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A Simple Derivation of Hasselmann's Nonlinear 
Ocean-Synthetic Aperture Radar Transform 

HARALD E. KROGSTAD 

SINTEF Industrial Mathematics, Trondheim, Norway 

We present a simple derivation of Hasselmann's nonlinear spectral transform for the synthetic 
aperture radar imaging of ocean wave fields and discuss some of its implications. 

1. INTRODUCTION 

There are a number of mechanisms affecting the imaging 
of an ocean surface with a synthetic aperture radar (SAR) 
[Hasselmann et al., 1985]. The modulation in backscatter is 
first of all due to long-wave-induced varying surface tilt (tilt 
modulation) and straining (hydrodynamic modulation). 
However, the most important effect, and up to recently also 
the most difficult contribution to treat analytically, has been 
the velocity bunching caused by the apparent shift in the 
location of moving scatterers on the surface. 

Recently [Hasselmann and Hasselmann, 1991], K. and S. 
Hasselmann gave a new closed form nonlinear spectral 
transform resulting from the velocity bunching. Judging from 
the experience with recent field data [Hasselmann and 
Hasselmann, 1991; Krogstad and Schyberg, 1991], it seems 
clear that the transform represents a major step forward in 
our understanding of the SAR-imaging process of ocean 
waves. 

Below we shall present a simple derivation of the nonlin- 
ear transform and discuss some of its implications. It turns 
out that the degree of nonlinearity is strongly dependent on 
the azimuth wavenumber scaled by the root-mean-square 
azimuth shift. In particular, it seems that at least most of the 
azimuth cutoff observed in all measured SAR-spectra is an 
intrinsic part of the fully nonlinear theory. 

2. DERIVATION 

Following in essence Hasselmann et al. [1985], we de- 
scribe the nonlinear mapping from an ocean wave spectrum 
ß to a SAR image spectrum S as a sequence of linear and 
nonlinear transformations: 

S = V{T[S(•)]}. (1) 

Here S denotes the scanning distortion due to the finite 
velocity scanning of the moving surface, T is the real 
aperture radar (RAR) modulation consisting of the tilt and 
hydrodynamic modulations, and V is the velocity bunching. 

Let the ocean surface r/(G, t) have the spectral represen- 
tation 

r/(x, t) = fk e i(kx - tot) dZ(k, o)) ,to 

and the wavenumber-frequency spectrum 
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(2) 

dx(k, o))= E[dZ(k, o))dZ(k, o))*], (3) 

see Phillips [1977]. We shall assume that the surface satisfies 
Gaussian linear wave theory (GLWT) in which case o) and k 
are connected by the dispersion relation o) 2 = # k (deep 
water is considered for simplicity). In this case the ocean 
surface wavenumber spectrum is defined by 

•(k)dk = 2 •to dx(k, o)). >0 

(4) 

Within GLWT, any collection W(x, t) of space- and time- 
varying fields like surface slope, surface velocity, or related 
quantities is obtained from the surface elevation by a linear 
transformation 

W(x, t)=•k Tw(k, o))ei(kx-tot)dZ(k, (5) 

where T w is the corresponding vector of transfer functions 
[Borgman, 1979]. 

Consider now an instrument moving along the x axis with 
velocity V while scanning W parallel to the y axis. The 
observed field is thus Y(x) = W(x, t - x/V) with a covar- 
iance function 

py(X) =•k ei(kx-tox/V)Tw(k, o))Tw(k, o))"dx(k, 
(6) 

where H denotes the complex conjugated, transposed vec- 
tor. Using the symmetry of X, we may rewrite the integration 
over positive values of o) and apply the definition of the 
ocean wavenumber spectrum, 

p¾(x) =•k eikX[Tw(kl' o)l)Tw(kl' o)•)"W(kl))lOk•/0kl 
+ Tw(k 2, -o)2)Tw(k2, -o)2)H•(-k2)lOk2/Okl]d2k/2. 

(7) 

Here o)i -- q-(•/ki )1/2 and k• and k 2 are functions of k 
obtained as solutions of 

k = k• - o)•/Vi, 
(8) 

k = k 2 + o)2/Vi, 
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where i denotes the x axis unit vector. The spectrum of Y is 
therefore 

ß y(k) = Hl(kl, •ox>10kx/0kl + 1-12(k2, •o2>10k2/0kl, (9) 

where 

Hl(k , co)= Tw(k, co)Tw(k, co)H. •(k)/2, 
(•o) 

H2(k, co) = Tw(k, -co)Tw(k, _co)H. •(-k)/2, 

Note that whereas the ocean wavenumber spectrum is 
nonsymmetric and indicates the propagation direction of the 
waves, the spectrum of the two-dimensional field Y is 
symmetric with respect to k. 

