities between elements. This results in a block diagonal or, with
an appropriate choice of basis, diagonal mass matrix that can be trivially inverted. Communica-
tion between elements is accomplished via a so-called numerical flux, which for the case of a scalar
equation can be defined using upwinding techniques. The method is also ‘‘locally conservative’’,
meaning that the conservation of the transported quantity is satisfied on a local or elemental level.
This has been shown to be a desirable property when coupling flow and transport algorithms (see
for example Dawson et al., 2004).

In this paper, we present the implementation and verification of a DG sediment transport/
morphological model that is coupled to the ADCIRC hydrodynamic model. We note that this
sediment transport model is just one component of a suite of DG model components that are
currently being developed for flow and transport, which will form a completely DG based
morphodynamic modelling system with both h (grid size) and p (polynomial order) refinement
options. In this paper, we restrict our attention to the second-order (p = 1) case for the sediment
transport model, but we note that p-refinement is easily implemented within the framework of the
DG method (see Kubatko et al., in preparation for an example of this for the shallow water
equations).

This paper is organized as follows. In Section 2, we describe the mathematical model defining
the sediment transport and morphological evolution of the bed which consists of the sediment
continuity equation and an empirical sediment transport formula. We then present a simplified
mathematical model, which we refer to as the Exner model, that uncouples the sediment trans-
port/morphological model from the hydrodynamic model. This simplified model can be used as
a verification tool for the numerical method. In Section 3, we give a detailed description of our
implementation of the DG method for the sediment continuity equation, giving specific details
on the numerical flux, basis, quadrature rules, time discretization, slope limiter, and continuous
projection that are employed. In Section 4, we present numerical results from three test cases with
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the aim of: (i) verifying that the method achieves second-order convergence in space; and (ii) dem-
onstrating how the model can be used for predicting so-called medium-term (see for example
De Vriend et al., 1993) morphological changes in channels and coastal inlets. Finally, in Section
5, we summarize this paper, and we briefly discuss the current and future work in the development
of this model system.
2. Mathematical model

The evolution of the bed or bottom surface elevation due to the transport of sediment as bed
load is governed by the so-called sediment continuity or Exner equation (see for example Hender-
son, 1966):
oz
ot
þr � qb ¼ 0 ð1Þ
where z is the elevation of the bed relative to a datum located below the bed (z is positive upwards)
and qb is the bed load sediment transport function vector.

In order to close Eq. (1), a functional form of qb must be specified. It is assumed that the
sediment transport is always in the direction of the flow velocity, U = (u, v) where u and v are
the velocity components of the flow in the x and y directions, respectively. Thus the vector qb

is computed as
qb ¼ bUjqbj ð2Þ

where jqbj is the magnitude of the sediment transport in the direction of the flow and bU is the nor-
malized flow velocity vector (i.e. bU ¼ U=jUjÞ. There are a number of empirical bed load sediment
transport functions available (e.g. Bagnold, Einstein, Meyer-Peter and Mueller, see for example
Sleath, 1984 for a thorough list), most of which can be transcribed in the following form:
jqbj ¼ AðU;H ; . . .ÞjUjn ð3Þ
where A is a given function and n is a given positive constant both of which are specific to the
particular sediment transport formula. Note that A is typically a function of the flow velocity,
U, the total height of the water column, H = f � z (where f is the water surface elevation relative
to the same datum as the bed), and a number of constants that are based on sediment properties
such as sediment type and grain size and data fitting procedures. The constant n is typically in the
range of 1 6 n 6 3.

In our model, we will make use of a new bed load formula developed by Camenen and Larson
(2005), though the numerical model to be described will be general enough to allow the use of any
sediment transport formula provided it is a function of H and a monotonically increasing function
of U. Camenen and Larson develop new bed load sediment transport formulas for transport due
to currents, waves, and combined waves and currents. Their formulas were shown to provide the
best agreement with the data sets that were compiled compared to a number of previously
proposed formulas (Camenen and Larson, 2005).

In this paper, we only consider the Camenen and Larson bed load sediment transport formula
due to currents which is given by (in dimensional form—SI units):
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jqbj ¼ Cs1.5
c exp �4.5

scr

sc

� �
ð4Þ
where sc is the shear stress at the bottom due to the current, scr is the critical shear stress, and C is
a constant given by
C ¼ 12

g
ffiffiffi
q
p ðqs � qÞ ð5Þ
where g is the acceleration due to gravity and q and qs are the water and sediment density, respec-
tively. The shear stress is computed by the formula:
sc ¼
1

2
qf jUj2 ð6Þ
where f is a dimensionless friction factor calculated assuming a logarithmic velocity profile (see
for example Sleath, 1984):
f ðHÞ ¼ 8

25
1þ ln

d50

15H

� �� ��2

ð7Þ
where d50 is the median grain size. The critical shear stress is computed from the critical Shields
parameter which is either estimated as a constant or calculated using the formula proposed by
Soulsby and Whitehouse (1997).

