
1898 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 4, APRIL 2018

Comparing SAR-Based Short Time-Lag Cross
Correlation and Doppler-Derived Sea

Ice Drift Velocities
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Abstract— This paper shows initial results from estimating
Doppler radial surface velocities (RVLs) over Arctic sea ice
using the Sentinel-1A (S1A) satellite. Our study presents the
first quantitative comparison between ice drift derived from the
Doppler shifts and drift derived using time-series methods over
comparable time scales. We compare the Doppler-derived ice
velocities with global positioning system tracks from a drifting
ice station as well as vector fields derived using traditional cross
correlation between a pair of S1A and Radarsat-2 images with
a time lag of only 25 min. A strategy is provided for precise
calibration of the Doppler values in the context of the S1A level-2
ocean RVL product. When comparing the two methods, root-
mean-squared errors (RMSEs) of 7 cm/s were found for the extra
wide (EW4) and EW5 swaths, while the highest RMSE of 32 cm/s
was obtained for the EW1 swath. Though the agreement is not
perfect, our experiment demonstrates that the Doppler technique
is capable of measuring a signal from the ice if the ice is
fast moving. However, for typical ice speeds, the uncertainties
quickly grow beyond the speeds we are trying to measure. Finally,
we show how the application of an antenna pattern correction
reduces a bias in the estimated Doppler offsets.

Index Terms— Doppler measurement, motion estimation, sea
ice, synthetic aperture radar.

I. INTRODUCTION

W ITH the launch of the Sentinel-1 synthetic aperture
radar (SAR) satellites by the European space agency

(ESA), new possibilities have emerged for monitoring sea
ice motion from space. Through precise estimates of the
azimuth (along-track) center frequency or Doppler centroid,
it is possible to obtain a near-instantaneous measurement
of the motion of surface scatterers parallel to the pointing
direction of the radar antenna. Following the Sentinel-1 level-2
ocean product naming convention, this line-of-sight (LOS)
speed is referred to as a radial surface velocity (RVL) [1].
Doppler-derived RVLs were originally studied in the context of
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ocean wind and surface current retrieval [2] and later demon-
strated over sea ice [3], [4] using data from the Advanced
SAR (ASAR) instrument on-board the Envisat satellite with
encouraging results. The ASAR instrument was not designed
with this product in mind, however, and results using stripmap
data were degraded by antenna gain problems [4], [5]. In con-
trast, the Sentinel satellites are constructed to provide very fine
control over the antenna, orbit, and attitude enabling very high
measurement precision.

Ice buoys with high time resolution are the most natural
source of data for calibration and validation of RVLs over ice,
but the spatial coverage of drifting ice buoys is low as they
provide only point measurements. An attractive alternative is
to use drift fields derived from frequently available satellite
data, where a single SAR scene may cover a swath width in
the order of 400–500 km. 2-D ice drift fields are regularly
estimated by cross-correlating similar image patterns between
pairs of satellite images [6], [7]. A problem with comparing
Doppler measurements derived from a single image to cross-
correlation (CC) drift vectors derived from a pair of images is
that the time separation between scenes can be large (tradition-
ally one to four days). Over such time scales, the motion of the
ice may be highly nonlinear, which prevents a direct quantitive
comparison between the two methods [3], [4]. However, due
to the increased number of SAR missions orbiting the earth,
we are now at a point where images from multiple satellites
can be used together to reduce the time separation between
acquisitions to minutes and hours rather than days. This takes
us closer to a valid assumption of linear drift between the
scenes.

In this paper, we estimate the 2-D ice displacement field
between a pair of scenes from the Radarsat-2 (RS2) and
Sentinel-1A (S1A) satellites with a time spacing of only
25 min. We use global positioning system (GPS) tracks
from a drifting ice station to check that the ice movement
was approximately linear between scenes. The derived CC
drift field is then projected onto the antenna LOS and com-
pared with the Doppler RVL drift showing good agreement.
We present the S1A RVL product in the context of S1A extra
wide swath (EW) mode data, but the algorithm is general
and can be applied to any appropriately prepared SAR data
(see Section III-A for details).

