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Abstract

The paper reviews methods for quality assessment and intercomparison of ocean wave data.
The sampling variability for conventional time series recordings is summarized and compared to
less common area measuring measurements. The sampling variability affects the scatter seen in
simultaneous observations, and variability in excess of the sampling variability signifies real
differences between the instruments. Various means of intercomparing wave parameters and
spectra are discussed and two somewhat unconventional ways of deriving regression and
calibration relationships are also shown. The methods are illustrated using data from SCAWVEX,
focusing mainly on wave data from the HF radars and Directional Waveriders. q 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Ocean wave information is gathered with a variety of instruments for a multitude of
needs. Over the years, a standard for measuring wave data with conventional instru-
ments has evolved, and current recommendations for sampling and routine processing of

Ž .in-situ data have been published by Tucker 1993 . Remote sensing techniques are
Ž . wbeginning to be used operationally altimeter and experimentally Synthetic Aperture

Ž . xRadar SAR , X-band marine radar, and HF coastal radar . It is appropriate to both
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review standard intercomparison methods and to identify techniques that are most useful
in assessing the accuracy of these new types of data.

There is often a need for merging data obtained from different sources into unified
datasets for evaluation of wave climatology or for design criteria studies. Assessments,
intercomparisons and subsequent calibrations of the data are important parts of such a
process. Often, there are inherent instrument limitations due to the measurement
principle which show up in the frequency domain by spectral distortion, high or low
frequency cut-off, or in the time domain as, e.g., the horizontal motion of buoys giving
inferior profiling capabilities. The present paper discusses techniques for wave data
intercomparison with a focus on sea-state parameters and not on measurements of
individual wave properties. The processing from the recorded signal to the final wave
information may be quite complicated, e.g., for remote sensing techniques like the HF

Ž .radar Wyatt, 1990 , but even for conventional instruments like the subsurface pressure
cell, it has been demonstrated that the result may be considerably improved by proper

Ž .processing Wolf, 1997 . For spatial arrays, the analysis has to assume linear wave
theory and thus fails to record non-linear aspects of the waves.

With the ocean surface itself being a stochastic field, a certain sampling variability of
the estimated parameters is unavoidable. Knowing the sampling variability is essential
for assessing whether observed differences between the measurements are statistically
significant. The theory for the sampling variability will be briefly reviewed, including a
discussion of spatial vs. temporal measurements.

The paper continues with various ways of presenting data intercomparisons and
discusses methods for optimal regression which is typically needed when different data
sources are merged. The techniques are illustrated using data from SCAWVEX, in
particular, data from Directional Waveriders and HF radars.

2. General remarks

Intercomparison of wave data highlights the problems encountered in comparing any
dataset. The data are often collected from different kinds of instruments, using different
sampling strategies and different analysis procedures. The data may be available in the
form of directional spectra, or in the form of parameters derived from the spectra,
leading to the question of which parameters are best to use in the comparisons. Various
statistics must be chosen in an optimal way to illustrate the similarities and differences.
An important consideration is the significance or confidence limits which can be applied
to these statistics.

Some of the methods discussed for the intercomparison of wave model results with
observations are also relevant to intercomparison of different instruments. Willmott et al.
Ž .1985 discuss various difference measures such as root-mean-square error, mean
absolute error and index of agreement and apply the methodology to vector as well as
scalar data. A set of complementary difference measures is recommended and also the

Ž .‘bootstrap method’ of assessing confidence and significance. Zambresky 1989 pro-
Ž .vides a useful list of standard wave parameters and statistics. Guillaume 1990

recommends some redefined wave direction variables and finds the mean relative error
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to be more useful than a scatter index for comparison of significant wave height. She
also uses comparisons of frequency spectra between models and buoy data including
confidence limits obtained from the buoy data.

Generally speaking, measurements of ocean waves involve estimation of parameters
of random models. A central assumption about the random model is that it is stationary
or homogeneous — a property which is never strictly attained in practice. Even if there
are optimal spacertime windows in which the wave field is stationary and the
parameters can be estimated with maximal accuracy, no instrument existing today is
close to reaching such accuracy for common sea-state parameters like the significant
wave height.

Consider two wave instruments recording the same sea-states independently. The
basic task will often be to reveal any systematic differences between the instruments,
based on the actual measurements. Associated with each measurement, there are

Žindependent sampling errors; both instruments have in general systematic offsets e.g.,
.calibration errors depending on the sea-state, and there may be some temporal and

spatial offsets between the recordings. In addition, the underlying sea-states vary
according to a certain natural variability which is beyond our control. We are thus facing
several potential problems which have to be analysed and resolved properly:

Difference in measurement principles;
Inherent limitations of the measurement principles;
Systematic off-sets due to incomplete calibration;
Inherent and in general different sampling variability;
Temporal andror spatial offsets.
Different instruments have different applications and, as long as they are known,

inherent instrument limitations are not a problem. Whereas buoys are known to be
Žexcellent for measuring sea-state parameters, their surface profiling capability for crest

.height, wave skewness, etc. is less satisfactory. Subsurface instrumentation like the
current metersrpressure cells or bottom-mounted pressure transducers have limited high
frequency sensitivity simply due to the wave action attenuation with depth. Spatial
arrays are in many respects different from point measurements with a sensitivity that
may be dependent both on the frequency and direction of the incoming waves. Also, a
spatial array is essentially limited to wave lengths longer than its size. Another feature of
spatially extending instruments is that most analysis techniques need to assume linear
wave theory. Many remote sensing measurement techniques such as the Synthetic

Ž .Aperture Radar SAR suffer from a lack in basic understanding of the mechanisms. In
these cases, there are also limitations due to the resolution which determines the
minimum wavelength that can be observed at all.

