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Instability of a Mixed Layer Model and the Generation of Near-Inertial Motion.
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ABSTRACT

The stability of Niiler’s model of a deepening mixed layer was investigated assuming the deepening rate was
negligible. Two basically different instability mechanisms appeared. One is a mixture of a Kelvin-Helmholtz
type and parallel flow viscous type with a relatively small horizontal wavelength [O(1 km)]. The other depends
on the perturbation of the bulk stress and is related to the inflection point type of instability of an inviscid shear
model with a relatively long horizontal wavelength [O(10 km)]. The former instability has its most unstable
wave directed generally in the direction of the mean flow, while for the latter, it generally is perpendicular to
the mean flow and opposite the wind. Each is likely to produce near-inertial motion. Though the former is
potentially stronger than the latter, it is also less likely to occur for usual oceanic conditions.

1. Introduction

There are at least three ways in which the surface
can be a local source of downward propagating, near-
inertial motion. One way, described by this author
(Kroll 1975), is through the Ekman pumping produced
by the curl of the wind stress at the surface. This seems
to be significant only for unusually strong wind curls.

A second way is shown by Stern (1977) and this
author (Kroll 1982) using differing models, to be a
large-scale (horizontal scale much larger than mixed
layer depth and the scale of turbulence) instability of
the mixed layer. This could produce downward prop-
agating near-inertial motion independent of the scale
of the wind. This instability is closely related to the
overreflection of near-inertial waves from the mixed
layer (Stern 1977; Kamachi and Grimshaw 1984). A
third way is the interaction of near-inertial waves with
a geostrophic shear flow near the surface, either as an
instability or overreflection (Tai 1981; Weller 1985;
Kunze 1985). The fact that the scale of inertial motion
beneath the mixed layer often seems to have no relation
to the wind scale (Sanford 1975; Pollard 1980; Pinkel
1983; D’Asaro and Perkins 1984 ) suggests that the lat-
ter two ways should be important.

In this paper we will consider again the second way.
The previous model of this author and the model used
by both Stern (1977) and Kamachi and Grimshaw
(1984) radically differ. They considered an inviscid
vertical shear flow at the surface, continuous in velocity
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and density. My model was two layer and viscous with
discontinuities in velocity and density at the mixed
layer depth. The most marked difference was the result
that my model predicted the most unstable wave in
the direction of the mean flow in the mixed layer while
theirs was at right angles.

In fact neither model adequately describes a real
mixed layer. Hence, we will consider the stability of
an actual mixed layer deepening model. We choose
that of Niiler (1975), including the extension made by
deSzoeke (1980).

We derive the general system of equations that per-
tain to the problem but consider only the special case
for negligible deepening of the mixed layer in this paper.
We will deal with the deepening in a subsequent paper.
Also in a later paper we will deal with the reflection
problem. The previous two papers by this author, Kroll
(1982, 1984) are cited extensively, so they will be de-
noted by (I) and (II) respectively.

2. The model

As in deSzoeke, we consider a mixed layer, as illus-
trated in Fig. 1, with a transition layer of thickness 26
< h separating the turbulent upper layer from the in-
viscid interior. We are interested in horizontal scales
(L) much greater than the mixed layer depth (/) and
the scale of turbulent motions in the mixed layer. We
assume that our relatively large-scale perturbations will
not interact with the turbulence so that results from
our model will be of a different character, the result of
a different mechanism, other than the radiation de-
scribed by Bell (1978).

The equations in the mixed layer, following de-
Szoeke, for mean (i.e., ensemble averaged over tur-
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FG. 1. The model mixed layer.

bulent states) momentum, temperature, turbulent ki-
netic energy and mass are

1
w+u-Vao+wu, +/kXn=——
Po

1
XVp+—r,+H,., (la)
Po _

(1b)
(1c)

poagT= Dz,
T,+u- VT + wl,=Q, + Hy,

i 1
e +u-Ve+ wez=Fz+p—t-uz— agQ— e+ H,,
0
(1d)
(1e)

where V is the horizontal gradient operator; u the hor-
izontal velocity; w the vertical velocity; p pressure; T
temperature; py is the reference density. The turbulent
vertical fluxes of momentum, heat, and energy are

Viu+w, =0,

= —po'w', Q=-wT and
D1
F=- ’(—+—u’ u’) ;
po 2
e= % u'-u,

where ¢ is viscous dissipation, and « is the coeflicient
of thermal expansion, where turbulent quantities are
primed and the overbar indicates an ensemble average.
H,., H, and H, are the horizontal gradients of corre-
lations of turbulent quantities. We are assuming hy-
drostatic balance since we assume 2/L < 1.

Niiler makes empirical assumptions for r, Q and F
to close the system. He assumes r and Q are linearly
distributed within the mixed layer. This we do, but
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also add eddy viscosity terms to deal with z-dependence
for the perturbations. Hence we assume

=1+ % (% — 7.) + poK,u, (2a)

0=Q+3(Q-0)+KT:  (2b)
where subscripts 0 and + mean evaluation at the sur-
face and at the top of the transition layer, respectively.
In addition, we assume that H,, and H}, are given by
semi-empirical expressions KyV?u and K%V2T, re-
spectively. In some instances we add a mean-square
drag term —Cp|u|uto H,,. We include horizontal eddy
viscosity to deal with short wavelengths and mean-
square drag to deal with long wavelengths. H, can also
be expressed in a similar manner, but eventually will
be neglected.