The scanning distortion transformation is well known (see, 
for example, the discussion by Raney and Lowry [1978]). 
The spectra of all linearly surface-related quantities needed 
below are obtained from (8)-(10) by inserting the appropriate 
transfer functions. 

One basic assumption for the nonlinear transform is that 
the RAR modulation including both tilt and the hydrody- 
namic modulations is a linear transformation in the above 

sense. Let I n (x) denote the RAR image. In accordance with 
Hasselmann et al. [1985], we write In(x) = I011 + 8In(x)], 
where I0 is the mean radar cross section, and below spectra 
and covariance functions for I n refer to the nondimensional 

modulation 8I n (x). 
Let sr-(x) denote the field of apparent azimuth shifts due to 

the surface motion. Then sO(x) = (R/V)ur(X), where R is the 
distance between the scatterer and the radar, V is the radar 
velocity, and Ur is the velocity component of the surface 
toward the radar. If the surface wave particle velocity from 
GLWT i• used, Ur and hence s c are also linear transformations. 

Denoting the image after the velocity-bunching transfor- 
mation by I V , we have, assuming that the number and the 
intensity of the point scatterers are conserved during the 
velocity bunching transformation [Hasselmann and Hassel- 
mann, 1991], 

dx' 

•V(x) = • •(x') •xx ' (•) 
where the summation extends over all solutions of x - x' - 

isr--(x'). Since I n and sc according to the assumptions in fact are 
jointly strictly stationary fields, I v' will be stationary as well. 
Considering furthermore only second-order ergodic fields, let 
A be a square region with sides increasing to infinity. Then, 

E[I•'(o)] = lim 

lim IAI- L 
dx • 

dx 

= lim IAI -•L Z•(x') dx'=E(In) = Io. (12) 
Here we have used that the transformed region A' deviates 
from A only in negligible narrow strips near the azimuth 
borders. Furthermore, the spectrum of I v' is obtained from 

SSAR(k) = lim IAIgEl•'(k)l 23 - •02•(k) 

where I•'(k) is the "finite Fourier coefficient" 

I•'(k) = IA1-1 e'k•IV'(x) dx 

dx (13) 

I•'(k) = IA[ -1 eik(x-ie(x))In(x) dx (14) 

(In the last expression, x' has been replaced by x and the 
transformed region has been replaced by A). The mean 
square expectation of the Fourier coefficient is 

E(I•'(k)l 2 

e ik(x- X')G(x, x', kx) dx dx', 

(•5) 

G(x, x', kx) = E{In(x)In(x')e -i&'(g(•) - g(x'))}. (16) 

By the stationarity of the fields, G is only a function of x - 
x' which we write, with a slight abuse of notation. G(x, kx). 
Thus, 

SSAR(k) = lim IAI-• f• f• eik(x-X')G(x IA[-' • •A ' •A' 

- x', kx) dx dx'-Io2•(k) 

= fx eikXG(x' kx) dx- I028(k). (17) 
In order to evaluate the expectation in (16), we consider the 
four-dimensional Gaussian vector 

X = [IR(x), IR(o), g(X), g(0)] t (18) 

with mean/z = (Io, Io, 0, 0) t and covariance matrix, •, 

/I02PII(O) I02pll(X) IoPI•(O) IOPle(X) 
I I02pHX) I02p"(O) IoPI[(--X)IoPI[(O) (19) X(x) = [•0p•e(o) •0p•e(-x) pego) pee(x) ' 
\•r0p•e(x) I0p•e(o) pee(x) pee(o) 

The characteristic function of X is defined K(t) = E(e ivx) 
and we obsewe that 

G(x, kx)= -(02K/Ot•Ot2) t = (0, O, -k•, k•) t. (20) 

For multivariate Gaussian distributions K(t) = exp (itt• - 
(1/2)ttXt) •nderson, 1984, theorem 2.6.1] and by car•ing 
out the straightfo•ard differentiation, we arrive at 

G(x, k•) = •e -ki(p"(ø) -P"(•)){1 + p.x) + ik•[p•e(x) 
- p•e(-x)] + kJ[(p•e(o) - p•e(x))(p•e(o) - p•e(-x))]} 

(21) 

which is identical to equation (42) of Hasselmann and 
Hasselmann [ 1991]. 
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3. PROPERTIES OF THE NONLINEAR TRANSFORM 

We first note that the G function is general with respect to 
RAR and shift transformations as long as they are linear in 
the sense stated in (5). 

The function is furthermore homogeneous in the mean 
radar cross section, and the terms may be scaled by the 
nondimensional RAR modulation standard deviation /z = 
pit(o) •/2 and the nondimensional azimuth wavenumber K = 

1/2 
kxpa(o) 

G(x, kx) = Io•e-ø(K:)[1 + O(Ix 2) + O(K/x) + O((x/x)2)]. 
(22) 

For a characteristic ocean wavenumber k o, kopee(o)1/2 was 
denoted the nonlinearity parameter by Briining et al. [ 1990]. 