A proper calibration of the instruments is essential for unbiased measurements as
Ž .discussed in Barstow et al., 1985 . When measuring waves with heaverpitchrroll

buoys, one typically has to consider several types of calibrations. The heave motion
itself has a resonance which is dependent on the geometry and weight of the buoy. For
medium-sized buoys, the resonance is above the main wave frequencies although some
resonant enhancement and phase shift may extend into the high frequency range of the
wave spectrum. On the contrary, the pitch and roll resonant motion is typically situated
at an important range of the wave spectrum. This motion, which can be approximately
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modelled as a harmonic oscillator driven by a random force, may be strongly out-of-phase
with the actual surface slope. In addition, electronic filters, e.g., integration of accelera-
tion measurements and anti-aliasing filters, are frequently involved. As long as the
response is linear, it is simple to make corrections by applying appropriate transfer
functions to the spectrum, but often, one encounters a non-linear response for which it is
very difficult to correct.

3. Wave parameters

3.1. Definitions

Linear stochastic wave theory is based on the concept of the directional waÕe
Ž .spectrum which may be expressed either as a wavenumber spectrum, C k , or a

Ž . Ž .frequencyrdirection spectrum S f D u , f . Here, f is the frequency, k the wavenum-
ber, u the direction of k, S is the frequency spectrum, and D the directional
distribution. The two forms of the spectrum are connected by the dispersion relation:

dk 2S f D u , f sC k f ,u k f , 2p f sgk f tanh k f h .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
d f

The directional distribution is, in general, dependent on frequency and may be
expressed as the Fourier series:

`1 1
D u , f s q a f cos nuqb f sin nu .� 4Ž . Ž . Ž .Ý n n2p p ns1

Ž .We refer to Tucker 1991 for a more detailed description of the stochastic wave
model and the sea-state parameters defined from the spectra.

Main sea-state parameters used in the following are defined in Table 1.

3.2. Sampling Õariability

ŽThe sampling theory for time series in the spectral domain is well-known see, e.g.,
.Brillinger, 1975; Tucker, 1991 . The periodogram, I, is the squared magnitude of the

discrete Fourier transform of the time series and, with smooth spectra and reasonably
short correlation times as in the present case, the Central Limit Theorem for discrete

Ž . Ž . 2Fourier transforms ensures that the periodogram values, I f , are scaled x -distrib-k
Ž .uted variables with 2 degrees of freedom DOF . Bias in the periodogram, often called

spectral leakage, is reduced by data tapering. In the following, we discuss estimates of
Ž .wave spectra and wave parameters. We shall use a caret ^ to signify an estimate, a, ofˆ

the parameter a.
Many of the sea-state parameters dependent on the frequency spectrum are derived

from the spectral moments, m , defined in Table 1. The estimates of the spectralr

moments, m , are sums over the periodogram for which it follows that expectation,ˆ r
Ž .E m fm , and the covariance:ˆ r r

`1
rqs 2 y2Cov m ,m s f S f d fqO N ,Ž . Ž .ˆ ˆŽ . Hr s T fs0
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Table 1
Main sea-state parameters

Name Symbol Definition
1r2 ` kŽ . Ž .Significant wave height Hm0 Hs Hm0s4m , m sH f S f d f0 k fs0

1r2Ž . Ž .Mean zero-crossing period Tm02 Tz Tm02s m rm0 2

Mean wave period Tm01 Tm01s m rm0 1
Ž . Ž .Peak period Tp Tps1r f , max S f sS fp f p

Ž . Ž Ž . Ž ..Mean wave direction u u f satan2 b f ,a f1 1 1 1
1r2 2 2 1r2Ž . Ž Ž .. w Ž . Ž .xDirectional spread s s f s 2 1y r , r s a f q b f1 1 1 1

Ž .Direction at the spectral peak u u su f s1rTpp p 1
Ž .Main wave direction MDIR MDIRsatan2 b,a where a and b are spectrally

weighted averages of a and b .1 1
Ž .Spread at the spectral peak s s ss f s1rTpp p 1

Žwhere T is the recording interval and N the number of points in the time series see,
.e.g., Krogstad, 1982 . In practice, moments and covariances may also be estimated from

ˆ 2a smoothed spectrum estimate, S, which is a x -distributed variable fulfilling:

ˆE S f fS f ,Ž . Ž .Ž .
ˆ 2Var S f f 2rn S f ,Ž . Ž . Ž .Ž .

ˆ2 2E S f f 1q2rn S f ,Ž . Ž . Ž .Ž .
where n is the DOF equal to the number of periodogram values involved in the
smoothing. There is a trade-off between the resolution of the smoothed spectrum and the
requirement of independent spectral estimates. For a sampling frequency f , the record-s

ing interval is TsNrf and the periodogram frequency resolution is f rN. Thes s

maximum frequency resolution in a smoothed spectrum with n DOF which maintains
Ž .independent spectral estimates is therefore D fs nr2 f rN.s

A Taylor expansion technique may be applied to determine the variance for estimates
of parameters which are functions of the spectral moments:

$ $
1r2Hm0s4m , Var Hm0 s4m rm ,Ž .ˆ 0 00 0

m m m m2 m$ $ 00 0 01 0 11
Tm01sm rm , Var Tm01 s y2 q ,Ž .ˆ ˆ0 1 2 3 4m m m1 1 1

1 m m m m$ $1r2 00 02 0 22
Tm02s m rm , Var Tm02 s y2 q ,Ž .ˆ ˆŽ .0 2 2 3ž /4 m m m m0 2 2 2

Ž . Ž . Žwhere m 'Cov m ,m see, e.g., Krogstad, 1982 . For the HF radar Wyatt et al.,r s r s
.1998 , the DOFs in the frequency spectrum vary with frequency. The relations are easily

modified to handle such a case.
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The sampling variability for the directional Fourier coefficients and directional
Ž .parameters obtained from heaverpitchrroll buoy data was derived by Long 1980 .