Using Eqs. (5)–(7) the sediment transport formula can be written in the form of Eq. (3) with
n = 3 and A given by the function:
A ¼ C
1

2
qf

� �1.5

exp �4.5
scr

sc

� �
ð8Þ
Note that A is a monotonically increasing function of sc and therefore U.

2.1. A simplified model

For purposes of verifying our numerical scheme, we use a simplified mathematical model that
essentially uncouples the sediment continuity equation from the hydrodynamics. This allows us to
verify the underlying numerics of the model in a simplified setting by comparing it to analytical
solutions. Assume that the flow is unidirectional (say in the x directional only) and quasi-steady
with a rigid lid. With these assumptions, the flow velocity is given by
u ¼ qf

H
¼ qf

�f� z
ð9Þ
where qf is a constant flow discharge and �f is the elevation of the rigid lid measured from the bed
datum (see Fig. 1). Furthermore, assume that the sediment transport is given by Eq. (3) with
A = constant and n = 1. With these assumptions the sediment continuity equation can be written
as
oz
ot
þ o

ox
A

qf

�f� z

� �
¼ 0 ð10Þ



Fig. 1. Definition sketch for Exner�s model.
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This model was originally proposed by Exner (1925). Assuming a smooth initial condition,
z(x, 0) = z0, the classical solution is given implicitly by
Fig. 2
functi
zðx; tÞ ¼ z0ðx� cztÞ; cz ¼ Aqf=ð�f� zÞ2 ð11Þ

where cz is the propagation speed of the bed. As is well known, non-linear hyperbolic equations
such as Eq. (10), depending on the initial conditions, will develop steep gradients (and eventually
discontinuities or shocks) which provide a rigorous test for a numerical method. A similar model
was examined by Johnson and Zyserman (2002) in the context of testing a finite difference scheme.
3. Numerical model

In this section, we give a detailed description of our DG sediment transport/morphological
model. To begin we define some notation. Given a spatial domain, X, which has been discretized
into a set of non-overlapping elements, let Xe define the domain of a typical element e and denote
the boundary of the element by Ce. Our numerical approximation of z will make use of piecewise
smooth functions which are continuous over Xe but which allow discontinuities between elements
along a given edge. We denote this space of functions by Vh. Given a smooth function v defined
over e, we denote the values of v along an edge by v(in) when approaching the edge from the inte-
rior of the element and v(ex) when approaching the edge from the exterior of the element. The
outward unit normal vector for the boundary of the element will be denoted by n, and the fixed
unit normal vector for a given edge i will be denoted by ni (see Fig. 2).
e

niv(in)
v(ex)

. A typical element e and its neighboring element along edge i with normal ni; v(in) and v(ex) denote the value of a
on v along edge i when approaching the edge from the interior and exterior of the element, respectively.
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In our numerical scheme, we will also make use of continuous, piecewise linear approximations
of U and f obtained from the ADCIRC model to compute the local sediment transport rates.
Briefly, these approximations are obtained by solving the shallow water equations using the
CG finite element method in space and implicit/explicit time stepping (see Luettich and Wester-
ink, 2004 for details). As previously mentioned, to achieve non-oscillatory results the primitive
continuity equation is replaced with the GWCE.

We apply the DG method to the sediment continuity equation by multiplying Eq. (1) by a test
function v 2 Vh and integrating over Xe to obtain
Z

Xe

oz
ot

vdXe þ
Z

Xe

r � qbvdXe ¼ 0 ð12Þ
Integrating the second term of this equation by parts gives
Z
Xe

oz
ot

vdXe �
Z

Xe

rv � qb dXe þ
Z

Ce

vqb � ndCe ¼ 0 ð13Þ
Next we replace the solution z with an approximate solution zh which, using Galerkin�s method,
is constructed from a set of basis functions which belong to the same space, Vh, as the test func-
tions. Due to the fact that there may be discontinuities along element edges, the boundary integral
of Eq. (13) is undefined and for this we define a numerical flux, q̂b. In our formulation, we use a
simple upwind flux based on the assumption that the sediment transport is in the direction of the
current:
q̂b ¼
q
ðinÞ
b � n; U � n P 0

q
ðexÞ
b � n; U � n < 0

(
ð14Þ
With the approximate solution and the numerical flux defined, the weak formulation of the prob-
lem now becomes
Z

