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ABSTRACT

Symmetry considerations indicate that in steady-state conditions, and in the absence of a sea current,
a horizontal interface must move in the direction of the surface geostrophic wind. With currents present,
the interface velocity is the vector mean of the surface geostrophic wind and the current velocity, weighted
respectively by the fluid masses per unit surface area which are affected by the viscous diffusion of vor-
ticity upward and downward from the interface. In turbulent flow with neutral stratification, the ratio
of these masses equals the square root of the density ratio. In transient conditions, the surface drift
velocity has components in the direction of the isallobaric gradient and down a steeping surface slope.
Wave action is responsible mainly for the spreading and the breakup of surface films.

1. Introduction

The vertical velocity and temperature structures of
the upper ocean affect a wide variety of other phe-
nomena. For practical purposes, one is concerned most
often with the value of integral properties like ‘the
horizontal Ekman mass transport and its variations

with time and distance or the changing-heat storage.
A knowledge of conditions at any particular level tends
to be less immediately relevant. The sea surface is an
exception to this general rule. Its temperature de-
termines the rate of evaporation and the infrared
radiation balance of the atmosphere. The direction
and speed of its mean displacement governs the
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movement of oil spills and other surface contaminants.
It also is obviously important as a boundary condi-
tion for interior atmospheric and oceanic motion.

The surface drift velocity has been derived often
as a limiting value of an analysis which involves the
velocity profile throughout the planetary boundary
layer. A recent paper in this journal by Madsen (1977)
is an example of this approach. Theoretical recon-
struction of the velocity profile, however, always in-
volves a variety of additional assumptions about the
vertical stress distribution or about some form of the
turbulence closure problem. Appeal has to be made
to at least one universal empirical constant and the
particular numerical value of the surface stress or of
the corresponding surface friction velocity usually
enters as a scaling factor into this type of analysis.
I believe that as far as the surface drift velocity is
concerned, the relevant information can be obtained
with rather more generality from an elementary
manipulation of the equations of motion. Detailed
knowledge about turbulent processes, the stress dis-
tribution or the velocity profile is not required for
this purpose. A clarification of this matter is the
objective of the present note.

2. Stationary conditions

It is assumed that the turbulent processes in the
water and in the air are of the same nature and that
there is no slippage along the interface v,=v,=v,
for 2=0 (subscripts ¢ and w refer to air and water).
The steady-state motion of the interface satisfies both
the following equations:
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where n is a vertical unit vector and v,,, v,, are the
(surface) geostrophic velocity vectors in the air and
in the water. It will be seen below that the surface
velocity is relatively slow (|v,|<<|vga|). This gen-
erally justifies the neglect of nonlinear terms in the
equations of (surface) motion.

The vertical momentum flux is continuous at z=0,
but its vertical derivative is discontinuous and op-
posite in direction on the two sides of the interface.
Without loss of generality one can write

9%,/ 02
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where r is a positive quantity with a value which
may depend on the physical and turbulence charac-
teristics in the two fluids.

Elimination of the stress gradient between the
preceding equations yields

P X (Vi—V;0)+p,m X (Vo—V,,,) =0, 3)
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which is equivalent to

Parvyo.+Pwv0W
Vy=——————. 4)
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Eq. (4) represents the exact solution for the interface
drift between two stationary Ekman layers. It only
contains the parameter r. It is not affected by the
Coriolis parameter or by possible variations of the
geostrophic velocity along the vertical.

If the surface pressure is denoted by p. and its
height by 4, the surface geostrophic current

1 1 Pa
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where v, is the basic surface current velocity. With
this consideration Eq. (4) assumes the form
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In the absence of a basic current (v,=0), it follows
immediately with full generality that the surface
moves in the direction of the surface geostrophic wind.
In other words for small Rossby numbers, surface
films tend to drift along the surface isobars, regardless
of the nature of the frictional effects.