Because of the dependence of k x, equation (17) is not a 
straightforward Fourier transform, and the result turns out 
to be S{rongly dependent on the magnitude of x. 

For common ocean wave spectra and a RAR modulation 
given by the tilt modulation [Monaldo and Lyzenga, 1986], a 
rough estimate gives 

Iz • s(a)Hsko/2 (23) 

kx HoooHsko 
• • -- (24) 

k0 4V 

where a is the SAR look angle, H is the SAR height, V is the 
SAR velocity, •o0: = #k0, k0 is the dominant wavenumber, 
Hs is the significant wave height, and s(a) is the look angle 
dependence in the tilt modulation transfer function [Monal- 
do and Lyzenga, 1986]. The combination Hsko signifies the 
overall steepness of the sea, typically in the range 0.2-0.4. 
For an H/V ratio equal to 50 s, •o0 = 1 rad s -1, and 
incidence angles around 25 ø,/x = 0(0.3) and • = (kx/ko) x 
0(3). Thus, we cannot in general assume that K is a small 
quantity. 

When << 1, G is approximately equal to I0:[1 + 
PH(X)], and SSAR(k) = S,(k), the RAR image spectrum. 

For x up to the size of/x we may expand the G function to 
second order, giving 

G(k, kx)/Io: = 1 + PH(X) + ikx[p•e(x)- p•e(-x)] 

+ kx2p•(x) + O(K3). (25) 
The corresponding linear SAR spectrum is obtained after 
some manipulations from (9)' 

Slin(k)/Io 2 = IT(k• kx, a,•)l: ak• , .• •g(k 1)/2 

+ iT(k2, kx _•o2)12 Ok2 , • •(-k2)/2, (26) 
where T now is a combined transfer function 

T(kj, kx, o•)= T•(kj, o•)+ ikxTe(kj, •o), j = 1, 2. (27) 

Here Tt and T e are the RAR and shift transfer functions, 
respectively, and k{ and k2 are solutions of (8). 

This form is well known [Hasselmann et al., 1985], and 
was also noted to follow from the full nonlinear transform of 

Hasselmann and Hasselmann [1991]. 

When Ix{ increases further, the nonlinear character of the 
transform becomes ever more dominant. By applying the 
formula to a sine wave, characteristic higher-order harmon- 
ics occur as most easily seen from a Taylor expansion of the 
exponential factor in G. When I•1 becomes larger than 1, the 
same exponential factor will tend to suppress all other 
contributions in G unless when pee(x) is close to pee(o), which 
for realistic sea states will occur only near x = o. Since 
Iee(x)l -< ee(o), a Taylor expansion around x = o gives to the 
leading order pee(o) - pee(x) = xtAx where A is a positive 
definite matrix reflecting the curvature of pee(o) - pee(x) at o. 
(For the derivatives of pee to exist in the mathematical sense, 
it is necessary to assume that the wave spectrum decays fast 
enough for large frequencies, or that we only integrate up to 
a certain cutoff frequency.) Thus approximating G by 

G(x, kx)= Io211 + PH(o)]e -I•x'Ax, (28) 
a straightforward Fourier transform yields that S SAR(k) -'• 
k•- •- for large-azimuth wavenumbers, that is, a power decay. 
However, in practice the decay must eventually be faster 
because of the SAR antenna pattern and other effects like a 
limited scene coherence time. 

If we write r(x) = p•(x)/p•(o) and expand the x-dependent 
part of the exponential factor, we have 

• 2)n G(x, kx) = l•e -•: Z (r(x)t< n! 
n=0 

K(x, K), (29) 

where K is the part in curly brackets in (21). Taking the 
Fourier transform term by term, we obtain 

• 2n 

SSAR(k) = e-•2(Sn(k) + o<ll)) + e -•: • Sr,K(k). n! 
n=l 

(30) 

For I•l < 1, the first term and hence the RAR spectrum 
dominates. Since the functions exp (- t<2)t<2n/n! are concen- 
trated around K - n •/: with maxima approximately equal to 
(2 •rn) - {/2, the corresponding contributions to S SAR shift 
outward along the azimuth wavenumber axis as n increases; 
the main contribution for a certain • comes from terms 

around n = •2. However, when n increases, r(x) n also 
becomes very localized around o, and with the same reserva- 
tions as were mentioned above, we may approximate r(x) n by 
exp {-nxt[A/pd•(o)]x}. The corresponding Fourier transform, 
Sr•K(k), will then be approximately proportional to 

1 (p•:•(o)ktA-'k) - exp - [1 + PH(O)]. (31) 

