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Instability of a Mixed Layer Model and the Generation of Near-Inertial Motion.
Part II: Mixed Layer Deepening
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Department of Mathematical Sciences, Old Dominion University, Norfolk, Virginia
(Manuscript received 18 November 1986, in final form 1{ December 1987)

ABSTRACT

In Part I we examined the stability of a model of the mixed layer, neglecting the deepening rate. Here we
examine the effects of the deepening but neglect the oscillations in the steady state. We find that the two types
of instability found previously are modified. The long wavelength [O(10) km] instability becomes more stable
while the converse is true for the short wavelength [O(1) km] instability with the purely kinematic effect of the
slowly deepening mixed layer on the equally slow vertically propagating near-inertial waves being of most
importance. The short wavelength instability might be expected to be observed if the lateral friction is sufficiently
large. There is also a different short wavelength instability which is basically independent of the ocean interior
which might be expected to appear if friction is sufficiently small.

1. Introduction

In the previous paper (Kroll 1988, denoted as Part
I hereafter) we investigated the stability of a mixed
layer deepening model. There we assumed that the
deepening rate was negligible and found two basic in-
stability mechanisms. The first, a viscous parallel flow
type, was characterized by a relatively short wavelength
with the most unstable wave directed generally along
the steady mean flow. The second, an inflection point
type, was characterized by a relatively long wavelength
with the most unstable wave directed generally against
the wind at a right angle to the mean flow. The first
had been investigated previously (Kroll 1982, 1984)
and the second by Stern (1977) and Kamachi and
Grimshaw (1984). Thus the present model has brought
both mechanisms within the same model.

In this paper we will consider the effects of deep-
ening. The solutions of Part I will then be modified by
effects from the heat equation and the turbulent kinetic
energy (TKE) equation. Of at least equal importance
is the purely kinematic effect of the slow moving
boundary on the similarly slow vertical propagation of
near-inertial waves. We will also investigate instabilities
not present in Part 1.

At this time we are seeking to solve the problem
analytically, so we must simplify somewhat. We cannot
consider deepening and steady-state oscillations si-
multaneously, so we will examine a steady mean flow
only. After the initially rapid deepening, the relatively
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slow deepening thereafter is not constant, but we will
assume it is constant.

2. The basic equations

From Part I the dimensionless perturbation equa-
tions for the mixed layer from the perturbation of the
Niiler deepening model (1975) and modified by de-
Szoeke (1980) are
w, + Ritu, + kf X u = —pid — h(x — hii)/h?

—uH/h — h,Au/h + ou, + Eu,,

—%(lﬁlu + (u-w)ii/ @l — klala/k) (1a)
p:=RT (1b)
T, + RaT, = —h(bQo — ATh,)/h?

— (BRAT+ ATH)/h+ 0Ty + ET,, (lc)

(AAT — || )H + B(hAT + ATh — 2u- Au)

0

= —bQph + 2 f-h (v + z(% — Ba)/h)-u.dz (1d)
U+ w, =0 (le)

where the overbar represents a mean or unperturbed
quantity, the variables and parameters are defined in
Table 1, and the viscous dissipation ¢ has been ne-
glected. ( As before, we have included both horizontal
eddy viscosity and mean-square drag, the former to
deal with short wavelengths and the latter for long
wavelengths.) The interface parameter H is continuous
across the interface at z = —h (as is &) and given by

H=[h+R@@h,+w)l. =(h+Rw)_ (2)
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TABLE 1. Dimensionless variables and parameters.