We integrate (le) across the transition layer (re-
membering & = h(x, y, t)), let 8 = 0 and find that
Vh-u + wis conserved across the layer. This means

(h+u-Va+wy,=(h+u-Va+w)_=H (3a)

where subscript (—) represents the value at the bottom
of the transition layer. Integrating (1a) and (1c) simi-
larly yields for H = 0

Ar_ HAu and (3b)
- Po
AQ = HAT 3c)

where A( ) = ( )+ — ( )-is a jump of quantity
() across the transition layer. For H < 0, we assume
no unmixing or detraining implying Ar = AQ = 0.
Layer dissipation terms would also appear but have
been neglected since they will eventually involve only
products of perturbed quantities.

We should note that in deriving ( 3a, b, ¢) we let the

limit of
—h+
f udz
~h=b

and other similar integrals vanish as § —> 0 since we
have a viscous fluid. For the inviscid shear model of
Stern these limits do not vanish for a slab flow (a step
function for the steady state mixed layer flow). Thus,
how we treat these limits is important. In our model
the effect of the wu, term of the momentum equation
in the transition layer, important for an inflection point
instability in the inviscid shear model, is suppressed.
Thus we might expect no inflection point instability,
but we will see we actually do obtain a related instability

.similar to it.

We integrate (1d) across the transition layer and then
from the top of transition layer to surface and add the
results to obtain:
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0 —h+d 1 N h N_ agQO
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J;h+6 edz ag[ —~h—8 de —h+8 Q z] Po 7 fo CD B Lfo ’ ui -

0

—h+d 0
X [f r-u.dz + f t-uzdz] + H.dz.
—h-b —h+8 —h—8

)
We now nondimensionalize, letting (x, y) = L(x',
V), z = hez', t = fo't', h = hyh', T = Th, T, p

= POfOUOLI?I; (u’ U) = UO(u,’ vl)’ w
=77, and Q = Q°Q’, where

N_? dT. 2\!/?
“ae e (5)

= (he/ L) UpW', 7

Un
VN1,

Here 7° is the magnitude of the surface stress and Q°
is the maximum magnitude of the heat flux. We assume
that before mixed layer deepening the temperature near
the surface is linear in z so that buoyancy frequency,
N_, just beneath the mixed layer, remains constant.
Pressure is nondimensionalized in a different manner
from deSzoeke to make an O(1) term.

We assume that the perturbation wave does not vary
in the y-direction and that r, makes an angle  coun-
terclockwise with the positive x-axis. Then derivatives
in y can be neglected. Using (2) and (3)in (la, 1b, lc,
le) and (4) we get the dimensionless equations de-
scribing the mixed layer (dropping primes on dimen-
sionless quantities):

hy = U0=To/f0h*P0-

1
llz+Rullx+RWllz+kqu=—-pxi+IhQ—ZHAu

+ Eu,, + auxx—% fuju (52)

B_Z
P:—TT (5b)
T, + RuT, + RwT; = % {bQy — HAT}
+ 0T + ET,, (5¢)
Fy
—[hAT—IAuIz]H—th2 bh(Q0+Q)
0 0
+ . 2 —

J:ht w.dz — fhfoUo dz+ Au-1_ (5d)
u,+w, =0 (5e)

where the Ekman numbers E and o, the drag coefficient
7, the Rossby number R, the Burger number B_?, and
the heating coefficient b are given by

and /' = 1. The F and ¢ remain dimensional. The in-
terface term, H, is given by (3a). Actually, with the
parameterization used, B = R, but we maintain them
as separate entities to compare more easily with results
from (1) and (II).

The left side of (4) has been neglected under the
assumption that e/ Uy? and its derivatives in x and ¢
are negligible. The e term in H, is negligible for the
same reason, while other terms in H, are negligible
because #/L < 1 or will be products of perturbed
quantities. The integrals of ¢ and Q across the thin
transition layer in Eq. (4) are assumed negligible com-
pared to those across the mixed layer. The variation
of € with depth may not be important for the mean
flow, but it may be for the perturbation. So, from Al-
exander and Kim (1976), we use the empirical relations
(z-dimensional )

e(z) = ey + npBuie? and Fy = ngul (6)
where
e~ 2X 104 cm? s73,
np =~ 1.25, ng~ 2.5.

We then show (#-dimensional )

8 ~ 0.05 m_l,

0
D= fh edz = npui(l — e") + eyh. @)

3. Perturbation of the model

Consider now a perturbation of the mixed layer sys-
tem, letting ( ) = ( ) + ( )". For the unperturbed or
mean system we obtain

i() - Aﬁh[ _

B+ kX = T %Iﬁlﬁ (8a)
= 1 (600~ ATH} (8b)
1 - - -
LIRAT - | AR|21K, = thleo - b]
- %bion+Aﬁ-i.. (8¢c)

Solutions to these equations will be independent of z
with w = 0. The interior is assumed motionless and
nondiffusive, so ¥. = - = 0, which implies AT =1,
and Au = u, = i, and (d7T/dz) = 1 near the mixed
layer in the interior.