Xe

ozh

ot
vdXe �

Z
Xe

rv � qb dXe þ
Z

Ce

vq̂b dCe ¼ 0 ð15Þ
Note that the method is locally or elementally conservative in the following sense: setting v = 1 on
Xe and zero elsewhere we have
Z

Xe

ozh

ot
dXe þ

Z
Ce

q̂b dCe ¼ 0 ð16Þ
That is, the time rate of change of zh over Xe is balanced by the net flux of sediment into Xe.
We proceed by describing the details of the implementation of the scheme including the choice

of basis functions, the quadrature rules employed to compute the integrals, the time discretization,
the application of a slope limiter to eliminate local undershoots or overshoots in the solution in
the presence of steep gradients, and the continuous projection procedure used to project the
discontinuous approximation zh into the space of continuous, piecewise linear functions which
are fed back into ADCIRC as updated bathymetry.
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3.1. Basis and degrees of freedom

As emphasized by Cockburn and Shu (1998), we note here that a judicious choice of basis func-
tions can simplify the implementation of the scheme and improve the computational efficiency.
Owing to the fact that discontinuities are permitted across element interfaces, the choice of the
basis functions are not limited by the requirement of continuity as in the CG finite element meth-
od. Therefore, one can choose degrees of freedom that, for example, save cost in evaluating the
integrals in Eq. (15) and/or simplify the implementation of the slope limiter. In our implementa-
tion, we use piecewise linear triangular elements described below.

Considering the ‘‘master element’’ as shown in Fig. 3 defined in the transformed coordinates n
and g, the approximate solution zh can be expressed as
Fig. 3
midpo
zh ¼
X3

i¼1

ziðtÞ/iðn; gÞ ð17Þ
where the degrees of freedom, zi are the values of the approximate solution at the mid-point of
each edge and the basis functions, /i define the linear element of Crouzeix and Raviart (1973)
which for the master element shown in Fig. 3 can be written in the form:
/1 ¼ 1� 2n; /2 ¼ 1� 2g; /3 ¼ 2nþ 2g� 1 ð18Þ

There are several things to note about this basis. The functions /i are equal to 1 at the mid-point
of each edge i and 0 at the mid-points of the other two edges. The basis functions are orthogonal
over an element, specifically
Z

Xm

/i/j dndg ¼
1=6; i ¼ j

0; i 6¼ j

�
ð19Þ
where Xm denotes the domain of the master element. This property, of course, gives rise to an
orthogonal mass matrix that can be trivially inverted. Lastly, in the continuous projection proce-
dure to be described, we will make use of the value of the approximate solution at the vertices of
ξ

h1

h2

h3

3

2

1

η

. Master element defined in local coordinates n and g showing the degrees of freedom hi—the value of h at the
int of edge i opposite of corner node i.
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the triangle. The value of zh at vertex i, denoted by zvi, which is the vertex opposite of edge i (see
Fig. 3), is easily computed as
zvi ¼ �2zi þ
X3

j¼1

zj ð20Þ
As a final note, we remark that the orthogonal, hierarchical, ‘‘modal’’ type basis proposed
by Dubiner (1991), which simplifies p refinement and also adaptivity, can easily be implemented
within the framework of the DG method.

3.2. Quadrature rules

Both of the integrals appearing in Eq. (15) are evaluated using suitable numerical quadrature
rules. We note that by using numerical quadrature and the simple upwind numerical flux defined
previously, we can easily implement a number of different sediment transport formulas into the
scheme without making any changes to the base algorithm itself (provided that the formula meets
the requirements as specified in Section 2). Cockburn and Shu (1998) note that for a DG spatial
discretization of degree p, quadrature rules that are exact for polynomials of degree 2p and 2p + 1
must be used for the area and boundary integrals, respectively. Thus for the linear elements used
here (p = 1) we use a three point quadrature rule for the triangle so the area integral of Eq. (15) is
approximated by (noting that $v is constant over the element):
rv �
Z

Xe

qb dXe

� �
� rv �

X3

i¼1

wiqbðUi; fi; ziÞ
 !