x horizontal coordinate, direction of perturbation wave,
nondimensionalized by L = 1 km
z upward coordinate, nondimensionalized by f, = u,/
(N_fo)'2, where u, = (7°/po)'?, N_ is N below the mixed
layer, and 7° is the magnitude of the stress at the surface
t time, nondimensionalized by 1//;
(4, v), the horizontal perturbation velocity,
nondimensionalized by Uy = %/foht400
dimensionless inertial frequency = 1
vertical perturbation velocity, nondimensionalized by Uph,/L
perturbation pressure, nondimensionalized by po foU,L
perturbation temperature, nondimensionalized by 4,T, T
= dT/dz = N2/ag where a = the coefficient of thermal
expansion
perturbation depth of the mixed layer, nondimensionalized
by h,; h is the mean depth
angle between direction of the wind and the wave
perturbation (the x-axis)
wave frequency = w, + iw;, nondimensionalized by f;; w,, is
the mixed layer frequency
horizontal wavenumber, nondimensionalized by 1/L
vertical wavenumber in the interior = Rk/(w® — f3), f=1
temperature jump across transition layer for the mean state
Us/foL is the Rossby number
Ky/fol? is the horizontal Ekman number, assumed the same
for heat
N_C/fs, a horizontal drag coefficient. C is the usual
coefficient :
K,/foh% is the vertical Ekman number, assumed the same for
heat
agQP/uiN_, heating coefficient. Q° is the magnitude of the
surface heating
mean deeping rate
applied surface stress nondimensionalized by =
applied surface heating nondimensionalized by Q°

N oS

> >

Qe - & Qx:[:» £

where + and — subscripts denote top and bottom of
the transition layer respectively.

Assuming a constant buoyancy frequency, N_, the
dimensionless interior equations are

u + kfXu=—(p:— RATh,)i (3a)
p: = RT (3b)
T,+Rw=0 3¢)
U+ w,=0. (3d)
From Part I for the steady state we have ’
‘@i = 7o(sind, —cosf)/fh = (ii, D) 4

and AT can be found from Eq. (15) in Part I, but we
will examine various values, using, as a rule, the nom-
inal value AT = 0.5h. We will also consider various
values for A, but ultimately consider realistic values
which are consistent with Eq. (8c) in Part I given ap-
proximately by ‘

R = 2(ng — np)(N-/fo) "*(hAT — || ?)™!
~ 0.5/(hAT — |i]|?)
and RAT — |&|2> 0.

&)
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The boundary conditions again are that at z = 0: u,
=T,=w=0and at z = —h(¢), p and uh, + w are
continuous and u; = T, = 0. Also we need the radiation
condition that no energy is coming from z = —o0.

3. The solution

_ We are assuming h(t) varies only slowly in ¢ (i.e.,
h,/h < f) and can be considered constant everywhere
except when the frequencies of the mixed layer and
the interior are matched at z = —h(z) where we will
assume h = hy + ht with A, constant.

" We can show that 7 and H are uniform in z from
(1c, d) so that p is linear in z and hence u in (1a) will
not be uniform in z. We assume a solution in the form
()e**iem' where w,, is the frequency in the mixed
layer, and assume & = @, + ii;(z), a partition in uniform
and varying parts. For the varying part of (1a) we have

iqh, — fd, = —ikRT+-(z + h) + Eti,  (6a)
iQsz +fﬁ2 = Eﬁzn (6b)

where ¢ = Rkil — w,, — ick, and we have neglected
the drag, o, which simplifies the results considerably.
This simplification seems valid because it happens that
the z-dependent solution has more effect for short
wavelengths which are relatively unaffected by the drag.
Equations (6) can most easily be solved by letting ¢
=1, + iD,, ¢ = 1, — i, to obtain

EY., — i(g + Y = ikRT+(z + h) (7a)
E¢..— i(g— ¢ = ikRT-(z+h)  (7b)

which can be easily solved using the boundary condi-
tions @i,, = 0 at z = 0, —/ to obtain

(z@(z)) B} (U:(z))T-
92(2) Va(z)
where ’
(n) = () 2
Va2(z) —-i] 2|

sinhmz ] +[ (coshm'h — 1) coshm'z
m(g+N|—-| m'(qg—f)sinhmh

(coshmh — 1) coshmz
m(q + f) sinhmh

sinhm'z —q\ 2(z+ h)
+m’(q—f)]+(f) q’—ﬁ] ®)
and

(f,:) = (i(g £ N)/E)"™.

The effect of this variable part on the remainder of
the system is most significant through the stress working
term in the TKE equation which is the integral in (1d),
and on win the continuity equation. We can show that
the integral in (1d) is given by
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0
to-(ﬁz(O) — (/R f.» ﬁzdz) ~ ki

- (ﬁz(—m—(uh)f_: ﬁzdz). ©)

From (le) we have
0
lk(;ll‘l\l + f}i ﬁde) . (10)

Equations (1c) and (1d) can be solved simultaneously
using (8) and (9) yielding to lowest order in A;:

T = 2R, [a(d, — 4-) + (D, — D_) + ATh}/ 2D
(11)

where D = ig + 27(cos8( U2(0) — { Uz ) + sinf(V,(0)
— {¥2)))/h* and where

Ww(—h) =W

0
(U2, {V2)) = (1/h) f_h (U2, V2)dz

= —0.5kRh(q, iN/(a* — f*); (12)

H is similar but more complicated. The 7" and H are
order A, as long as D is O(1). For D vanishing, we
obtain what we call the internally dominant solution
which we will discuss later.