The perturbation equations for the mixed layer are
(dropping primes on perturbed variables):
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ll,+Rﬂllx+klel=—pxi‘—';ih—z[i'o-iltl-l]

ﬁ o
-3 —hﬁ,Au+auxx+Euzz—ﬁ
[ ﬁ—%lﬁlﬁ] (9a)
pz=—R—T (9b)
- —h = 1
T,+RuTx=72—[bQo-—ATE,]—Z

X {ATh,+ ATH} + 6Ty + ET,, (9¢)

%[EAT— |ﬁ|2]H+%‘[7iAT'+ ATh — 2ii- Au)
_—he(=h) 1 _J“’_
=~ 3000k~ | F-udz and (9d)

U+ w, =0 (9¢)

where H = h, + R(ith, + w). from (3a) and where
e(—h) is from (6). We assumed perturbations of the
net flux Fy — F_ are negligible.

The perturbation equations for the interior are the
same as in (I) and (II), but with the different scaling:

2
u+kfXu= —-(px— % AT‘hx)i, (10a)

B_Z
P:= %" T, QOb)
2
T, + (B(Z)) Rw=0 (10c)
B_
Uy + w; = 0. (10d)

where B(z) = (hy/L)(N(2)/fo) and the buoyancy
frequency, N(z), can be allowed to decrease realistically
with z as in (I). However, in this paper we will assume
N(z) = N_, a constant.

The boundary conditions which must be satisfied
for the perturbation system areatz = 01w, = T, = w
=0 and at z = —hA(t): p and #h, + w continuous, (and
u, = T, = 0 for the mixed layer only). For a stability
analysis we need, in addition, the radiation condition
‘that there is not energy coming from z = —o0.

These unperturbed and perturbed systems of equa-
tions and their boundary conditions constitute the sys-
tem we want to solve. According to Niiler (1975), after
about the first half-pendulum day, 4 is approximately
2 and the deepening is relatively slow thereafter, i.e.,
h, < 1. This suggests that we may consider % constant
relative to the time scale of oscillations for 2 2 2. If
h,, b and e(—h) are assumed negligible, one solution
in the mixed layer has 7 = H = 0 and u independent
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of z. Hence, the conditions at z = —} are the kinematic

" conditions for an interface between two fluids of dif-

fering density, [A, + R(uh, + w)]+ = [h, + Rw]_ = 0.
Thus, the system evolves into the two-layer system
which is almost exactly the same as the one we previ-
ously considered (I and II) except for the perturbation
of the bulk stress term, (#/%%)¥,, and the mean square
drag in (9a).

4. Mean flow solution

The complete mean system will not be solved ex-
actly, though certain parts will. Neglecting the drag
term, we can write Egs. (8a) and (8b) as

(hu), + kf X hii = 15(2)

(ZT ) = bOW(D)

(11)

(12)

NI—

where 1, and Q, are applied wind stress and heating at
the surface. The effect of the drag will be to attenuate
gradually the inertial oscillations. This attenuation
should not be important. We consider the flow of the
mixed layer only after it has reached a depth 4, and
so do not concern ourselves with satisfying any partic-
ular initial conditions. We then write a solution of (11)
in the form:

hi = (I; sinf + a cosft, :fm cosl — a sinft) , (13)
assuming 7, varies slowly in time if at all. The mag-
nitudes of 7o/f and a are usually comparable in the
ocean, but can possibly vary greatly relative to each
other.
Integrating (12) yields
RT = — 2 [R* = B*(0)] + h(0) T(0) + bf Qodt,
| (14)

where £(0) and 7(0) are initial depth and temperature.
Since 7T, = 1 before mixing, we find 7 =—h, assuming
T = 0 at z = 0, and obtain

h*(0)
h

AT = T-T_=§[7z+
h(O)T(O)

hf o dit ==
As§uming Qo = 0 and A(0) =

= 1.

As previously mentioned, in calculations by Niiler
(1975) for the mean system typically the mixed layer
deepens quickly over one inertial period to 4 =~ 2 and
then slows thereafter. So we will assume 4, negligible
and 7 2 2. This choice of & with our nondimension-
alization forces a state of realism absent from (I)
and (II).

(15)

0, we have simply AT
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5. Pertubation solution

The major dimensionless variables and parameters
are summarized in Table 1. If any of A;, Qp or ¢(—h)
are nonzero, the system is quite complicated with a

numerical solution required in general. If these param- /

eters are zero, then we can have a trivial solution for
T and H in (9¢) and (9d). We will call this an external
solution, since it depends strongly on the interior which
is external to the mixed layer. We can also have a non-
trivial solution which we will call an internal solution,
since it depends only on the internal structure of the
perturbation within the mixed layer, independent of
the interior.

The internal solution is a modification of a similar
set of solutions found in (I) which are always stable.
The modification here actually has physical meaning
only for 4, > 0, since &, = O infers that the perturbation
unmixes and detrains the mixed layer, violating (3).
So we will consider this internal solution when we sub-
sequently treat the 4, > O case. Hence, in this paper
we will consider only the case for 2, = Qy = e(—h) =0
and H = T = 0 from (9¢) and (9d).

a. Exclusion of a steady state oscillation

Let us consider first the case with no steady state
oscillations (a = 0). Following the usual stability anal-
ysis, as in (I), we assume a solution of the form
(")e™*~#t in the mixed layer and (" )e**“*Z in the

TABLE 1. Summary of major dimensionless parameters.