Virtually identical expressions exist for displacement buoy data or for any single point
triplet measurements, since the definitions of the directional Fourier coefficients from
the cross-spectra of the time series are similar. Long’s expressions are independent of
frequency and the variability is inversely dependent on the DOF in the cross-spectra.
The expressions are rather complicated, but it turns out that the precision in estimates of
the mean direction and the directional spread is strongly dependent on the peakedness of
the directional distribution itself, as shown in Fig. 1. It is therefore meaningless to give
an absolute statement about the directional resolution of the Directional Waverider or a
heaverpitchrroll buoy. A well-defined mean direction in the directional distribution
leads to a small sampling error in the estimates.

When comparing frequency spectra from two different instruments, it is convenient to
consider their ratio:

S fŽ .Y
r f s .Ž .

S fŽ .X

If the spectra for the two systems have been computed with n and n DOF, anX Y

unbiased estimate for the spectral ratio is:

Ŝ f n y2Ž .Y X
r f s .Ž .ˆ ˆ nS fŽ . XX

Ž .This spectral ratio is a scaled Fisher distributed variate with n and n DOF and aY X

variance equal to:

2 n qn y2Ž .X Y2Var r f sr f .Ž . Ž .Ž .ˆ
n n y4Ž .X Y

ˆ ˆŽ Ž ..An alternative to the ratio is to consider the logarithm since Us log SrE S has a
probability density which is easily expressed in terms of the x 2-distribution and is moren

symmetric about its mean. In particular:

E U sc nr2 y log nr2 ,Ž . Ž . Ž .
Var U sc

X
nr2 ,Ž . Ž .

Ž . XŽ . Ž . Žwhere c z sG z rG z is the di-G-function Abramowitz and Stegun, 1965, Section
.26.4.37 . From the asymptotic expansion of c , we the obtain to the first order:

Ŝ f S f 1 1Ž . Ž .Y Y
E log f log y q ,ž /ˆž /ž / S f n nŽ .S fŽ . X Y XX

Ŝ f 2 2Ž .Y
Var log f q .

ˆž /ž / n nS fŽ . Y XX
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Ž . Ž .Fig. 1. Sampling variability for the mean direction left and directional spread right as a function of the
directional spread when the directional distribution is a cos-2 s-distribution.

Modern statistical methods frequently use computer simulation to reveal the sampling
variability. For given spectra, there are simple and effective ways of simulating
multivariate Gaussian time series. However, it is often more convenient to simulate the
cross-spectra directly. The complex Wishart distribution of cross-spectral estimates is
easily simulated by summing squares of independent complex Gaussian variables
Ž .Krogstad, 1989 .

In a simulation study of the sampling variability of sea-state parameters obtained
Ž .from buoys like the Directional Waverider Munthe-Kaas and Krogstad, 1985 , the

Ž .variability of parameters derived from the spectrum e.g., Hm0, Tm01, Tm02 agreed
well with the Taylor expansion technique using the expressions for the variability of the
spectral moments. As compared to the more conventional zero-crossing parameters, the
spectral definitions were generally favoured as having less sampling variability. More
important for spectral definitions is, however, the easier calibration of systematic errors
due to various filters affecting the time series. The simulation study also showed that the
standard deviation of estimates of Tp is about 4–10 times larger than for Tm02. For the

Ž .directional parameters, the expressions of Long 1980 seem to be accurate for narrow
directional distributions whereas some deviations were observed for very broad direc-
tional distributions.

HF radar wave measurements are made through an inversion of a non-linear integral
Ž .relationship between the radar power Doppler spectrum and the directional wave

spectrum. The only way to determine the sampling variability of wave parameters is by
Ž .the use of simulation techniques Sova, 1995 . A procedure has been implemented that

determines the sampling variability as a function of frequency of the frequency
spectrum, the mean direction, and the directional spread. This involves, firstly, determin-
ing the sampling variability of the Doppler spectrum, dependent as usual on the length
of the dataset and the amount of averaging and overlapping in the spectral analysis. This
sampling variability is then used to simulate a large number of realisations of Doppler
spectra for a range of specified sea conditions. These are inverted and the DOF and
variance in the parameter estimates are determined. This procedure has to be carried out
in full for any change in operating frequency, sampling frequency or averaging
procedure. However, only small differences were found between the sampling statistics
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Ž . Ž .for the Ocean Surface Current Radar OSCR and Wellen Radar WERA radars used in
the SCAWVEX project.