Using the previous results for the z-dependent part
in the uniform part we obtain from (la, b, c, d):

(igy + hi/B)i, — f1D = —ikp,. — T,h/h?

— hU\(=h) % + hi-/h  (13a)
(iga + B/ RYD) + folly = —T, h/R?

- Z,Vl(—ﬁ)§+ hd_/h (13b)

(ig+ kBT = —ATH/R + RT_/R
— (bQo — ATh)h/R* (130)
(RAT — || ))H = 2(4, + hA)T — (bQo + ATh)A
+ RAT- + 2h,(@h, + DD, — Gii- — B0_), (13d)
where g, = g — io71o(’h F co0s(20)/2)fh?, Jiz
= f £0o7 sin(20)/2fhz, T, = 19 cosd — hau
—ol|u|i/h* T, = rosind — Ad — 5 |a|B/h% 4, = 70
COSO(U](O) <U1>) + 70 SIHO(VI(O) <V]>), and

A, = d(Uyy+0{V) — h/2. From (2) and (10), we
have

jwmh = RW_ ~ H and,
W — ikith = ikh(d, + (U\)T).

(14)
(15)
We find #_, d_, w_ and T_ from the solution of the

equation set (3) for the interior. Similarly to Kroll
(1982), we find
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P — RATh = Pe'rhgitkxtrz—on) (16)
where p? = k?R?/(w® — f?) and w is the frequency in
the interior. We are assuming that A(?) is essentially
constant except for the matching at the interface z
= —h(t) = —(hy + hit) where i, € 1 and constant. (To
lowest order for this matching, the mixed layer can be
assumed to be independent of z.) Then (16) at the
interface becomes

p- — RATH = Pe*x-itethw) 17

So for the frequencies in the mixed layer and interior
to match, we must have

wm = w + A (18)

Usin;_lg (16) in the set (3) and evaluating at z
(1), we find

i = wkP/(«® — f?), .= —ikfP/(e® —[?),
W. = —wuP/R?> and T_=iuP/R. (19)
Contmulty of pressure implies
= P+ RATh. (20)

Eliminating g, , #i-,D_, w_and T_, Egs. (13) through
(15) constitute a system of six equations and six un-
knowns, #,, 9,, b, H, T and P, whose determinant set
to zero is the eigenvalue equation for w. What we call
the externally dominant solution is the solution of Part
I which has trivial solutions for H and T for &, =
which is now modified for A, > 0. The internally dom:
inant solution mentioned earlier is not trivial for H
and 7. In the next two sections we will discuss these
two classes.

We have not systematically investigated the effects
of heating, so we will assume bQ, = 0 in what follows.
From limited calculations, it appears that heating is
most important in how it affects A T in the steady state
with surface cooling (heating), producing a decrease
(increase) in AT, being destabilizing (stabilizing). -

4. Kinematics of the deepening interface

Before proceeding to specific solutions, equation (18)
bears further examination. It represents a Doppler effect
type of frequency variation due to a moving source.
However, the behavior is not that of simple plane waves
since inertio-gravity waves have their own unique
character. Let us consider again (18), substituting for
M

m = + hkR(w? — f?)7'/? (21)

where w and w,, are complex in general. Figure 1 rep-
resents the mapping between the complex w and com-
plex w,, planes for Re(w), Re(w,,) = 0, using the correct
branch of the radical to ensure downward radiation.
(We have symmetry about the imaginary axes for
Re(w), Re(wp,) <0.) On the w-plane the region outside
ACBA and the region inside ACBA each map onto the
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FIG. 1. The mapping between the complex-w (left) and complex-
wp, (right) planes from Eq. (21). The region outside (inside) ACBA
on the w-plane maps onto sheet (a) (sheet (b)) of the w,-plane.
Corresponding mapped areas have the same shading. Outside (inside)
ACBA (¢, — hy) is >0 (<0) and is 0 on the boundary ACB.