AT temperature jump across transition layer for the mean state

h Mz) Uy 70\12
B = , where b, = ——=, u (—~) and B®is a
L f’ W o
Burger number
hy N.
B_ _L! -f— where N_ = N at bottom of transition layer
0
R f—— is the Rossby number. Uy = 7%/foh1400
oL
g E is the horizontal Ekman number assumed the same for
heat

E P h2 is the vertical Ekman number assumed the same for
o

heat

b agQ’/uiN_, heating coeflicient

o N_Coplfo, a drag coefficient

h,  deepening rate

w  wave frequency (nondimensionalized by f5) = w, + iw;

k horizontal wavenumber nondimensionalized by L™!

u  vertical wavenumber = B_k/Vw? — f?

a parameter partitioning steady and oscillating components of
mean flow from Eq. (13)

6 angle between direction of the wind and direction of the

wave perturbation
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interior, where k, u are dimensionless horizontal and
vertical wavenumbers respectively and « the dimen-
sionless frequency. Solving (9a), (9b) and (9¢) for the
mixed layer, the equations (10) for the interior and
using the boundary conditions at z = 0 and the con-
tinuity conditions at z = —h, we obtain

ﬂ[(flfz — q1q2)(kRiI — w) + hk*B_q,AT — kI;TO

X (igy cosf + f sind) + h2 (142 sinf — f cosO)]

- lhsz_ g = 0,

S
(16a)

where

io .
@ = 4= J3 (1 +sin’%),
iE'TO 2
=g——5(1+ ),
®=q fhz (1 + cos“d)
fa=f55
W = BH/(? ~ )
and &7 = 7, sinf/fh from (13) for a = 0. The proper
root for u is determined by the radiation condition that

there be no energy coming from z - —0, i.e., Re(wp)
= 0 as in (I). If we set ¢ = 0, then this simplifies to

— 9 §in20, g = kRil — w — iok?,

u[(f2 — g*)(kRil — w) + hk?B_*gAT

kRTo
h

Equation (16b) is equivalent to the result in (I) [ Eq.
(7)] except for the perturbation of the stress term (last
term inside the brackets). We consider (16a) an equa-
tion for the eigenfrequency w = w, + iw; as a function
of the independent variables k and 6 and parameters
B_,R,h, AT, 0 andg. For our nondimensionalization,
7o = 1, B_ = R, and AT is actually a function of A
from (15), but it is convenient in our analysis to relax
these restrictions in some instances which will be ex-
plicitly stated. The objective is to determine under what
conditions we have instability, i.e., w; > 0.

We do not know the best value for K;;. Brown and
Owens (1982), investigating the interaction of internal
waves and mesoscale eddy motion found Ky ~ 10°
cm? s~!. This was not in the mixed layer where it very
well could be larger. But on the other hand, the shorter
wavelengths of interest here [O(1 km)] are consider-
ably less than mesoscale, so an estimate of 10 cm?2s™!
would seem as good as any. The assumption of Cp
~ O(1073) is used almost universally. Realistic nom-
inal values of our parameters are R = 2.0, ¢ = 1.0 and
o = 0.1, based on L = 1 km, 'ro/po =2cm?s™3, N_/
fo =200, Ky = 10cm?s™!' and Cp = 0.5 X 1073

} — ihk*B_%¢ = 0. (16b)
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which implies A, 1074571, Also A
=2and AT = 0 5h

We are interested in near-mertlal motion which is
defined to have a frequency within a few percent of f.
By this definition some of our results will not be near-
inertial. But in a broader sense they are. For example,
a wave packet directed poleward from a latitude of 20°
with w = 2, which is not near-inertial, will reach a
turning latitude at about 43° where it will be near-
inertial and have its amplitude increased (see Kroll
1975). Thus motion, which would not be considered
near-inertial at its source, ends up being near-inertial
and the generation of such motion is of interest here.

On Fig. 2 are plotted positive (unstable) contours
of w;in (8, k) space for R=h=2.0, AT =0.0, o = 1.0,
and ¢ = 0.1 using (16a). The figure clearly shows that
there are two centers of instability. The most unstable
wave for one is centered around 8 = 90° with w ~ 2.2
+ 0.1i and k = 4 which for our parameter values cor-
responds to a wavelength, A = 2w L/k, around 2 km.
The other is centered around 6 = 195° with w ~ 1.0
+0.07i and k = 0.2 which corresponds to a wavelength
around 30 km. We will call these instabilities the short-
wave and long-wave instabilities, respectively.

For the stability of the laminar Ekman layer, Lilly

~ 10 m for fo ~
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(1966) found two types of instability mechanisms, the
viscous parallel flow type and the inviscid inflection
point type. From (1) we determined that our short-
wave instability corresponded to the former type.
However, the possibility of the latter type in our model
has been suppressed in deriving the two layer model.
Yet surprisingly, we still have the instability whose
properties we can show are very similar to this latter
type which is also the type of Stern (1977) and Kamachi
and Grimshaw (1984 ). Let us look at each of our in-
stabilities.