ð21Þ
where the wi�s are the quadrature weights of the associated quadrature points, which are the mid-
points of each edge. Using this rule, the sediment transport function, qb is easily evaluated at the
quadrature points given the fact that we already have zi, which are the degrees of freedom, and we
need only to compute U and f at the mid-point of each edge. We note that these values are easily
obtained by averaging the two vertices for the given edge (owing to the fact that U and f are
approximated using linear functions over the element as well). The boundary integrals, which
must integrate a third degree polynomial exactly, are evaluated using the two-point Legendre–
Gauss quadrature rule.

3.3. Time discretization

The DG spatial discretization reduces the problem to a system of ordinary differential equa-
tions which we write in the concise form:
d

dt
ðzhÞ ¼ Lhðzh;Uh; fhÞ ð22Þ
where zh is the vector of unknowns over the whole domain.
We discretize this system of equations in time using a second-order Runge–Kutta scheme,

which is equivalent to the so-called modified Euler method, written in the form:
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z
ð1Þ
h ¼ z

ðtÞ
h þ DtmLh z

ðtÞ
h ;U

ðtÞ
h ; f

ðtÞ
h

� 	
z
ðtþ1Þ
h ¼ 1

2
z
ðtÞ
h þ z

ð1Þ
h þ DtmLh z

ð1Þ
h ;U

ðtÞ
h ; f

ðtÞ
h

� 	� 	 ð23Þ
where Dtm is the morphological time step which may be different than that of the hydrodynamic
time step, Dth, and where it is to be noted that U and f are held fixed at time t.

Given that explicit time stepping is used, the size of the morphological time step is limited by a
Courant–Friedrichs–Levy (CFL) condition. A direct calculation of this condition proves difficult
in practice due to the highly non-linear nature of the sediment transport function, and instead we
simply take Dtm = N · Dth, where N is some positive integer usually in the range of 10–50, i.e. the
bed is updated every 10–50 hydrodynamic time steps. In practice, this approach has proven to
work well for a wide variety of problems and requires little additional computational effort. It
has been estimated that using this approach the additional computational cost for running the
morphodynamic model is on the order of 2–10% of the cost of running the hydrodynamic model
alone.
3.4. Slope limiter

In order to prevent spurious oscillations at sharp fronts, a slope limiter is applied at each step
of the Runge–Kutta method described above. We apply a simple slope limiter in which the
degrees of freedom zi for a given element e are compared to the average of the approximate
solution over e, ze

avg and the average of the neighboring element e 0 of the given edge, ze0
avg. If

zi does not fall in between the values ze
avg and ze0

avg for the given edge i then the degrees of free-
dom for element e are set equal to ze

avg. In this way, the average of the element is maintained
while setting its slope equal to zero, and sediment mass is still conserved over the element. It
should be noted this slope limiter is very easy to implement, but it can cause some numerical
smoothing of the solution. More sophisticated limiters that are less dissipative are currently
being investigated.

We remark that for sufficiently smooth bathymetries, in practice it is often unnecessary to apply
the limiter. However, as the bed evolves, steep gradients may develop in the bed, and it has been
observed that without the use of a limiter oscillations develop in the neighborhood of the steep
gradient. Typically, however, these oscillations seem to remain localized and do not degrade
the solution globally. The role of the slope limiter then, at least for the problems examined, is that
of a mechanism to eliminate local oscillations rather than for stabilizing the scheme.
3.5. Continuous projection procedure

As previously mentioned, ADCIRC makes use of approximations that are continuous in space
across the entire domain. Thus, in addition to our discontinuous approximation zh, we must also
compute a continuous approximation which must be fed back into ADCIRC after computing the
updated bathymetry. We wish to accomplish the following with our procedure: given a node j
which is a vertex for n different elements we wish to compute a single nodal value denoted by
�zj based on the n (possibly) unique values at that node that are obtained from the DG method
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within the individual elements attached to that node (see Fig. 4). We have experimented with
several different approaches for obtaining these single nodal values and based on numerical
experiments have implemented an angle based weighted average given by
�zj ¼
Xn

i¼1

\i

\SUM

zvi

� �
ð24Þ
where \i is the angle of the vertex of element i and \SUM is the total sum of the vertex angles
around node j. We have also experimented with weighted area averaging and centroidal type aver-
aging, but we have found that the approach given by Eq. (24) gives the most consistent results
under a wide variety of grid configurations. We note that under certain grid configurations it
was observed that mild in-plane (x–y plane) oscillations appeared in the continuous representa-
tion of the bed. The weighted angle approach minimized the appearance of these oscillations,
which were often much more visible using other averaging techniques. It should be noted this
procedure does not affect the local conservation property of the sediment due to the fact that �z
is not actually used in the computations for updating the bed.
4. Numerical results

The DG method outlined above has been applied to a number of problems. In this section, we
show the results for three idealized test cases.