entire w,, half-plane with the former mapped onto sheet
(a) and the latter onto sheet (b). The point C is the
critical point of the mapping where dw,,/dw = 0, which
yields from (21), (w? — f2)*?/wkR = h,. For real v,
the left side of this equation is the dimensionless
downward verticgl group speed, c,,. Furthermore, we
can show ¢, = h, on the curves AC and BC [using

= (downward energy flux)/(total energy density)
= 2Re(wu) lw? = f2]2/RY*A(Jw| 2+ f2+ |&? = f3])
for complex w] and ¢, — A, > 0 outside ACBA and
<0 inside ACBA.

The imaginary parts, Im(w) = w; and Im(w,,)
= w,,,, are of particular interest. Solutions associated
with sheet (a) on the w,-plane must have ¢, > A, and
both w,,, and w; = 0 or both w,,; and w; < 0. The system
is clearly unstable for the former and stable for the
latter (or neutral for equalities). Solutions associated
with sheet (b) on the w,,-plane must have c,, < A, and
Wy, 2 0, w; < 0 or w,; <0, w; = 0. The interpretation
of this case is not as clear.

For w,, > 0 and w; < 0, one could visualize the
amplitude in the mixed layer growing while that in the
interior was stable for sufficiently rapid deepening. On
the other hand for w,, < 0 and w; > 0, we argue that
the system is stable, even though w; > 0, because the
energy source is in the mixed layer and the motion is
stable there with no energy leaving the interface into
the interior. This situation is realizable if we have a
downward advecting stable field fixed with respect to
the downward moving boundary. If the field decreases
with depth [Im(u) < 0], then w; = wp, — A, Im(u)
could be positive even though the system is stable. An
observer at a fixed point z would see the amplitude of
the field increase but only until the interface reached
that point.
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5. Specific solutions

a. Externally dominant class

We assume Din (11) is O(l) so that T(and H) are
O(%;). We want to see how increasing %, affects our
long and short wavelength instabilities of Part 1. We
want conditions where both instabilities are present,
but we cannot consider AT = 0 as we did there since
it violates (5). To have #, < 1 and to be also consistent
with the model, we should have AAT — |ii| %> 0 from
(5), but we will relax this constraint to examine the
tendencies of the solutions. We choose points on Fig.
7 of Part I for AT = 0.1 where w = (0.986, 0.006) for
the long-wave and w = (2.10, —0.27) (off the graph)
for the short-wave instability. We solve the system of
equations (13) through (15) [assuming AAT — |u|?
~ hAT in (13d)] and obtain Fig. 2 showing the effect
of increasing ;.

Based on our analysis and discussion of Fig. 1, we
assume our system is unstable only if w,, > 0. So we
have plotted w,,, versus A,. For the short wave curve,
w; and w,,, have the same sign so that where this curve
crosses the h,-axis the solution is crossing the Re(w)
axis on Fig. 1 for Re(w) > C. For the long-wave curve,
where the curve crosses the #,-axis the sign of w; re-
mains positive and on Fig. 1 the solution is crossing
the curve AC. Clearly the long instability tends to be
stabilized and the short one destabilized by increasing
h, which seems to be true in general.

In addition to our modified long- and short-wave
solutions there is a solution that exists only for 4, > 0,
which is not shown. It corresponds to the case on Fig.
1 where w,, > 0 and w; < 0 with c,, always <#A,. An
analysis of the reflection problem, where w and w,, are
real, indicates that the solution corresponding to this
case has zero amplitude. So for the initial value problem
associated with this stability problem, such an insta-
bility may not be significant. At any rate we will not
analyze this solution in any detail since we are primarily
interested in the propagation of waves into the interior
at this time.

An examination of the terms of the eigenvalue
equation as #, is increased reveals that the purely ki-
nematic effect of the moving interface seems the most
important; i.c., Eq. (18). Even for A, small, w,, can
differ greatly from w because p is large for near-inertial
motion ( oo for exactly inertial) or for Rk large. Another
important effect is the interaction of the deepening and
the jump in the perturbation velocity across the inter-
face from the A, Au term in (1a). This term is of order
h(w?® — f%)"! which is order one or larger for near-
inertial motion. This term is important for the insta-
bility mentioned here that exists only for 4, > 0. The
terms resulting from the z-dependent part of the so-
lution seem to be less important.