In order to construct a full directional spectrum from conventional measurements like
displacement or heaverpitchrroll buoys, the directional distributions have to be esti-
mated from a small set of Fourier coefficients. There are several ways of obtaining the

ˆŽ .distributions. The simplest is beam-forming expressions of the form D u , f s
H ˆ ˆŽ . Ž . Ž . Ž .g u F f g u where g u are fixed weight factors and F is the frequency-dependent

cross-spectral matrix from the data. Since the cross-spectral matrix will asymptotically
Ž .have a complex Wishart distribution Brillinger, 1975 it is easily proved that

ˆ 2Ž Ž .. Ž .Var D u , f f2 D u , f rn , where again n is the DOF in the spectral estimates. The
variability for non-linear estimates like the Capon maximum likelihood estimate or the

Ž . Ž .maximum entropy ME estimate Lygre and Krogstad, 1986 is harder to assess. Triplet
data produce four Fourier coefficients for which the ME estimate takes the form:

1 1yf cU yf cU
1 1 2 2

D̂ u , f s ,Ž . 2yiu yi2u2p < <1yf e yf e1 2

U Ž U . Ž < < 2 .where denotes complex conjugate, c sa q ib , and f s c yc c r 1y c ,i i i 1 1 2 1 1
Ž .f sc yf c the dependence of f is omitted for clarity . It may be shown that the2 2 1 1

variability of this estimate is three times the variability of the linear estimate for very
flat distributions. Computer simulations have revealed that the variability may be much

Ž .more for more complicated distributions see Krogstad, 1991 . The considerable vari-
ability of the resulting distributions suggests that more spectral smoothing should be
used for the Fourier coefficients than is typically needed for the one-dimensional
frequency spectrum. Some examples of the actual sampling variability of the final

Ž .directional spectra are shown in Krogstad 1991 .

3.3. Spatial Õs. temporal measurements

With the development of remote sensing techniques, we are now having instrumenta-
tions which record the ocean surface properties over the area rather than time series in
fixed points. It is therefore of interest to compare the sampling variability for these quite
different ways of obtaining wave information. If we consider the measurement of

Ž .significant wave height by an estimate of m from an so far hypothetical instrument0

recording the instantaneous surface over a square region with area A, a similar
technique as above shows that:

4p 2
2 2Var m s C k d k .Ž .Ž .ˆ H0 A k

Consider now two instruments where one measures a time series of surface elevation
at a single point for a duration T and the other measures the elevation of the surface at a
fixed instant of time for all points over an area A. Assume deep water for simplicity and
write the wave spectrum as:

Hm02

S f D u , f s S frf D u , frf ,Ž . Ž . Ž . Ž .0 p 0 p16 fp
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where

` 2p

f s1rTp and S x d xs D u , x dus1.Ž . Ž .H Hp 0 0
xs0 us0

Ž . Ž .Since Var Hm0 s4Var m rm , we have for the coefficient of Õariation, COV, of0 0

the first instrument:

Var m(std Hm0 1Ž .Ž . ˆ 0 y1r2
5 5COV s s s S f T ,Ž .2time 0 pHm0 2m 20

5 5 Ž Ž .2 .1r2where S s S x d x . Similarly, for the spatial instrument:2 H0 0

std Hm0Ž . y1
5 5 5 5COV s s D u , f S drl ,Ž . Ž .2 2space 0 p 0 pHm0

where d is diameter of the recording area and l is the wavelength corresponding to Tp.p

With a typical JONSWAP-like frequency spectrum and a cos-2 s-distribution with
ss10 at Tp for D, we obtain the following approximate expressions in deep water:

1r2COV f0.52 TprT ,Ž .time

COV f0.33 l rd .Ž .space p

which are shown graphically in Fig. 2. The behaviour with varying wave period is
therefore quite different for the two instruments, obviously due to the quadratic
dependence of wavelength on wave period. Shallow water will affect the relations
somewhat, as is easily seen.

In this paper, we will consider the HF radar as if it were a temporal measurement. It
is measuring the time series of backscatter but from an area of the surface and not a
point. If we assume that both diagrams in Fig. 2 apply, then, for a 10-min duration, 1

Ž . Ž .Fig. 2. Necessary recording time interval left and area diameter right as a function of the peak period Tp.
Solid line corresponds to COVs5%, dashed line to COVs10%.
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km2 area, we anticipate that the parameters of such a system have large variability for
very long waves.

4. Data intercomparisons

A first step in a data comparison will typically be joint occurrence tables, scatter plots
and descriptive statistics like bias, correlation coefficients, average scatter, etc. Although
simple to produce, such presentations alone are, in general, not sufficient to explain
differences between the datasets and whether these are in excess of the sampling
variability. Often, the high and low frequency parts of the spectra compare differently
and direct intercomparison of spectra is the only way to assess differences that show up
in the integrated parameters such as the significant wave height and the mean period.
Below, we present various ways to intercompare data and illustrate the methodology
using data from SCAWVEX.

4.1. Scatter diagrams and calibration relations

The scatter diagram suggests the computation of some kind of regression between the
Ž .variables. If the variability of one variable say X is much less than the other, one-sided

regression, e.g., YsaXqb, is appropriate. Sometimes, it is feasible to let the line go
through the origin in which case bs0. A power relation YsbX a becomes linear by a
logarithmic transformation, and angular variables which are defined modulo 2p , may be
fitted to YsXqb.

In the present case, both variables may have comparable variability and symmetric
methods, e.g., principal component regression, are better. If we assume that the
variances for both instruments and each measurement are equal and we seek a line
through the origin, the slope of the line can be determined by minimising the function

n Ž Ž . Ž ..2 Ž 2 .Ý Y i ybx i r 1qb . This can be interpreted as either minimising the sum ofis1

squares of the perpendicular distances of datapoints from the line ysbx, or as a
least-squares problem weighted by the sum of variances. In the latter case, the variance
should appear in the denominator of the function being minimised but since it is
constant, it does not affect the resulting expression for b. This method is referred to as
two-sided regression below.