This paper is organized as follows. We first introduce the
data selected for the experiments in Section II. Section III
provides the theoretical background on Doppler frequency
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TABLE I

SAR DATA USED IN THE EXPERIMENT

estimation from S1A data. Section IV details the CC algo-
rithm. Results obtained using the two methods are then com-
pared in Section V. Section VI summarizes our findings and
provides recommendations for future studies of RVL for sea
ice drift measurements.

II. DATA SET

For our experiment, we used three sources of ice drift infor-
mation: GPS positions from a drifting ice station, Doppler-
derived velocities, and CC displacement measurements. The
following gives a brief overview of the data set.

1) Drifting Ice Station: In the first half of 2015, the
Norwegian Polar Institute conducted the Norwegian
Young Sea Ice Cruise (N-ICE) whose objective was
to increase understanding of the effects of decreasing
ice thickness on ice dynamics, energy fluxes, and asso-
ciated local and global climate variables [8]. In late
December 2014, the research vessel Lance was frozen
into an ice floe north of Svalbard to become an ice
station passively flowing with the drifting sea ice toward
Fram Strait. When the floe broke up or the ship exited
the ice, the ship moved back into the ice to freeze
into another ice floe. The ship continually logged its
GPS position with 10-s intervals that we use to check
displacement fields derived using CC.

2) Cross-Correlation Drift: 2-D ice drift vector fields are
regularly estimated from pairs of remote sensing images
by cross-correlating image patches (technical details
given in Section IV). For this purpose, operational
services normally prefer spaceborne sensors with
wide geographical coverage [7]. Traditionally passive
microwave instruments have provided rapid revisit times
and wide coverage, but with poor resolution in the
order of several kilometers. SAR sensors provide a good
compromise between wide coverage and high resolu-
tion by electronic steering of the antenna in elevation,
which periodically illuminates a set of swaths. For
RS2, this normally means the ScanSAR wide ScanSAR
Wide (SCW) mode that covers an area of ∼500 km ×
500 km with a square ground range pixel spacing
of 50 m and a resolution of ∼100 m in each dimen-
sion [9]. This mode uses four beams that cover incidence
angles ranging from 20◦ to 49◦. For S1A, the EW
medium-resolution product covers an area of ∼400 km×
400 km with a square pixel spacing of 40 m and a
resolution of ∼90 m in each dimension [1]. EW mode
images are acquired using five beams (EW1–EW5)
with incidence angles in the range 19◦–47◦. In con-
trast with the ScanSAR mode used on RS2, the S1A

EW product implements the terrain observation by pro-
gressive scans (TOPS) mode that electronically sweeps
the antenna in azimuth in addition to stepping in
elevation. From the archives of RS2 and S1A scenes,
we selected data based on the following requirements.
A spatial overlap of at least 40% between images was
desired to obtain a reasonably large 2-D drift field
using CC. At the same time, we wanted the time
spacing between images to be as small as possible, while
still allowing the ice to be displaced sufficiently to be
measured by pattern matching. Furthermore, the search
was limited to image pairs where the ship was located
within both scenes, which allows comparison with GPS
positions. Because sea ice drift speeds are small com-
pared with surface wind speeds, we also wanted to
have reasonably high drift speeds to increase chances
of having detectable Doppler shifts. Therefore, we also
included the ice speed (estimated from the ship’s GPS)
in the search. The image pair (S1, R1) in Table I stood
out as an excellent candidate. The other scenes are used
for calibration investigations.