As in Part I, the short-wave 1nstab111ty is strongly
stabilized by increasing AT, but so is the long-wave
instability which was not the case previously. This is
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FIG. 2. The imaginary part of the mixed layer frequency (w,,,) vs the deepening rate
(A,) for the short wave instability (solid curve) for = 92° and k = 4.0 and the long
wave instability (dashed curve) for § = 198° and k = 0.22 withR =% =2.0,AT = 0.1,
g =1.0,¢ =0.1, and E = 1.0. The complex frequency in the interior (w) is in paren-
theses.

illustrated on Fig. 3 where w,, is plotted versus A T for
h, fixed. Note that the portion of each curve where
wy, < 0 is stable even though w; > 0 because the vertical
group speed is less than the deepening rate as previously
explained. The little peak in the short wave curve is
stable in the interior (w; < 0) but unstable in the mixed
layer (,,, > 0). Thus the mixed layer would be unstable
but not radiate waves, The path of this loop can be
traced on Fig. | where it goes through C at w = (1.27,
0.0), dips below the Re(w) axis and recrosses that axis
between D and C at w = (1.30, 0.0).___

For a realistic temperature jump, AT =~ 0.5%, Fig.
3 indicates that no instability would be expected. We
can have the short wave instability if we relax AT as
illustrated in (8, k) space on Fig. 4 for AT = 0.2. The
interior is unstable with a group speed greater than the
deepening rate only in the small area shown which is
also the only region where w,, > 0. This region dis-
appears quickly with increasing AT. In this case
(RAT — || %) is small and &, would be unrealistically
large unless there were significant surface cooling [see
(8c) of Part I]. We thus conclude that within the region
of applicability of the model, for the canonical values
of the parameters, unstable waves are unlikely for a

deepening mixed layer. (The canonical values are
AT =10,R=h=20, h,-oos g =01,0=10
and E = 1.0, based on 7° /p0=2cm s72, N_/fo— 200,
fo = 1045 , Ky=10cm?s™!, K, = 102 cm? s",

= 1kmand C =05 X 10" 3)

However if we assume K}, is two orders of magni-
tude greater, i.e., O(10® cm? s™') rather than O(10¢
cm?s™!), we can obtain realistic results. Figure 5 shows
how w,, actually increases for increasing o = Ky/foL?.
As before, the group speed is greater than the deepening
rate only for w,, > 0. So only that portion of the curve
above zero is unstable. If we start at the point on this
figure where ¢ = 100 and decrease h,, we obtain the
curve on Fig. 6. If we take the point on that curve
where £, = 0 and decrease o continuously to 1.0 and
AT to 0.0, we obtain a point on Fig. 2 of Part I for the
short-wave instability. So the solution we are consid-
ering is a continuation of the short-wave instability for
increasing o, AT and A,.

The origin of this instability can be seen by going
back to Eqgs. (13) through (20). If we let ¢ become
large, which means a, 9@ and g become large, then
from (13a, b, ¢) i,, ¢, and T become small. The H
from (13d) will be O(%,), assuming b = 0, and the
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FIG. 3. w,, vs the temperature jump (A T) for the short-wave instability (solid curve)
for # = 111° and k = 3.55 and the long wave instability (dashed curve) for § = 168°
andk=0.12withR=h =20,k =005 ¢ =10,5 = 0.1, E = 1.0, and complex «

in parentheses.

basic balance is given by the pair of Egs. (14)and (15),
from conditions at the interface. If we assume A, = b
= 0 and that &, is negligible, these equations yield the
neutrally stable solution w,, = w = kRil. If we assume
h,> 0 onlyin (18), that is, consider only the kinematic
effect of the deepening interface, we have w, = w
+ hu = kRii, which after substituting for u becomes

(w — kRI)(? — f2)V2 = —kRh,. (22)

Ifweletk=10,R=20h=20andb=x/2
so that kRiZ = 1.0 = f and A, = 0.05, we obtain (w?
—f%)?/3 = 0.1 which has a solution w = 0.89 + 0.19/
and w,, = 1. The solution from the whole system for
these parameters for ¢ = 1000.0 is w = 0.91 + 0.19{
and w,, = 0.89 + 0.052i. So the kinematic effect of the
deepening is most important although the additional
terms are necessary to make w,,, > 0 and hence the
system unstable. The instability is a class A instability
like the unmodified (4, = 0) version as described in
Part I which is destabilized by increasing friction.