However, the sampling variabilities may be highly variable and different for the two
variables. This situation can be accounted for in a ML approach suggested by Sova
Ž .1995 . Assuming that the two measurements of interest are Gaussian with a linear

Ž 2 . Ž 2 .relationship between their means, i.e., X ;N m ,s , Y ;N aqbm , s , the pa-j j X j j Yj j

Ž .rameters slope, b, and intercept, a can be determined by maximising the log likelihood
function:

< 2 2loglik a,b ,m X ,Y ,s ,sŽ .X Y

2 2n X ym Y yaybmŽ . Ž .j j j j2 2Ay log s s q q .Ý ž /X Y 2 2j j½ 5s sX Yjs1 j j
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ŽNote that m , js1, . . . ,n, can be derived explicitly and inserted in the expressionj
.such that only a and b remain . The relative bias between the two instruments and its

95% confidence interval is given by:

ˆaq by1 xŽ .ˆ
y s ,rel x

1r2
2 ˆ ˆy "1.96 Var a rx qVar b q2Cov a,b rx .Ž . Ž . Ž .ˆ ˆŽ .rel

Ž .Again, the caret signifies the estimate of the parameter. A power relationship can
be handled using logarithms, and in the directional case, one assumes that the directional

Ž 2 .difference is normal, i.e., c su yu ;N m,s .j 1 j 2 j j

For a real stochastic variable X, the cumulative distribution function, F , is definedX
Ž . Ž .as F x sP XFx . There is actually a simple and direct way of obtaining aX

Ž .non-parametric regression function Ysh X between two arbitrary wave parameters X
and Y from their cumulative distribution functions F , and F . If we disregardX Y

sampling errors and the regression function is ever increasing:

F x sP XFx sP h X Fh x sF h x ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .X Y

Ž . y1Ž Ž .. Ž .from which it follows that ysh x sF F x . For an observed dataset X ,Y ,Y X i i

is1, . . . ,n, the piecewise linear function defined by the ranked observations, X U FX U
1 2

F . . . FX U and Y FY U F . . . FY U , will be a simple estimate of h. Since samplingn 1 2 n

errors typically stretch the sampling distributions as compared to the exact distributions,
this will introduce some bias if the sampling error is large as compared to the variations
of the variables, or if the sampling errors are highly different for X and Y.

There are actually several more advanced approaches to the problem of finding a best
possible calibration or regression curve with errors in both variables. Principal curÕe
regression aims to determine the curve with the least possible distance to the data

Ž .subject to smoothness constraints Hastie and Stuetzle, 1989 . Since the sampling
variability in the present case is typically strongly dependent on the magnitude of the

Žvariables, a weighted regression is however preferred Boggs and Rogers, 1990; Fan and
.Truong, 1992 . Application of these methods to wave data is not known.

The ML methods are already somewhat more complicated to implement than simple
regression because they need estimates of the sampling variability. One question that
arises is whether they provide additional information of use in assessing a particular
measurement system or is the additional rigour providing results that are in fact very
similar to those achieved with the more straightforward methods and hence, simply
confirming their validity. Another question concerns the validity of assuming a linear
relationship. A subjective judgement has to be made based on the nature of the scatter
plot or the non-parametric regression introduced above. Actually, the ML methodology
may also be extended to piecewise linear or cubic splines relationships.

Ž .Some of these issues are discussed in more detail in Wyatt et al., 1998 where the
ML method has been applied for a detailed assessment of the accuracy of HF radar vs.
buoy measurements. Below, we show some examples for the main wave parameters,

Ž .Hm0, Tm01 and the spectrally averaged main wave direction MDIR . The scatter plots
and the ML regression lines for simultaneous and co-located data from the Holderness 2
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and Petten experiments are shown in Fig. 3. Fig. 4 compares the non-parametric
regression to the ML regression and Table 2 shows a number of statistics for the same
parameters. If X is the wavebuoy and Y the radar measurement, the mean error is given

y1 N Ž . y1 N Ž .by N Ý Y yX , the relative error by N Ý Y yX rX , and the two-sidedis1 i i is1 i i i
Ž .regression uses a slope through the origin. For the maximum likelihood ML method,

the slope, b, and the intercept, a, are shown together with the relative biases over
specified waveheight or period ranges, as appropriate.

For significant waveheight, the mean error and its standard deviation are not very
informative, they give the impression of much better agreement than can be justified

Ž .from the scatter plot. The two-sided regression with zero intercept and the relative
error estimate are significantly different for the two experiments but the slope of the ML
line is similar. The increased bias shown at Petten is accounted for in the change in
intercept of the line and is in fact larger at low than at high waveheights. Over most of
the range of waveheights in this experiment, the bias found using this method is less
than is inferred from the other two estimates. This consistency in slope from experiment
to experiment in the ML description suggests that it might provide a more robust
estimate of a relationship between the radar and wavebuoy measurements that could be
used to calibrate the radar measurements. However, the validity of the assumption that
there is a straight-line relationship for the entire waveheight range for Petten could be
questioned. The non-parametric regression shows evidence of a change in the nature of

Fig. 3. Scatter plots of significant wave height, Hm0, mean wave period, Tm01, and integrated mean wave
Ž . Ž .direction, MDIR, for buoy and radar data from Holderness 177 datapoints and Petten 1663 datapoints .
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Fig. 4. The ML lines and non-parametric regression curves for wave height and period for the Holderness 2
Ž .and Petten datasets same data as in Fig. 3 .

the relationship in the higher sea-states which is driving the change in intercept and
hence in the estimated bias.