The short-wave instability corresponds to the parallel
flow type and is the same as that investigated in (1) if
the stress perturbation is neglected. This neglect does
not change the basic features. The parameters « and
B, in that paper in terms of our present parameters are
given by B, = hB_and a = hATB_, with R there being
R/h in terms of the present definition of R.

In (I) our investigation showed that this instability
is not a continuation of the classical Kelvin~-Helmholtz
instability, that an increase in vertical radiation in-
creased the instability and, for the limiting case AT
=0and ¢ = 0, k > 2fh/R for instability. Recently
it was discovered that the character of this instability
is related to the work of Ostrovskiy and Tsimring
(1981). Their two-layer model is inviscid, nonrotating
and unbounded top and bottom, but the character of
the instability is similar in that an increase in vertical
radiation increases the instability which is not the case
for classical Kelvin-Helmholtz instability. To explain
this, they use the concept of negative energy which
states that any mechanism that removes energy from
the system can increase the negativeness of a mode
having negative energy leading to its instability.

~ Let us apply this concept to our instability. We use
Ostrovskiy and Tsimring, and especially the work of
Cairns (1979). On Fig. 3 we show the real part of w
versus k for two of the solutions of (16b) for 8 = 90°,
AT=6=0,B_.=2,R=h=1. Thecurvesmarked
1 and 2 are neutral modes. The portion of curve 1 for
k < 2 has a solution that grows with increasing depth.
This would be what is called a “leaky wave” by Os-
trovskiy and Tsimring. For ¢ > 0 it can be shown that
this mode is a stable, downward propagating wave.

The energy of a given mode is defined as the differ-
ence between the energy of the system with the mode
present and that of the mean system without the mode,
averaged over one horizontal wavelength. With respect
to the motionless interior the energy of mode (1) is
positive and of mode (2) positive for w < 0 and negative
for w > 0. The negative portion of mode (2) coalesces
with the positive mode (1) after k = 3 to form an un-
stable mode. Benjamin has classified this type a class
C instability, which is a Kelvin-Helmholtz type. (But
for our case it is not the classical Kelvin~Helmholtz
instability. )

There is another type of instability here. As o is in-
creased from 0, the portion of mode (1) for k > 2 be-
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FIG, 3. Real frequency, w,, vs horizontal wavenumber, k, for AT =0, B_ = 2,
R =1 and o = 0. The solid curves are neutral and the dashed unstable.

comes unstable. Cairns states that a mode with negative
energy calculated with respect to some frame of ref-
erence may be expected to become unstable by the
extraction of energy by a dissipation process. Mode (1)
is not negative with respect to the motionless interior,
but is negative for k > 2 calculated with respect to the
moving frame of the mean flow in the mixed layer.
This is called a class A instability by Benjamin.

For our system this latter type is important since the
magnitude of the instability is significant for small .

T T T T T

T

The instability will not continue growing forever with
increasing o, but it will reach a maximum for given
parameters and then decrease. Figure 4 for ¢ = 0.1
shows that these instability mechanisms merge to-
gether. Figure 5 shows the locus of the points of co-
alescence for the class C instability (dashed) for ¢ = 0
and the neutral curve (k= 2fh/k)for ¢ > Q0 and ¢ —>
0 of the class A instability (solid) in (R, k) space. It
shows that the class A is more unstable than the class
C in the sense that the critical value for R is less.

———

FIG. 4. As in Fig. 3, except ¢ = 0.1 and the solid curves are stable
and the dashed unstable.
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FIG. 5. Neutral stability curves with dashed for ¢ = 0 and
solid for ¢ > 0 but approaching 0.

In summary, the short-wave instability is similar to
the viscous parallel flow instability described by Lilly
for the laminar problem. It behaves like a merger of
class A and C instabilities as defined by Benjamin and
it is similar to the instability described by Ostrovskiy
and Tsimring.

The long-wave instability appears to be analogous
to the inflection point instability described by Lilly
(1966) for the laminar Ekman layer and by Stern
(1977) Kamachi and Grimshaw (1984 ) for an inviscid
rotating vertical shear model. But the mechanism is
not the same. The important wii, term in the vertical
shear model is suppressed in our viscous two layer
model, but the term (—4/h%2°) in (9a), produced by
the perturbation of the mixed layer depth in the stress
term, seems to play a similar role. We can show that
there is a relationship between these terms.