This instability is of special interest because it exists
for realistic values of AT = 0.5% for 2 = 2.0. This is
shown on Fig. 7 where again the system is unstable
only for w,, > 0. It is a short wavelength instability
(~3 km) which is definitely realizable if K can be as
large as 10® cm?s™!. As mentioned in Part I, we used

cm*©s

the value of 106 cm? s~ of Brown and Owens (1982)
for mesoscale in the interior which is the same value
from Okubo and Ozmidov (1970) for a 100 km scale.
One would expect a larger value for being in the mixed
layer on the one hand but a smaller value for being a
scale smaller than mesoscale on the other. So 10° cm?

s ! seems most reasonable, but in fact we do not know
the most realistic value.

b. Internally dominant class

These solutions are a modification of the strongly
stable internal solutions found in Kroll (1982). The
basic system consists of Eqs. (6a, b) and (13¢, d) with
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FIG. 4. The neutral contour of the mixed layer frequency (wpm,
=0)in (8, k) space for R=h =20,k =0.1,AT = 0.2, ¢ = 1.0,
o =0.2, and E = 1. At the point (X), wp, is a maximum with w,
=(2.26,0.025), w = (1.54, 0.13) and the dimensional vertical group
speed minus the deepening rate is 0.0244, /.

b = h, = 0, a self-contained system within the mixed
layer independent of the interior. For a nontrivial so-
lution for H and T in (13c, d) we must have

iq + 2AT[cosd( U(0) — { Up)) + sinf(¥,(0)
—V2)V/IR(BAT - [3])] =0 (23)

4r
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where (U>(0), ¥2(0)) from (8) and ({U,), {(¥»)) from
(12) are from the solution of (6a, b).

This is the basic eigenvalue equation for this class.
It actually has meaning only as a mathematical limit
when we let A, go to zero since any finite perturbation
of A would produce unmixing and detraining which is
not allowed. Thus, for physical meaning for the solu-
tion we must have 4, > 0. Nonlinear effects may be
important in every case but most especially in this case
where, if a finite value of A, + H, is negative, the whole
form of the equations change to prevent unmixing and
detraining. Thus the realistic system for linear stability
has the form of (23), modified by complicated terms
of O(%,) and O(b) through which the interior enters
the problem and the system radiates waves.

Let us consider special cases for (23). If E - oo,
we can show that ¢ = 0 and w = kRl — iok which is
quite stable. If E — 0, there is one possible unstable
root derived from the equation

iqg(g* — f*) — K(g cosd + ifsing) = 0, (24)

where K = Z\_TkR/(th‘ —|a|?). For § = =, we can
show that w = (f2 + iK)'/? — igk? and the imaginary
part is given by

w; = {0.5[(1 + K*/f*)'2 ~1]}'2 — ok?. " (25)

So w; decreases linearly with ¢ and is a maximum at
some k for given values of the parameters.

The system also becomes more stable for increasing
E as shown on Fig. 8 derived from (23) with o fixed
at 0.1. For nominally realistic values of K, = 102 cm?

1.21,.
(118, 26) (1.20,.27) (1.21,.28)

(1.07,.17)

(1.00,.10})

(.98,.04)

1 1 i i

e i N ) - 1

0o 20 40

J
100

o

FIG. 5. w, vs the horizontal Ekman number (o) for 8 = 126°, k= R=h = 2.0, AT = 1.0,
k =0.1,5 = 0.1, E = 1.0, and complex w in parentheses.
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FIG. 6. wp, vs the deepening rate (%) for 8 = 126°, k =2.0,R = h =20, AT = 1.0, ¢ = 100.0,
"5 =02, E = 1.0, and complex w in parentheses.

s~! and Ky = 10% cm? s™! where ¢ = E = 1.0, the
system never becomes unstable. So for instability in
this case, friction must be limited. Figure 9, for ¢ = 0.1
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FIG. 7. The maximum value in (8, k) space of w,, vs the depth
(h)for R =2.0,h, =0.5/k? T=0.5h, ¢ = 1000, 5 = 0.2, and E
= 1.0. # is approximately 128° for all values. Complex w is in the
parentheses on the right and the dimensional wavelength in km is
on the left.