3) Doppler-Derived Drift: The Doppler estimation algo-
rithm requires a full-bandwidth processed single-look
complex (SLC) image as input. This is not a standard
S1A product and we therefore require that the raw
unfocused (level-0) data are available, so a custom
SLC can be created without using window functions,
thereby retaining the full bandwidth of the data. Raw
data were not available for RS2, and hence Doppler-
derived velocities were calculated for S1A scenes only.
We therefore use Doppler anomalies from homogeneous
parts of S2 to calibrate the Doppler anomalies in S1.

All the scenes had two polarization channels: horizon-
tal transmit/horizontal receive (HH) and horizontal trans-
mit/vertical receive (HV). In our experiments, we have focused
on the HH polarization only. This has long been the preferred
channel for many sea ice applications; however, the algorithms
are not limited to use a particular polarization. For CC drift
estimation, it has been shown that the use of both chan-
nels may be beneficial [7]. Although the Doppler estimation
algorithm presented in Section III does not assume a parti-
cular polarization, it should be noted that the signal-to-noise
ratio (SNR) over ice and water is often lower compared
with HH, which will lead to larger uncertainties in the RVL
estimates.

III. DOPPLER-DERIVED RADIAL SURFACE VELOCITY

MEASUREMENT AND CALIBRATION

The SAR imaging process can be formulated as a convo-
lution of the transmitted signal modulation with the ground
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reflectivity, weighted by the antenna directivity pattern [10].
High resolution is achieved by pulse compression in both the
across-track and along-track direction by proper modeling and
matched filtering of the target phase history φ = −2k R [rad],
where R is the sensor–target range, k = 2π/λ is the wavenum-
ber, and λ is the wavelength. As the satellite moves, the relative
range between the antenna and the ground changes at a rate Ṙ,
introducing Doppler shifts in the signal. The angular Doppler
centroid in radians/second

�dc = −2k Ṙ(τ0) = −2kvrel · r̂ (1)

is the frequency offset corresponding to the time τ0 when the
target is in the beam center. Here, vrel = vt −vs is the relative
velocity between the sensor (vs) and target (vt ), and r̂ is a unit
vector pointing from the sensor to the target. Note that only the
projection of the relative velocity onto the LOS matters, and
hence any along-track target motion is not observable using
Doppler measurements.

Angular frequencies in radians/second are related to their
linear counterpart in hertz by a factor 2π . The pulsed nature
of the SAR system limits the observable �dc values to the
baseband region [−�prf/2,�prf/2], where �prf is the angular
pulse repetition frequency (PRF). In general, the Doppler
centroid, � �

dc, may be expressed as � �
dc = �dc + M�prf,

where �dc is the fractional Doppler centroid and M is an
integer referred to as the Doppler ambiguity [10]. It is common
for SAR satellites to follow a yaw-steering law that adjusts the
antenna pointing direction as a function of latitude to provide
M = 0. In this paper, we therefore consider only the fractional
part (� �

dc = �dc), but in general the ambiguity would have to
be estimated as well. Estimation of both �dc and M is covered
in standard texts on SAR such as [10, Ch. 12]).

At any position, we can model the measured Doppler
centroid as a linear combination of: 1) Doppler shifts due
to the relative sensor–target motion as predicted by (1) and
2) Doppler shifts due to antenna effects

�dc ≈ �geom +�phys +�em (2)

where �geom is the contribution due the relative motion
between the satellite and a stationary target on the surface
of the rotating earth, �phys is the geophysical Doppler shift
due to the LOS motion of surface scatterers relative to the
rotating earth, and �em is a bias introduced by the antenna
electronic mispointing [11].

1) Geometric Doppler, �geom: The geometric contribu-
tion can be calculated by solving the range-Doppler
equations taking into account the sensor attitude. This
is explained in great detail in standard textbooks on
SAR (see [10, Ch. 12]). S1A uses total zero-Doppler
steering that combines yaw steering with an additional
pitch steering to provide a nominally zero geometric
Doppler (�geom ≈ 0) across the entire swath [12].