Since this function extends out to O(n •a), we infer S r.K(k) 
= O(1/n) at • = n •/•. A rough indication of the behavior of 
the sum in (30) is therefore given by the function 

• 2 2 t 

H(s:)=e -•2 Z s: :f/ e - 1 n=l n!n t 
•dt. (32) 

Elementary calculus yields H(•) o• 1/• 2 for large values of 
I1, in accordance with the asymptotic behavior found be- 
fore. The function is drawn in Figure 1, where we first note 
the pronounced maxima for -- 1.2. Equally noticeable, 
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Fig. l. The H function defined in (23)as a function of the 
dimensionless azimuth wavenumber K. 

however, is the significant drop when reaches 2-3, 
suggesting that the nonlinear transform leads to an implicit 
azimuth cutoff in this range. We note that t( = rr corresponds 
to a wavelength 2p!!(o)•/2 which is about the cutoff seen in 
measured SAR spectra. 

We note further that RAR modulation only contributes for 
large values of t( through the constant Pii(o), implying that 
the detailed form of the RAR modulation is of no importance 
in that region. 

To summarize, the preceding analysis leads to the follow- 
ing qualitative picture of the transform. For I•< << 1, S V(k) 
= Sit(k). In the range It( _< O(/x) < 1, SV(k) = Slin(k), the 
linearized SAR spectrum. Around t( I - 1 there is a transition 
range where the nonlinearities become evident. For It( > 1, 
the transformation is strongly nonlinear, and the detailed 
RAR modulation is only of minor importance. 

For a numerical computation of (17) it is convenient 
[Hasselmann and Hasselmann, 1991] to rewrite the series 
expansion as a power series in kx' 

G(x, kx) = Io2e-tC'•P•-•(ø)etCx2P•(X){A(x) + kxB(x) + kx2C(x)) 

where 

= io2e-kx2p,,(o) • knXDn(x), 
n=0 

(33) 

1 1 

Dn(x) • A(x)P•(x)i + (i- 1)! C(x)p•(x) 
for n = 2i, 

(the last term vanishes for i - 0 and 0! - 1) and 

1 

D n(x) = • B(x)p •?•?(X) i for n = 2i + 1, 

and A, B, and C are the expressions involving the correla- 
tion functions in (21). Since A, B, and C need to be 
computed only once, one Fourier transform is necessary for 
each power of kx. 

The necessary number of terms in the expansion to cover 
a certain azimuth wavenumber range may be estimated by 
studying the Taylor series of the H function. Figure 2 shows 
the necessary order of the Taylor expansion of H for a 
relative error less than 10% in the interval [-t(0, %]. The 
maximum error occurs at the end of the interval, and by 
order is meant the maximum power of t( in (32). Covering the 
range up to t( = rr thus requires around 20 terms. 

Some care must be exercised when selecting the spatial 
resolution (Ax) and the size (N) of the two-dimensional fast 
Fourier transform in a numerical evaluation of (17). First of 
all, the spectral computation should cover an azimuth wave- 
number range up to t( = rr, which requires an azimuth spatial 
resolution of at least p;;(o)1/2. Moreover, N x Ax should be 
significantly larger than the extension of the correlation 
functions in (21) in order to avoid aliasing in the spectrum. 
However, the most serious restriction on the size of Ax 
follows by considering the behavior of the G function on a 
finite numerical grid. The value of G at the origin is 102 (1 + 
Pii(o)) regardless of the value of Ikl. At the rest of the 
points, where Ip(x)l < G(x, k x) converges to 0 
when Ikxl increases. Because of the rapid variation of G 
when is large, it is necessary to choose Ax so small that 
exp [-kx2(p•(o) - p•(x))] is sufficiently resolved on the 
grid for the whole range of azimuth wavenumbers. This 
typically necessitates a finer spatial resolution than merely 
peG(o) 1/2 (The numerical resolution necessary for computa- 
tion of (17) should not be confused with the actual resolution 
of the SAR we are considering.) 

Applications of the nonlinear transform to real SAR spec- 
tra are so far limited, but very encouraging [Hasselmann and 
Hasselmann, 1991; Krogstad and Schyberg, 1991]. In par- 
ticular, the observed azimuth cutoff seems to be close to the 
cutoff predicted by the transform. It is conceivable, how- 
ever, that additional azimuth cutoff, for instance, due to a 
finite scene coherence time, sometimes must be applied to fit 
actual data. 

In conclusion, it seems that with a final "fine tuning" of, 
say, the RAR modulation transfer function and the effect of 
multiple looks, the current analytical theory essentially 
explains the ocean to SAR spectral transform. 

I 1.5 2 2.5 3 3.5 

Fig. 2. Approximate necessary order of the series expansion for 
the G function for covering an azimuth wavenumber range -K0 < 
•< •0' 
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