Consider the case where the surface stress is in the
negative x-direction (# = 180°) and (i, v) = [0,
(7o/ hpofo)1U(z + k) in dimensional terms where U(z
+ h) is the unit step function. If we were considering
an inviscid shear model, we would have from (1a),
eliminating v, the perturbation equation
17)

1 -
Uy + folu=— o P — fowb,.
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On the other hand, for our viscous system, we have
from (9a), eliminating v, and neglecting irrelevant
terms,

1 h
g + fou=——pu+ ——7'12 70 (18)
Po Po

So it is the comparison of the last terms of each of these
equations which is of interest. If we average the last

term of (17) over the mixed layer (integrating from
just beneath the mixed layer), we obtain

[ - rwaypaz =2 [ o

X 8(z + h)w(z)dz =

hpofo
“W( _;I)To
poh® ’

where §(z +.h) is the Dirac-delta function. Since
w(—h)" = —h,, equation (19) becomes h,7o/(poh?)
which is the same as the term in (18). Thus the effect
of the wii, term in the inviscid model, which would be
nonzero only in the transition layer, is distributed
throughout the mixed layer in our formulation of the
viscous problem in the form of a perturbation of the
vertical gradient of stress. Our long-wave instability is
then related to that of the inviscid shear model, but
results will not be exactly the same because of the dif-
fering assumptions in handling the limiting process in
the transition layer. Let us compare the results.

If we assume 6 = 180°, AT = ¢ = 0 in (16b), we
obtain

Vo? —f2= % [—iZkB_ + [—7:%23_2

(19)

h

Furthermore, choosing the + sign in (20) which will
give an unstable solution, we can show

2 p2 1 2
o

A7 (20201

where s = kB_2h*/Rr,. In dimensional terms this be-
comes

172 )
+4(lkRT°+hsz_2AT)] ] 20)

s = kN-*h*(7°/po) = kh®N_?/ foU°

where U°® = 7°/pofoh is the Ekman flow. If Im(w
—f%) > 0, the solution is unstable which 1mp11es in-
stability for s < (A/AT)'/2. For AT — 0 it is unstable

" for all k. From (18) we can show that for AT = 0, w;

is a maximum of ~0.22/h* at s ~ 1.95 implying k
~ 1.95/Rh> (setting B_ = R). For the conditions of
Fig. 2, R = h = 2, the above would give a maximum
of w; of about 0.013 at k =~ 0.12. This compares with
Fig. 2, where we have friction, which shows a maximum
around 0.0095 for k ~ 0.22.
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For a slab profile in the inviscid shear model, Stern
(1977) obtains, in dimensional terms, k = (2/x)U°f,/
h2N_? for neutral stability, and it can be shown to be
unstable for decreasing k. The balance here is the same
as above for our long-wave instability except s = 2/~
rather than 1.95. The forces involved are mean shear,
buoyancy and Coriolis where s can be written as a
product of AN_/U°, the ratio of buoyancy to mean
shear (the square root of a Richardson number), and
khN_/ f,, the ratio of buoyancy to Coriolis (the square
root of a Burger number). For the Stern model w; is a
maximum when s = 1/x, so for R = h = 2, it gives a
maximum w; = 0.001 for k = 1/7h*R ~ 0.018 in
dimensionless terms.

In summary, our long-wave instability depends on
a perturbation of the bulk stress, but it is related to and
behaves like the inviscid inflection point instability with
the same balance of forces. However, for comparable
parameters our model predicts a stronger instability at
a smaller wavelength than the other. Figure 6 shows
how the wavelength, A, and w; vary with N_/f, for
realistic parameters. Most realistically N_/ f, is between
100 and 200, so A between 25 and 30 km would be
expected.

Our two instabilities behave strikingly different as
AT is increased from zero. From results from (1) we

(o] 100

N/
fo

FIG. 6. The wavelength, A, (solid) and w; (dashed) vs N_/f, for
the long wave instability with s = 2.0, AT = 2.0, 0 = 0.0, Cp = 1073,
1%/00=2(cms™")? 0 =221°,a =0, and w, very close to 1, through-
out.
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can show that for no friction we must have AT
< 1/h3 for the existence of the short-wave instability.
For the conditions of Fig. 2, which includes friction,
we must have A7 < 0.032. On the other hand, for the
long-wave instability, we can show that we must have
k < 1/h>*RVAT for instability with no friction im-
plying instability always exists for finite A7. For the
conditions of Fig. 2, the long-wave instability eventually
does disappear but not until A7 = 1.5. Thus the con-
trast is that, though the short-wave instability is much
the stronger of the two for AT = 0, it is also much
more sensitive to the stabilizing effect of increasing A7,
disappearing quite quickly. For realistic deepening,
where AT =~ 0.5h, only the long-wave instability would
exist after the mixed layer reached its equilibrium of
h = 2. This contrast is illustrated on Fig. 7, starting at
the relative maximums of each instability at AT = 0
on Fig. 2 and increasing AT. (The results are for a
relative maximum for only AT = 0.)

b. Inclusion of steady-state oscillations

Let us now include inertial oscillations in the mean
flow by letting a # 0 in (13). We especially desire to
know how the instabilities on Fig. 2 behave for increas-
ing a and whether a parametric instability exists. In
the previous work of (II) essentially only the § = 90°
case was considered, conditions for the short wave.

As in (II), we use Floquet theory for the solution.
We assume the solution is a sum of inertial frequency
harmonics having the form

% (“) ei(nf—w)tﬂ‘kx
n

()= (22a)
in the mixed layer, and
( ) = 2 (”)neiu,,zei(nf—m)tﬁkx (22b)

—oC

in the interior where p,” = B_%k*/[(w — nf)* — f?].
Since h, = Qy = 0, we again have 7= H = 0 from (9¢)
and (9d). The solution follows similarly to our previous
work where we generate an infinite determinant which
must be suitably truncated to find numerical values
for w = w, + iw; in terms of the parameters. See (1I)
for the details.