The actual speed of the surface drift depends on
the numerical value of the parameter r. Considera-
tions of symmetry indicate that the frictional forces,
when scaled appropriately, must be equal and op-
posite above and below the interface. If d, and d,
are the two Ekman depths, the relation

do0%,/02=—d,0%,/03

must always be satisfied for correspondingly scaled
levels z,=2/d, and z,=2z/d,. For z=3'=0 one gets
from Eq. (2)

a

r=—. )
du
Introduction into Eq. (4) yields
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The quantities p,d, and p,d, represent the fluid
masses per unit surface area which are affected by
the viscous diffusion of vorticity from the interface.
It follows that the surface drift velocity is simply
the mean of the geostrophic wind and current veloci-
ties weighted by these two masses.

At an air-water interface, one has in general

Pada
—<1. 8)
Pwdw '
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A simpler, more readily applicable, approximate equa-
tion for v, can therefore be obtained from the Egs.
(6), (7) and (8). It has the form

pala

Voo tve. (6"

V=

Puwlw

We consider first the classical Ekman case of viscous
nonturbulent flow in both media. One has then

In the absence of a basic current (v.=0), it follows
from (6') that

This is the standard formuia for the interface velocity
in viscous Ekman flow (see, e.g., Kraus, 1972, p. 170).
In the turbulent case, for neutral conditions, one has

Ux Usxw UxfPa 3
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where u,, u,, are the friction velocities in air and
water. Introduction into Eq. (6") yields

pa\}
Ve={— ) Vyatve..
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The last expression suggests that the effect of a cur-
rent on the surface translation tends to be relatively
small, if the surface geostrophic wind speed exceeds
the current velocity by a factor of 100 or more.

Eq. (11) remains applicable also in non-neutral
conditions, e.g., in the case of an upward heat flux
which destabilizes both the air and the water below
in the same way. It ceases to be applicable in the
presence of entrainment, when a surface mixed layer
deepens into a stably stratified interior, because the
condition of symmetry is then generally not maintained.
However, the velocity change within the mixed layer
tends to be relatively small in this case. If the layer
is considered to move approximately like a slab, the
stress must decrease linearly with distance from the
interface and it is then permissible simply to equate
the Ekman depth with the mixed layer depth in the
preceding derivation.

(10)

(11

3. Transient drift velocities

. The preceding argument indicates that the motion
of the surface is governed by the pressure and Coriolis
forces. This leads to the balance which is symbolized
by Egs. (3) or (4). The ratio r of the diffusive ca-
pacities of the two fluids, which also enters these
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formulas, tends to remain invariant over a wide range
of circumstances. This is the case not only in balanced
motion, but also in the transient condition. If the
characteristic time scale of the change is inversely
proportional to some frequency w, the Ekman depth—
instead of being simply a function of f—becomes a
function of f—w. However, as the effect is analogous
in the two fluids, it will not change the value of
the ratio 7. -
In nonstationary conditions, we obtain

d a?VgatPwVgw
» (—+fn><>v,=fn><p—-——a il (12)
ot Pa’+Pw

instead of the balance equation (3).
It is convenient to replace the fraction in the last
term by a single vector symbol F. Using the same

- argument which led to Eq. (6’) we then have

Parvga+Pwvgw Pa

F= ~—Vgatve. 13).
par+pw Pw
Eq. (12) then assumes the form
a N
(;+fn><)v.=fn><F 129
/4
which has the general solution
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where Fy is an integration constant. In stationary
conditions Eq. (14) is reduced to (3) or (6”). Otherwise
it depends on the way the forcing F varies with time.

If one replaces F by v,,, Eq. (14) is transformed
into the equation of nonsteady, frictionless, horizontal
motion in the free atmosphere. The solution of that
equation is discussed in standard meteorological text-
books. It involves three physically different parts:
a geostrophic component, an isallobaric component
which is proportional to the gradient of pressure
changes and an inertial component. Analogous com-
ponents appear in the solution (14) of Eq. (12).
The first and the last terms on the right-hand side
of (14) represent the geostrophically balanced and the
inertial motions. The middle term corresponds to an
isallobaric velocity.