There is a lot more scatter in the Petten data for mean period than is seen in the
Holderness data. This is reflected in the standard deviation of the relative error which is
once again a better descriptor than the mean error. The mean, relative and regression
estimates of bias give small biases for both experiments in contrast to the ML method.
The latter is showing a large negative bias when the period is large, as is also obvious
from Fig. 4. In this paper a negative bias means the radar measurement is smaller than
the buoy measurements, and a positive bias is the opposite. However, there are a number
of measurements with large positive bias in the Petten data set. This partly compensates
for the negative bias at the higher periods driving the relative error towards zero but
these are of less significance in the ML calculation because the sampling variabilities
associated with these measurements are larger. The large positive bias cases, in
particular at the larger periods, also drive the non-parametric regression to imply an
overestimation of this parameter by the radar. These cases are associated predominantly
with low amplitude swell conditions when the radar measurements are contaminated by

Žspurious contributions from antenna sidelobes and surface current variability see the
.discussion in Sections 4.2 and 4.3 below . The larger negative bias at higher periods is

identified more clearly with the ML method and is associated with an increased
contribution to the radar measured waveheight spectrum at high frequencies in high
sea-states. The larger biases in wave height in the Petten data are also due to this
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Table 2
Statistics for the radar–buoy intercomparisons

Parameter Method OSCR at Holderness WERA at Petten

Bias Standard Bias Standard
deviation deviation

Hm0 Mean error 1 cm 25 cm 23 cm 40 cm
Two-sided 3% 18% 14% 28%
regression
Relative error q0.8% 18% q14% 28%
ML parameters, b,as1.06, y0.06 b,as1.05, 0.02
relative bias -0.7 m: y5%

0.7–3.2 m: y5%–5% 5–10%

Tm01 Mean error y0.03 s 0.5 s y0.07 s 0.7 s
Two-sided y1% 8% y1% 13%
regression
Relative error 0.4% 8% y0.5% 13%
ML parameters, b,as0.77, 1.25 b,as0.6, 2.04
relative bias -5 s: 0–10% -5 s: 0–10%

5–7 s: y5–0% 5–6 s: y5–0%
7–8 s: y5–10% 6–8 s: y10%

MDIR Mean difference 28 88 118 188

ML y3.58 3.58

See text for explanation.

phenomenon which is associated with an increase in the backscattered signal in higher
sea-states that is not explained by the theory used for HF radar wave measurement. Note
that the ML regressions for the mean period for the two experiments are very different
and hence a consistent calibration for this parameter is not possible. However, as has
already been said, the method does provide a more reliable measure of bias in the period
parameter than the standard statistics or the non-linear regression.

The ML estimate of the direction difference is also similar although biased positive at
Petten and negative at Holderness. This difference in sign is related to the different
range of directions measured at the two sites which are on opposite coasts of the North
Sea. Once again, the consistency is suggestive of a more robust relationship than is
given by the mean difference.

When comparing similar instruments, the use of confidence regions in the scatter
Ž .diagrams is useful Allender et al., 1989 . The confidence regions are here defined by

two lines, which, for a certain model of the sampling variability, on the average should
enclose a certain fraction of the datapoints. As an example, assume that both instruments

Ž . Ž .should measure the same apart from the sampling variability, i.e., E X sE Y for
simultaneous pairs. Assume further that the sampling variabilities are equal but indepen-

Ž .dent with a standard deviation that increases linearly with the expectation, std X s
Ž . Ž .std Y saE X . Two lines through the origin which approximately enclose a fraction p

Ž . Ž . 1r2of the datapoints are then given by y s tan pr4"d x, where sin d sag r2 ," p
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Fig. 5. Confidence regions based on pairs of ordered variables for wave height and period from Holderness.

Ž .2F g y1sp, and F is the cumulative standard normal distribution. Using thep

Holderness data as an example, the COV was computed to about 4–6% for the buoy
Ž .wave height and about 3–5% for the radar Wyatt et al., 1998 . For the wave period, the

COV was similarly computed to 2–3% for the buoy and 1–2% for the radar. Neglecting
the bias for the moment, 90% confidence regions based on a common 6% COV for the
wave height and 3% for the period are shown in Fig. 5. It turns out that the fraction of
the datapoints inside the 90% limits is merely 57% for wave height and 66% for the
wave period. We obtain approximately 90% enclosure by increasing the COV for wave
height to 12% and to 4% for the wave period. We therefore conclude that the sampling
variability explains almost all the scatter seen in the wave period despite the obvious
bias discussed above, whereas wave height has additional variability not accounted for
by the computed sampling variability.

Another example where computer simulation may be used to assess sampling
variability is illustrated in Fig. 6. On the left is shown a scatter plot for the significant
wave height between 1365 near coincidences of the Topex radar Ku altimeter on the
TopexrPoseidon satellite and 13 NOAA buoys. How accurate are then the altimeter

Ž .Fig. 6. Significant wave height from 13 NOAA buoys and the Topex altimeter left . Bias and scatter for the
Ž . Ž .actual dataset solid and an equivalent simulated buoy dataset dashed shown to the right.
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Ž .measurements in this case, the standard data product obtained from AVISO, France as
compared to the buoys? The sampling variability for the altimeter data is not known, and
hence, the approach adopted for the HF radar measurements cannot be used, but we
would assume that the NOAA data are processed with a sampling variability typical for
20 min buoy measurements. The idea is then to compare the bias and standard deviation
of the differences in the observations to a simulated dataset consisting of an equally
large and equally distributed dataset from two independent buoy systems. The sampling
variability in the buoy measurements is based on the theory in Section 3.2. The
interesting conclusion, as shown to the right in Fig. 6, is that the observed scatter is quite
comparable to the scatter in the simulations above 2 m wave height, although some
minor bias in the measurements is likely. The altimeter data for this study were averaged
over three points, corresponding to about 20 km along the track, and, judging from the
simulations, the data have a sampling variability quite comparable to buoy measure-
ments. The somewhat increased variability below 2 m may probably be due to the
spatial offsets between the altimeter and the buoy.