Since we have a linear system with sinusoidally os-
cillating coeflicients, we might expect the possibility of
the existence of parametric instabilities. Our system is
complicated and does not reduce to Mathieu’s equa-
tion. In (II) it was thought a parametric instability ex-
isted because an instability was found to exist which
became more unstable when the parameter equivalent
to a was increased and which was not continuous with
the instability for a = 0. However, § was kept constant
at 90° in (II). In calculations made with varying 6, we
found that in every case examined the instability was
continuous in some connected region in (6, k) space
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FG. 7. w; vs AT for the short-wave instability (solid) with k = 4.0 and 8 = 92° and
the long-wave instability (dashed) with k = 0.22 and 8 = 198°. In each case # = R
=20,a=0,0=1and o = 0.1. The numbers in parentheses are values of w,.

for a increasing from 0 and became more stable for
increasing a if we assume 7o = V1 — a2 This assump-
tion for 7¢ implies that the kinetic energy in the mean
flow remains constant and a change in a changes the
partition of kinetic energy between the steady and os-
cillating parts. So we conclude that energy in the steady
mean is more effective in creating an instability, and
a parametric instability was not found.

Figure 8 illustrates how our instabilities in Flg. 2
decrease with increasing a for 7o = V1 — a?. The max-
imum instabilities do not remain at the same point in
(9, k) space as a increases. For example at a = 0.6, w;
for the short-wave instability is a maximum at § = 90°,
k = 4.6 where w = 1.14 + 0.054/ and w; for the long-
wave instability is a maximum at § = 192°, k = 0.18
where w = 0.993 + 0.0012i. However, the maximums
definitely decrease with increasing a. ( That w; vanishes
at about the same a in Fig. 8 for each is coincidental.)

On Fig. 8 we see that the frequency (w,) is not very
near-inertial for the short wave instability. However,
as g increases, the coefficient of the sum in (22) asso-
ciated with w, — f becomes dominant for the kinetic
energy density. For example, at a = 0.5 the dominant
term has a frequency of 0.93. In general, as a increases,

the dominant frequency of the energy density tends
toward near-inertial. The dominant frequency of the
energy flux does not, as explained in (II), since the
vertical group speed decreases as w, = f. This is illus-
trated on Fig. 9 where we see that near-inertial fre-
quency of 1.14 dominates the energy density but a fre--
quency of 3.14 dominates the flux.

The conditions for Fig. 9 are those of the maximum
of the short-wave instability at @ = 0.6. The figure is
similar to figures in (II). Frequencies for » < 0 pre-
dominate because the preferred direction of the most
unstable wave is that of the steady mean flow. When
there is no steady mean (a.= 1) the figure becomes
symmetric in # similar to Fig. 5 of (II). The long-wave
instability at a = 0.6 for the same parameters of Fig.
9 at conditions of maximum instability (v = 0.993
+ i0.0012 at # = 192°, k = 0.18) contrasts sharply with
the short wave. Only the near-inertial term (n = 0) is
significant for the energy density and only the near-
inertial and the first overtone (w = 1.993) are significant
for the flux.

This contrast seems to be general, based on other
calculations. The reason is that the long wave instability
is so weak. The implication of this is that the kind of
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FIG. 8. w; vs a for the short-wave instability (solid) with k = 4.0
and 6 = 92° and the long-wave instability (dashed) with k = 0.22
and 6 = 198°, Ineachcase s =R =2.0,AT=0,0=1.0,¢ =0.1,
and for this case 7o =V1 ~ a2 The numbers in parentheses are values
of w,.

near-inertial overtone phenomenon observed by Pinkel
and Titov (1973) could be caused by the short-wave
instability but not the long-wave instability.

We found that shifting the partition of energy in the
mixed layer into the oscillations stabilized both the
long and short wavelength instabilities. If instead we
add oscillations to a given steady mean flow, the long-
wave instability will still stabilize while the short one
will become more unstable. This is illustrated in Fig.
10. The instability for the short wave instability in-
creases almost explosively. However, if the energy were
added to the steady mean rather than as oscillations,
it would be €ven greater. So it still holds that energy
in the mean part is more destabilizing than energy in
the oscillating part.

Figure 7 shows how quickly the short-wave insta-
bility disappeared as AT increased. Since nominally
we have AT = 0.5h and the steady state system does
not approach equilibrium until 4 approaches 2, there
is a question whether the short-wave instability will
actually appear in nature. Figure 11 shows the variation
of w; with 4 for the relative maximum for each insta-
bility for realistic parametérs. It clearly shows that the
short-wave instability disappears when s approaches
2. The long-wave instability is realistic in wavelength
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(~20 km) and is inertial, but is quite weak for 4 ~ 2.
For w; ~ 0.005 we would have an increase in the am-
plitude by a factor of e in about 32 inertial periods. As
h decreases from 1.0, the relative maximum which is
the long-wave instability ceases to exist and the very
strong short-wave instability dominates.