To illustrate this more clearly, it is convenient to
convert the vector equation (12’) into two second-
order, scalar differential equations for the components
#s, v, of v,. The forcing vector F is expressed in its
explicit form specified by the last term in Eq. (13).
On the time scale which is of interest in the present
contest, the current velocity v. can usually be con-
sidered constant because its change requires oceanic
mass displacements over relatively long-time inter-
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vals. With these considerations, Eq. (12') is trans-
formed into

19 1 dv,,
(————+1 u,=r<u,a—-— )+u¢
f2 o f ot

192 1 duyq
(“" “+ 1)'03 =r(vaa+_ >+vc
f*or f ot

It can be seen immediately, in addition to inertial
motions, that the surface velocity is made up of three
parts: one in the direction of the surface geostrophic
wind %,4, 95, which is therefore parallel to the surface
isobars, a second in the direction of the current u., v,
which is parallel to the contour lines of the surface,
and a third which is normal to the lines of equal
change of geostrophic velocity, i.e., normal to the
isallobars. For example, if one considers a geostrophic
wind of changing force but constant azimuth along
the x direction (2g=0v,,/8¢=0, du,,/3t%0) the second
equation (15) shows that the surface velocity must
have a finite component v, along the y axis in the
direction of falling pressure. Eqs. (15) show also that
if inertial oscillations are supressed, the surface drift
would remain in phase with a tuming geostrophic
wind of constant force.

The isallobaric component of the surface drift be-
comes relatively large if the characteristic time scale
of the pressure change is shorter than half a pendulum
day (w/f>1). This can be easily the case in deepening
hurricanes for example. One might find there a surface
drift toward the storm center in spite of a divergent
Ekman transport in the opposite direction. In the
initial stage of hurricane development, this may be
associated with a convergence of surface water into
the pressure center, as was demonstrated by O’Brien
and Reid (1967) in a numerical analysis. In the case
of 2 moving pressure trough, the area of greatest
pressure decrease lies ahead of the trough line and
behind the preceding pressure ridge. The isallobaric
effect in this case causes a reduction of the surface
drift velocity along the ridge and a speed-up along
the trough line.

It is now easy to assess also the effect of a possible
change in the geostrophic current velocity v, In
analogy to the isallobaric wind, it would produce a
drift down a steepening surface slope. However, on
the synoptic scale, the magnitude of this drift com-
ponent, which is directly proportional to the change
in slope, is very small compared to the other drift
components. It may be more important on the
seasonal scale.

The preceding arguments cease to be applicable
when there is no symmetry in the stress distribution

(15)
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above and below the interface. This happens obviously
at the surface of a shallow water body which is af-
fected by bottom friction. Another case in point is
the one-sided entrainment of stably stratified fluid.
Surface waves may also be a cause for asymmetry.
Although the classical theory of irrotational surface
waves describes a motion pattern which is essentially
symmetric, and although this applies also to secondary
effects like the Stokes’ drift, the actual generation of
wind driven waves involves the presence of an atmo-
spheric critical level, where the wave and wind veloci-
ties are equal. This level does not exist in the ocean
and this must be associated with some asymmetry
in the turbulent stress distribution. It is not clear,
however, whether these asymmetries in the immediate
vicinity of the surface can in fact produce substantial
changes in the ratio 7 as defined by Eq. (2). Mixing
by wave breaking may cause further complication,
not only by introducing additional asymmetries, but
by making the whole concept of a surface drift ve-
locity rather ambiguous.

In general, wave action has probably more effect
on the spreading and the eventual breakup of surface
films and oil patches, than on their mean displace-
ment. As the wave spectrum is invariably two-dimen-
sional, it involves transient surface displacements
which make an angle with the mean surface drift.
Furthermore, although the resultant Stokes’ drift
tends to satisfy the equation of geostrophic motion
(Moore, 1969), and although it can be considered
at the surface as being a part of v,, it also has large
oscillatory components which have different directions,
frequencies and amplitudes for different wave-trains.
This can give rise to a mean lateral momentum trans-

port ., It would be interesting to determine this
lateral flux as a function of the wave spectrum char-
acteristics, but this is a problem which goes well
beyond the scope of the present note.
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