2) Electronic Mispointing, �em: The most commonly used
antennas for spaceborne SARs are phased array systems
that have the ability to electronically steer the beam
in both azimuth and elevation, as well as the freedom
to shape the antenna pattern by varying the amplitude

and phase of each transmit/receive module (TRM). Over
time, the characteristics of the TRMs change due to drift
in the electronics or physical damage to the antenna. For
a given elevation angle, these deviations may cause the
maximum gain to occur at an azimuth angle slightly
offset from the nominal pointing angle, which intro-
duces an unintentional squint. The effect, known as
electronic mispointing, contributes to an offset �em,
which is a function of elevation angle only. If the
embedded row patterns, error matrix, and excitation
coefficients are available, the full antenna pattern can be
simulated and the mispointing estimated directly using
the antenna model presented in [13]. However, publicly
available auxiliary calibration files for S1A (referred to
as AUX_CAL in ESA documentation [14]) provide only
two slices of the antenna, and this dyadic approxima-
tion hence does not capture the range variation of the
mispointing. Alternatively, �em can be estimated from
data over stationary areas of homogeneous backscatter.
This is discussed further in Section V where mispointing
profiles predicted by the antenna model are compared
with estimates from rainforest data.

3) Geophysical Doppler, �phys: By explaining away con-
tributions from the motion of the earth and antenna
effects, we can invert (2) to obtain the parameter of
interest, �phys; the Doppler shift due to the geophysical
motion of scatterers on the surface

�phys ≈ �dc −�geom −�em. (3)

Referring to (1) and (3), the target LOS speed ur can be
calculated as

ur = −�phys

2k
. (4)

Chapron et al. [2] interpreted the target speed ur using a
simple geometrical model

ur =
〈
(ug sin θi − uv cos θi )σ

(
θ �

i

)〉〈
σ
(
θ �

i

)〉 (5)

where �·� denotes ensemble averaging over the local incidence
angles θ �

i , θi is the angle of incidence at the center of the
estimation cell, ug is the target speed tangential to the surface,
uv is the target speed normal to the surface, and σ is the signal
intensity. Following [3], assuming homogeneous backscatter
and no vertical motion in the central ice pack (uv = 0), we can
approximate the ground range surface velocity ug as:

ug ≈ ur

sin θi
. (6)

This is of course not always a good assumption, and we
discuss this further in Section V. The rest of this section details
the baseband Doppler centroid estimation algorithm.

A. Preprocessing
SLC data for the EW mode are not a standard product

delivered by ESA. We therefore take the unfocused raw
data (level-0) as our starting point and focus each burst to
an SLC using an ω–K algorithm adapted for TOPS mode
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data [15]. No window functions are applied during focusing,
thereby retaining the full bandwidth of the data.

Let I (m)(t) denote the mth complex-valued SLC burst
where t = (t, τ ) denotes the range time (t) and azimuth
time (τ ). While acquiring each burst, the TOPS mode sweeps
the antenna in azimuth, changing the beam center angle at
a rate kψ [rad/s]. The one-to-one relationship between the
beam center angle and the Doppler centroid means that a
linear sweep of the antenna introduces an approximately linear
change in the Doppler centroid at a rate ka [Hz/s] given by

ka ≈ −2vs

λ
kψ

where vs is the platform speed. This phase ramp in the SLC
data must be removed before traditional Doppler estimators
can be used [16]. A deramped SLC burst, I (m)d (t), can be
produced by multiplying the burst with a chirp

I (m)d (t) = I (m)(t)e− j kt (τ−τ (m)c )2 (7)

where j = √−1, kt = ka/α, and τ (m)c denotes the azimuth
time of the mth burst center.

As described in [16], the range-dependent factor α given by

α = 1 + ka

|kr | (8)

can be interpreted as an antenna scaling factor relating a
physical antenna operating in TOPS mode to a mathematically
equivalent scaled antenna operating in stripmap mode. Here

kr ≈ −2v2
eff

λr0
(9)

is the range-dependent Doppler rate, veff = (vsvg)
1/2 is the

range-varying effective sensor speed (see [10, p. 127]), vg is
the ground speed of the antenna footprint, and r0 is the range
at the time of closest approach.