The conditions for Fig. 11 would be called usual.
Hence it appears that under usual conditions the short
wave instability will not occur. How extreme must they
be for its occurrence? The most critical parameter is
AT.InFig. 12 welet AT = 0.1h, and decrease friction,
increase the wind, stratification and oscillations. The
short wave instability does exist here for 2 = 2, and it
disappears quickly as % increases past 2.1. Here AT is
a fifth of that used for Fig. 11. This may be possible if
there is significant surface cooling.

Pinkel (1983) has observed two groups of near-in-
ertial waves at the same time and place with a longer
(25 km) and shorter (8 km) wavelength. It is tempting
to believe that these are our two instabilities. However,
Weller (1985) believes that the scale and intensity of
the observations are due to interaction with a significant

-1

10 1 " )
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5

n

FiG. 9. The kinetic energy density, (+) and the ene ﬂux (x) for
inertial harmonics (n) for w = 1.137 + 0.054i, 7o = V1 —a%a=0.6,
R=h=20,AT=00,k=46,0=92°,¢6=10and o —01 The
values have been normalized by the value for n = 0. The frequency
corresponding to each n is w, — nf.
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. F1G. 10. w; vs a for the short-wave instability (solid) with k = 7.3,
# = 88° R =3and AT = 0.2, and for the long instability (dashed)
with k = 0.26, 6 = 221°, R = 1.4 and AT = 1.0. In each case
=20,0=0¢ =0.1and 7, = 1.0.

geostrophic shear current at the surface. Moreover, our
short wave instability seems too short, being closer to
1 km than 8 km.

The wavelength can be increased by increasing Ky
and increasing the a. It is possible for the steady state
oscillations to be significantly larger than the mean part.
Data of Pollard (1980), for example, indicate that a
could be as large as 3. On Fig. 13 we show the real and
imaginary parts of w at the point of maximum insta-
bility versus a for Kz = 10® cm? s~!. Here the wave-
length varies between 2 and 3 km and the angle between
83° and 89°. A jump in w, occurs on this figure when
a different relative maximum becomes the absolute
maximum.

7. Summary and conclusions

A stability analysis of the Niiler mixed layer model
yields two basic instabilities. One is a mixture of a Kel-
vin-Helmholtz type and a parallel flow viscous type
which has a relatively small horizontal wavelength, O(1
km), for realistic conditions and whose most unstable
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wave is directed approximately along the mean flow.
The second depends on the perturbation of the stress
but is shown to be related to the inflection point type
of instability. It has a relatively long horizontal wave-
length, O(10 km), for realistic conditions with its most
unstable wave directed approximately against the wind,
perpendicular to the mean flow. For each of the insta-
bilities the most unstable waves usually have a near-
inertial frequency for realistic conditions.

For realistic conditions, the long wavelength insta-
bility is much more likely to be present than the other
as exemplified by Fig. 11. This i$ because the short
wavelength instability is stabilized very quickly with
increasing temperature difference across the interface,
AT, which realistically increases for increasing mixed
layer depth. In contrast the long-wave instability is sta-
bilized to a much smaller degree, exemplified by Figs.
7 and 11. The wavelength for the long-wave instability
is consistent with observations (Sanford, Pinkel) with
magnitudes from 20 to 30 km for realistic conditions
as exemplified by Fig. 6. The instability is weak, how-
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FIG. 11. The maximum value of w; vs % for the short wave instab-
ility (solid) with 8 ~ 77° and the long wave instability (dashed) with
8 ~ 215°. For each case 7o = 1.0, AT =0.5h,a=10,R=10,0
= 1.0 and 7 = 0.1. The numbers above or to the right of the curves
are the values of w,; those below or to the left are the wavelength, A
in kilometers at the maximum.
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ever, with an increase by a factor e taking O(20) inertial
periods. In contrast, if the short-wave instability is
present, it is much stronger as exemplified by Fig. 12,
It seems possible that the short-wave instability can
exist for unusual and extreme conditions such as an
unusually strong steady-state flow or an unusually small
temperature jump or a combination.

The two instabilities also contrast sharply in how
they are affected by oscillations in the steady state. The
long-wave instability is stabilized by an increase in os-
cillations while the short-wave instability becomes
more unstable as exemplified by Fig. 10. However,
there is no evidence of a parametric instability in the
system. The short-wave instability produces strong
near-inertial harmonics consistent with the observa-
tions of Titov and Pinkel while the long one does not.
The basic conclusion of this analysis is that the char-
acteristics of the models of Stern (1977) and the one
of this author are both present in a more realistic model,
with the former being the more likely to be observed.
It is also noteworthy that this relatively simple model
is still sufficiently robust to contain both types.

In this analysis we have examined solely the case for
a fixed depth A with , = 0. In a subsequent paper we
will examine effects of deepening (/, > 0). We will see
that the two instabilities discussed here are modified
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FIG. 12. As in Fig. 11 except AT = 0.1h, a = 1.5,
R=20,0=0.1,5 =0.2.
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2.0

FIG. 13. The maximum value of w; (solid) and the value of «,
(dashed) at the maximum vsa for AT=02,h=20,70=10, ¢
= 1.0 and & = 0 for the short-wave instability. 83° < § < 89° through-
out. The numbers above the w; curve are wavelengths (kilometers)
at the maximum.

in important ways, and also that there are possibly im-
portant new instabilities generated.
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