(Kg = 10°cm?s ') and E = 0.5 (K, = 50 cm?s7"),
shows the contours of w; in (8, k) space derived from
(23). The most unstable wave has a relatively short
wavelength (~5 km) with a complex frequency w
= (1.47, 0.053) at an angle of 132°. It can be shown
from (23) that there exists also an infinite set of stable
roots.

So far we have considered only (23) derived for h,
= 0. For h, > 0 we must include the complicated

FIG. 8. w; = wp, vs the vertical Ekman number (E) for R = k
=20,AT =10,k =00,0=132°k=12,06=0.1,5 =00, and
real w in parentheses.
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FiG. 9. Contours of w; = w,, in (6, k) space for R = h = 2.0, AT
=10,k =00,0=0.1,5 = 0.0, E = 0.5, and real w in parentheses.
w; is a maximum at the point (X) where 8 = 132°, k = 1.2, and w
=(1.47,0.053).

O(h,) terms, in effect solving the system (13) through
(20). Figure 10 shows the effect of increasing 4, from
zero. Though w; increases, w,, decreases with A, and,
as previously, the vertical group speed becomes less
than the deepening rate at the same point where w,,,
becomes negative which we again assume implies sta-
bility for the system. Figure 11 shows the variation of

.06 r

04

.02

JOHN KROLL

985

the maximum values of w,,, in (8, k) space with deep-
ening 4 for AT and k, varying realistically with 4. In
this case the system actually becomes more unstable
with increasing % over a certain domain, reaching a
maximum, then decreasing as in all the previous cases,
here and in Part L.

The salient feature of this internal instability is that
it arises essentially within the mixed layer. Thus the
magnitude of AT is of little consequence unlike the
external class of instabilities. There is no problem in
having an instability for a realistic value of A T}, how-
ever, it appears that friction must be relatively small,
ie., Ky~ 10° cm?s™! and K, =~ 50 cm?s™'. If con-
ditions for an instability do exist, it has a relatively
short wavelength (~35 km ) and relatively strong mag-
nitude (w.,, ~ 0.05, an increase by e in 2.3 days).

6. Summary and conclusions

Clearly this system can become unstable and in var-
ious ways, It is still not clear, however, if it becomes
unstable for realistic ocean conditions. The long-wave
instability of Part I, which seemed likely to occur for
a nondeepening mixed layer, does not seem as likely
with deepening. Moreover, even if it occurs, it seems
too weak to be significant. The short-wave instability
of Part I, which seemed unlikely for nondeepening,
seems more possible with deepening for sufficiently
large horizontal friction. Paradoxically, there is a dif-
ferent sort of short wavelength instability (internal
class) associated with deepening that is possible for suf-
ficiently small friction.
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FIG. 10. wm vs B for R=h =20, AT = 1.0,6 = 132°, k= 1.2, ¢ = 0.1, 5 = 0.0,
E = 0.5, and complex w in parentheses.
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F1G. 11. The maximum value in (8, k) space of wy, vs hfor R=120,h =0.5/R* AT
=0.5h, ¢ =0.1,5 = 0.0, E = 0.5, where complex w is in parentheses and the dlmenswnal
wavelength in km and the angle 6 are under the curve.

The model and the linear stability analysis have def-
inite limitations. It is a simple model even though the
analysis becomes quite complicated. The nature of the
solutions is such that the question of stability often
seems to depend on the accumulation of many rela-
tively small terms which depend on quantities such as
the structure of the steady state velocity and temper-
ature which are not modeled with any precision in the
mixed layer or the interior. The analytical method is
limited in that deepening and steady oscillations cannot
be considered simultaneously and the transient nature
of the mixed layer can only be rather simply approx-
imated. Finally, the use of a linear stability analysis is
in itself limited since nonlinear terms quite likely are
as important as other secondary effects. Clearly, a nu-
merical model would be necessary to address the fore-
going limitations of the present model. Results from
this study should be quite useful in constructing such
a model and interpreting its results.
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