4.2. Comparisons of frequency spectra

The simplest way of comparing frequency spectra is to superimpose individual
spectra on the same plot. However, the sampling variability makes it difficult to find
consistent differences and the mean spectral ratio is useful when looking for consistent
biases over fixed frequency ranges and hence to establish a spectral calibration that
could be used. For this to be effective, the biases have to be consistent and not
associated with occasional instrument problems as illustrated in the following example.

ˆ ˆŽ . Ž .Ž . Ž Ž ..Fig. 7 shows the mean spectral ratio at Holderness r f sS f n y2 r S fnˆ hf wb wb wb

where hf refers to the HF radar measurement and wb to the buoy. The figure shows that,
on average, the radar overestimates energy at the low frequencies. However, this is
nearly all an overestimation at times when the wavebuoy energy is low in these
frequencies, i.e., when these frequencies are below the spectral peak frequency. This is
confirmed in Fig. 8 which shows the spectral ratio when only those frequencies at and
above the wavebuoy peak are included. This shows a value of the ratio nearer to 1 with

Ž .Fig. 7. The mean spectral ratio radarrbuoy is shown as a solid line. The line with diamonds shows the
Žmeasured variance which is a little higher than the variance that is due to sampling variability shown with

.squares .
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Fig. 8. Same as Fig. 7 except that energy below the buoy spectral peak is excluded from the calculation of the
means.

an underestimation at the very low frequency end. The source of the problem is the
occasional appearance of spurious contributions to the spectrum due to antenna side-
lobes andror current variability. Their presence or absence in the Holderness dataset
depends on the prevailing wind direction and the phase of the tide. Since these are
sporadic rather than consistent contributions to bias, the use of a calibration that includes
such contributions is not advised. These can be identified clearly in the comparisons of

Ž . Ž .directional spectra see below and are discussed in more detail in Wyatt et al., 1998 .
The graphs also illustrate the use of observed vs. intrinsic sampling variability in the

spectral ratio. The observed variability is as expected somewhat in excess of the
unavoidable intrinsic variability. However, in particular for high frequencies, it is not
much larger. This indicates by and large that the ratio between the spectra is essentially
constant for high frequencies. Around the spectral peak, the variability is larger,
probably due to the fast variations in the spectra.

4.3. Comparisons of directional spectra

Due to the large dynamic range of directional spectra, direct comparisons are not
straightforward. A simple compromise is to plot frequency-dependent parameters like
the mean direction and the directional spread superimposed on plots similar to superim-
posed frequency spectra.

Nevertheless, direct comparisons are interesting. Remote sensing instruments like the
HF radar or the satellite SAR tend to measure the wavenumber spectrum from which the
directional spectrum and the wave parameters are determined by suitable transforma-
tions and integrations. The directional wave buoy data provide only the frequency
spectrum and the first four frequency-dependent Fourier coefficients. The directional
distribution has then to be constructed using, e.g., the ME mentioned above. The ME

Ž .estimates can have a tendency to split peaks Lygre and Krogstad, 1986 , but in real
situations, the lack of better measurements of the directional distribution makes it
difficult to distinguish between real bimodal structures and artefacts of the estimate.

Ž .Lygre and Krogstad compare the ME estimate with a ML method Capon, 1969 and
show that the ML method tends to produce broader distributions with poorer directional

Ž .resolution. A similar comment on the ML method is given in Donelan et al., 1996
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where it is compared with a wavelet analysis method. The wavelet analysis method
gives directional distributions with fairly narrow spreads even at quite high frequencies
and wavenumbers.

The inversion process that generates wave measurements from HF radar Doppler
spectra provides the directional wavenumber spectrum on a non-uniform grid. For
wavebuoy comparisons, and indeed for all parameter extraction procedures, the data on
the non-uniform grid are first averaged into wavenumber-direction bins. Alternatively,
the spectra are first converted to directional frequency spectra using the shallow water

Ž .dispersion relationship with the same depth that is used during the inversion and then
binned into frequency bins. One method that can be used to assess the use of the
maximum entropy method for directional spectra estimation is to determine the Fourier
coefficients of the radar-measured spectrum and compare this measured spectrum with
the ME spectrum obtained using the coefficients. Four examples are presented in Fig. 9.
They show WERA measurements from Petten and have been selected because they
show some directional bimodality as the sea responds to changing wind directions.
Where this bimodality is very clear, e.g., at 0300 on 29r11r96 at ;0.2 Hz, the
maximum entropy spectrum is a better approximation than the cosine model which is
simply a cos-2 s distribution fitted to the first pair of Fourier coefficients. There is some

Ž .evidence of peak splitting e.g., 1520 on 29r11r96 and increased amplitude at the peak
Ž .e.g., at 0300 on 29r11r96 but over most of the spectrum, the maximum entropy
method has a similar shape to the radar measurement. This qualitative judgement
suggests that peakedness in wavebuoy spectral estimates can be ignored but bimodality
and other features of the shape are real and should be present in both wavebuoy and
radar measurements.

Fig. 10 shows the spectra in Fig. 9 as compared with the buoy maximum entropy
estimates at that time. The levels and normalisation are as before. Relative amplitudes
between columns can now be seen in the lower panel which compares the frequency

Ž .spectra also with amplitude on a log scale . Note that the sampling variability of all
these estimates is quite high. There are many differences, in particular the radar
measurements show occasional discrete modes in the spectra that are not present in the

Ž .buoy measurements at all e.g., at 0.8 Hz, 2508 at 0900, 29r11r96 . These are the
Ž .source of differences in mean direction estimates at low frequencies Wyatt et al., 1998 .