After deramping, the bursts are merged onto a common
grid to obtain a connected SLC image I (t) per swath using
the procedure outlined in the Appendix. From each swath,
the Doppler centroid is estimated blockwise on a regular grid
where the block size is 298×228 pixels in range and azimuth
direction (∼ 4.2 × 9.5 km), respectively, and the step size is
25% of block side lengths. The Doppler estimation procedure
is described in the following section.

B. Doppler Estimation and Side-Band Correction

Doppler centroid estimators exploit the observation that the
azimuth power spectrum of the data, P(� ; t), is related to
the two-way azimuth antenna directivity pattern D(�), where
� denotes the azimuth-direction (Doppler) frequency [17].
The observed power spectrum estimated from a block of data
centered at time t is given by

P(� ; t) =
∫

dt �
∣∣∣∣
∫

dτ � I (t �)h(t � − t)e− j�τ �
∣∣∣∣
2

(10)

where h(t �) = hr (t �)ha(τ
�) is a dyadically constructed window

function satisfying
∫

hr (t �)dt � = ∫
ha(τ

�)dτ � = 1 and the
integration is over a data block of size (Br , Ba) in range

and azimuth, respectively. Estimation of the Doppler centroid
therefore amounts to finding the Doppler frequency �dc that
provides the best fit between the observed power spectrum
and a model spectrum based on the expected antenna pattern
described below.

The antenna pattern extends well beyond the PRF, which
means that energy in the side bands, i.e., signal components
outside the main band [−�prf/2,�prf/2] will fold (alias) into
the main band resulting in azimuth ambiguities (also referred
to as ghost images) [10]. This is equivalent to energy from
neighboring geographical areas influencing the spectrum of
the estimation area. The degree of aliasing depends on the
PRF location relative to the antenna pattern, but typically there
is only significant energy coming from the first side band.
In the case of high SNR and homogeneous data, this aliasing
process results in a power spectrum that is well modeled
by a raised cosine [18]. This is the motivation for time-
domain estimators that exploit the Fourier pair relationship
between the autocorrelation function and the power spectrum
(Wiener–Khinchin theorem) [18]. In inhomogeneous areas,
backscatter registered through the side bands of the antenna
may contribute significantly to the total power. This typi-
cally happens close to shore, where the beam center covers
the ocean that may have low backscatter, while the side
bands cover neighboring mountain areas with high backscatter.
A consequence of the pulsed operation of the SAR system
is that the spectrum is periodic. For a stripmap system, this
periodicity follows the raw data PRF, �prf, but for TOPS,
we need to take into account the antenna scaling factor α
making the data periodic with a separation of �� = �prf/α.

Building on the work in [18] and [19], Engen and
Johnsen [20] therefore modeled the expected power spectrum
P(� ; t) as the sum of the frequency folded antenna pattern
weighted by the average intensity σ(tl) within each side band
and a white noise component b(t) capturing the thermal and
quantization noise.

By introducing the normalized azimuth frequency η =
�/��, the model for the azimuth spectrum can be expressed
as

P(η; t) = W (η − ς0)

[∑
l

σ(tl)Dl (η − ς(tl))+ b(t)

]
(11)

where

Dl(η) = D((η + l)�prf) (12)

is the two-way antenna gain pattern of the lth side band, W is a
window covering the critical bandwidth ��, centered on ς0,
the normalized Doppler centroid used during focusing, and
ς is the normalized Doppler centroid we wish to estimate.
The time tl = t + �tl is the position of the lth ghost image
where the range component of �tl is the range migration and
the azimuth component is l · fprf/kr (�tl = 0 for l = 0).