4.1. Test Case 1: Morphological evolution of a symmetric mound

In this test case, we apply the DG method outlined above to the Exner model introduced in
Section 2. The Exner model is examined in order to verify the numerical method independently
of the hydrodynamic model. It also affords us the opportunity to compare our numerical results
to exact solutions so that we may check the order of convergence of the method.

We solve a problem originally posed by Exner (1925). The problem examines the evolution of
an initially symmetric mound subjected to steady, unidirectional flow with a rigid-lid assumption
for the flow. The initial condition is given as
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zðx; y; 0Þ ¼ z0ðx; yÞ ¼ A0 þ A1 cos
2px
k

� �
ð25Þ
where the parameters A0, A1 , and k are as defined in Fig. 5 which shows a cross section of the
mound along the x-axis. We take A0 = A1 = 1, k = 20 in Eq. (25) and �f ¼ 3, Aqf = 1 in Eq.
(10). The flow is assumed to be in the x direction only, and we use periodic boundary conditions,
i.e. z(x = �k/2, y) = z(x = +k/2, y) and z(x, y = �k/2) = z(x, y = +k/2). The exact solution is gi-
ven by Eq. (11).

We solve this one-dimensional problem over a two-dimensional domain using four different
grids with uniform nodal spacing of h = 1, 0.5, 0.25, and 0.125. We compute the maximum or
L1 norm by comparing our DG solutions to the exact solution. In Fig. 6, we plot h versus the
maximum error norm on a log–log scale where it can be observed that the theoretical convergence
rate of p + 1 is obtained. Both the numerical and exact solutions of the evolution of the mound at
a cross section taken along the x-axis are shown at two different times in Fig. 7. The solutions
indicate that the mound develops into a dune-like shape with a gentle upstream slope followed
by a steeper downstream slope that becomes progressively steeper in time. It should be noted
λ

2x λ= − 2x λ=0x =

0η =
0A

1A

 1A  1A

Fig. 5. Cross section of the initial condition for Exner�s ‘‘dune problem’’ as defined by Eq. (25).
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Fig. 6. Convergence plot of test case 1 demonstrating second-order convergence.
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how well the DG solution captures the steep downstream slope of the dune without the introduc-
tion of any spurious spatial oscillations or any significant numerical damping.

4.2. Test Case 2: Converging channel

In this problem, we return to the full morphodynamic modelling system and examine the mor-
phological evolution of an initially flat bed in a converging channel. A plan view of the channel
showing the computation grid is shown in Fig. 8. The channel tapers in from a maximum width of
500 m at the edges to 250 m in the center over a distance of 2 km. The boundary conditions for the
hydrodynamics are specified in such a way that a maximum velocity of approximately 1 m/s
occurs in the center of the channel. The evolution of the bed is examined over a 90-day period.
The sediment density and median grain size of the bed are taken to be 2000 kg/m3 and
0.2 mm, respectively. The time step used in the hydrodynamic model is 2 s and the bed is updated
every 50 hydrodynamic time steps. Figs. 9a–c show plots of the bed elevation surface and velocity
contours at 30, 60, and 90 days. The bed changes have been scaled in the vertical for easy
visualization.
Fig. 8. Computational grid of test case 2.



Fig. 9. Velocity contours and bed surface for test case 2—(a) Day 30; (b) Day 60; (c) Day 90.
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The velocity throughout the channel varies from approximately 0.50 m/s at the ends of the
channel to approximately 1 m/s in the center of the channel. The bed experiences erosion in
the converging part of the channel due to the increase in the flow velocity. Conversely, in the
diverging part of the channel, as the flow velocity decreases, accretion of the sediment occurs
and a mound or shoal develops in time. It can be noted the scour and accretion patterns occurring
in the center of the channel are slightly larger than those occurring toward the sides of the channel
across the width of a given cross section. This can be explained by the fact that the velocity field is
not entirely uniform across the width of the channel with somewhat higher velocities occurring in
the center. These small variations in the velocity field across the width of the channel produce
variations in the morphology of the bed across the width of the channel given the fact that the
sediment transport is a function of U3. We also note that the velocity field evolves along with
the morphological changes.