Directional spectra comparisons have proved very important in revealing the origin of
errors in HF radar-integrated parameter estimates. There is broad agreement in the shape
of the main contributions to the spectrum with some evidence of bimodality at high
Ž . Ž .0900 as well as low 1520 in the buoy data frequencies. These features can be seen

Ž .Fig. 9. Four directional spectra measured by the WERA HF radar at Petten upper panel, time and date shown
compared with the maximum entropy spectra determined from the Fourier coefficients of the measurement
Ž .middle panel and the spectrum estimated using a cos-2 s-model with parameters determined from the Fourier

Ž .coefficients lower panel . The amplitude in each column is normalised by the maximum in the radar
measurement which varies from column to column. Logarithmic amplitude levels are shown. There is
sometimes some distortion at high and low frequencies due to limitations of the contouring at the boundaries.
The figures above each picture indicate the maximum spectral amplitude and the frequency of the spectral
maximum.
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more clearly in an animation of 1 month’s data that can be viewed via the SCAWVEX
Žweb site http:rrwww.sheffield.ac.ukruniracademicrD-Hreocrscawvexrhome.-

.html . Note that the directional spectra comparisons confirm the view expressed earlier
that a transfer function based on the mean frequency spectrum or spectral ratio as
discussed in Section 3.2 is not necessarily appropriate for HF radar since differences are
due to sporadic effects introducing spurious modes into the directional spectra rather
than consistent biases in the measurement.

5. Conclusions

In this paper, we have discussed a number of different methods for the intercompari-
son of wave data. The most obvious conclusion is that the quality of a given
measurement system depends on a range of factors that cannot be uniquely identified by
the use of a single statistical approach.

ŽDeviation between instruments may be due to general systematic offsets e.g.,
.calibration errors , temporal and spatial offsets, or merely caused by the sampling

variabilities. The sampling variability of the main wave parameters is easily derived for
conventional time series measurements, but is considerably harder to obtain for the HF
radar and other remote sensing instruments. Computer simulation is very important in
this respect.

The most central sea-state parameters are the significant wave height, the mean
period, the spectral peak period, and the mean wave direction and the directional
spreading of the waves.

The significant wave height is an integral of the spectrum and weights all spectral
components equally. High and low frequency bias in the spectrum will therefore show
up as a bias in Hm0 for low and high sea-states, respectively, assuming that these biases
are not sea-state dependent. We have seen that for, e.g., HF radar, the high frequency
bias is larger in high sea-states and is responsible for a larger Hm0 bias. For time series
measurements, the sampling variability of Hm0 increases more than proportional to the
value itself. Assessing errors in one measurement by considering mean differences is
therefore not appropriate.

The mean wave period, Tm01, does not vary over a large range and has a rather low
sampling variability for time series data. The parameter is affected by any high
frequency bias of the spectrum and reveals the positive bias in the radar-measured
spectrum at the higher sea-states. Similar conclusions also apply to the more commonly
used spectral mean wave period, Tm02 although the high frequency dependency is
larger.

The peak period, Tp, varies over a larger range than Tm01 and Tm02 and has larger
variability. One obvious reason is the case of multi-modal spectra where there is a

Fig. 10. Directional spectra in Fig. 9 compared with the maximum entropy spectra determined from the Fourier
Ž .coefficients of the wave buoy measurement middle panel . Scaling similar to Fig. 9. The lower panel shows

the two frequency spectra, radar solid line and wavebuoy dashed line with their corresponding significant
Ž .waveheights radar above wavebuoy .
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chance that the observed maximum irregularly switches between two possible peak
frequencies. As mentioned above, computer simulations have revealed that the sampling
standard deviation is typically 4–10 times larger than for Tm02 even for single mode
spectra. The sampling variability for HF radar measurements of Tp has not yet been
determined and so it was not included in the ML analysis.

The mean direction is a function of frequency, and one often considers the directions
Ž .for high and low frequency waves wind sea and swell separately. Picking the direction

at the spectral peak is a popular choice although the randomness in Tp then also affects
the direction. Spectrally averaged directions like the main wave direction avoids this
problem, but being an integrated quantity, it is also less sensitive to particular features in
the spectra. In the case of the HF radar, the main wave direction can be distorted by the
presence of additional modes in the directional spectrum and in bimodal spectra, in
general, it is not a particularly useful parameter since it measures the average direction
rather then the particular directions of the component modes. The situation for the
directional spread is similar to that for the mean direction, but the sampling variability is
larger. Note that spread has only been assessed in a qualitative manner here through the
use of plotted directional spectra.

Of the regression method considered above, the ML regression appears to be the
preferred choice for a quantitative intercomparison between the two instruments when
the sampling variabilities are known. Also the simple non-parametric regression is a
useful tool for inspection of scalar data and could be used to indicate a need for a
piecewise linear or a spline relationship that could also be determined using ML.

Deviations in sea-state parameters should, if possible, be traced back to deviations in
the underlying spectra. The frequency spectrum is most easily investigated by the
average spectral ratio, but computing the ratio should be limited to frequencies above the
spectral peak. Frequency-dependent directional parameters like the mean wave direction
and the directional spread may be studied similarly to the frequency spectrum, but full
directional spectra are more difficult to compare. Note however, as illustrated for the HF
radar, that it may nevertheless be necessary to assess the full directional spectrum to
identify bimodality and for spurious contributions. The HF radar comparisons do,
however, provide some independent support for the use of the maximum entropy
technique for the analysis of buoy data
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