Finally, we remark that the computed results of the evolution of the bed compare well quali-
tatively to an analytical solution given by Exner (1925) for a problem of the same geometry.
Exner�s results, as shown in Fig. 10, are the solution of a simplified model similar to that of
Section 2 but modified accordingly to account for variations in the width of the channel (see Graf,
1971 for details). Specifically, it can be seen that the numerical and analytical solutions show the
same general evolution of the bed, i.e. scour in the converging section of the channel and accretion
in the diverging section.
Fig. 10. Exner�s analytical solution for the converging channel.
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4.3. Test Case 3: Idealized inlet

In this problem, we apply the model to the case of an idealized inlet as shown in Fig. 11. The
domain consists of a 10 km by 20 km sound connected to the open ocean through an inlet which is
1 km wide and 0.5 km long. The open ocean boundary is 20 km from the entrance of the inlet and
is 50 km wide. The initial bathymetry in the sound and through the inlet is constant at a depth of
5 m. South of the inlet the bathymetry varies linearly from 5 m at the entrance to 14 m at the open
ocean boundary. The sediment density and median grain size are the same as those specified in the
previous problem. The grid for the problem is also shown in Fig. 11 with the inset showing the
details in the vicinity of the inlet. The nodal spacing ranges from 100 m near the inlet to 1 km
at the open ocean boundary. The problem is forced with an M2 tide with a 15 cm amplitude which
produces a maximum current of approximately 1 m/s through the inlet. The time step used for the
hydrodynamics is 5 s, and the bed is updated every 50 hydrodynamic time steps. A 28-day simu-
lation was run with magnified sediment transport rates in order to enhance the advective processes
and accelerate the morphological evolution of the dominant features. Runs with no magnification
of the sediment transport rates produced qualitatively similar results with smaller changes in the
bed.

Figs. 12a–d show the time evolution of the bed every 7 days over the 28-day simulation. Note
that larger values in the bed elevation indicate erosion and lower values indicate accretion due to
the fact that the bed is measured as positive downward from the geoid. On day 7, there is notice-
able erosion beginning at the southern end of the inlet. Accumulation of the sediment can be seen
along the sides of the inlet and to the south of the inlet indicating the initial formation of an ebb
shoal. During flood tide on day 14, it can be seen that there has been significant erosion through
the throat of the inlet resulting in the initial formation of a flood shoal. It can also be seen that the
ebb shoal has become more pronounced. By day 21, there are distinct flood and ebb shoals to the
north and south of the inlet, respectively. There is also additional erosion through the inlet
following the same pattern as the initial scour. At the end of day 28, there has been significant
scour through the entire length of the inlet and the flood and ebb shoals have become even more
pronounced. It should be noted that even at this level of coarse grid resolution the model captures
the main morphological changes one expects to observe in tidally dominated coastal inlets (see for
example Hayes, 1980).
Fig. 11. (a) Computational grid for the idealized inlet of test case 3 and (b) details of the grid in the vicinity of the inlet.



Fig. 12. Evolution of the bed in the vicinity of the inlet over the 28-day simulation—(a) Day 7, (b) Day 14, (c) Day 21,
and (d) Day 28.
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5. Summary and future work

In this paper, we have presented a new unstructured grid morphodynamic model which makes
use of the existing ADCIRC finite element hydrodynamic model and a new DG finite element sed-
iment transport/morphological model. Specific details were given on the implementation of the
DG method, and the model was shown to produce good results in three idealized test cases. In
the first test case it was verified, through the use of the Exner model, that the method achieves
second-order convergence in space. Additionally, it was demonstrated how the DG method can
accurately capture steep gradients in the bathymetry without the introduction of spurious spatial
oscillations. The second and third test cases demonstrated how the full morphodynamic modelling
system can be used to predict medium-term morphological changes of the bed in channels and
tidally dominated coastal inlets.
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We conclude with some comments on the current development of this morphodynamic model-
ling system, in terms of both physical and numerical features that will be implemented. In this
paper, we have only considered sediment transport due to currents. However, in many coastal sce-
narios short waves, which interact with the current through the introduction of radiation stress
terms in the momentum equations, can be the dominant force in the sediment transport process.
Therefore, future work will involve coupling a wave model component into the modelling system
to include the effects of waves in both the hydrodynamics and sediment transport processes.
Numerically, as was previously indicated, the present model is only one component of a suite
of DG models that are currently being developed. Other DG model components will include a
2DDI DG hydrodynamic model (see Kubatko et al., in preparation) and 2DDI DG transport
models for salinity and temperature. In many applications, these models will be used in advection
dominated flow scenarios such as coastal inlets. The DG method is particularly advantageous for
these types of situations.
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