The corresponding autocorrelation coefficients (index by n)
given by

pn(t) =
∫

dηP(η; t)e j2πnη (13)
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are then

pn(t) =
∑

l

fn(tl)dn(l +�l(tl))+ b(t)δn (14)

where fn(t) = σ(t)e− j2πnς(t) are the side-band corrected
autocorrelation coefficients, �l(t) = ς0 − ς(t) is the offset
between the Doppler centroid used during focusing and the
true Doppler centroid, δ is the Kroenecker delta function
(δ0 = 1, δn 	=0 = 0), and

dn(λ) =
∫

dηD(η)W (η − λ)e j2πnη . (15)

The coefficients f1 and f0 are of special interest as the
first coefficient provides an estimate of the average signal
intensity and the true Doppler centroid, and the zeroth-order
coefficient can be used to estimate the additive noise level.
We can invert (14) solving for f1 by introducing

�(t) =
∑

l

f1(tl)(d1(l +�l(tl))− d1(l)) (16)

expressing the first correlation coefficient as

p1(t) =
∑

l

f1(tl)d1(l)+ �(t) (17)

and exploiting the Fourier shift property

p̃1(ω) =
∑

l

f̃1(ω)e
− jω·�tl d1(l)+ �̃(ω) (18)

from which we can obtain

f1(t) = F−1
{

p̃1(ω)− �̃(ω)∑
l d1(l)e− jω·�tl

}
. (19)

Here, x̃(ω) = F{x(t)} denotes the Fourier transform of x(t)
with corresponding inverse transform x(t) = F−1{x̃(ω)} and
the implicit dependency on f1 through � can be solved by
fix point iteration of (19) starting with the assumption that
ς = ς0 (� = 0). The Doppler centroid is then �dc = ς�prf.

If the described Doppler estimation algorithm is applied as
stated to the SLC data, a trend in the Doppler can be observed
within each burst (see Fig. 1). This can be explained by the
elevation direction antenna element pattern (AEP) envelope
that weighs the total phased array beam pattern and biases
the beam center slightly. The effect can be mitigated by either
calculating the resulting Doppler offset and including another
correction term in (5) or by dividing the raw data by the
element pattern to flatten the data before Doppler estimation.
Antenna pattern profiles are provided in the AUX_CAL auxil-
iary files made available at https://qc.sentinel1.eo.esa.int/. Both
options provide tradeoffs. On the one hand, postprocessing
the estimated Doppler shifts is still sensitive to the small
radiometric discontinuity at burst overlaps that can introduce a
scalloping pattern with significant harmonics in the estimated
Doppler values. On the other hand, applying a gain correction
to the data will color the noise and is therefore strictly not
in agreement with the proposed model, which assumes white
noise. However, the gain correction is very small and exper-
iments where both methods were tested with rain forest data
showed that the gain correction method gave similar results to
the Doppler postprocessing method, while providing cleaner

Fig. 1. Effect of AEP correction of raw data on Doppler centroids estimated
from the EW3 swath of the S3 rainforest scene. If the correction is not
applied, the estimated Doppler centroids contain an approximately linear trend
in azimuth within each burst.

estimates in burst overlap zones. We therefore recommend the
gain correction method. Uncertainties related to calibration of
the Doppler offsets are further discussed in Section V.

IV. CROSS-CORRELATION DRIFT ESTIMATION

Motion estimation algorithms are often categorized into
pixel-based and feature-based algorithms. Pixel-based algo-
rithms (see [7], [21], [22]) use the pixel information directly
to maximize a measure of similarity between images, while
feature methods (see [23]–[25]) first detect interest points
and match derived features. Among pixel-based methods,
CC algorithms are the most popular and they have been
used for a long time for motion estimation from SAR [6].
Using drifting ice buoys as reference, studies on the accuracy
of CC methods with SAR have reported root-mean-squared
error (RMSE) values as low as 300 m when using buoy
data [22]. Hollands and Dierking [26] obtained RMSE values
in the order of 400–560 m using manually drawn vectors
as a reference. For comparison, a feature matching method
was recently presented with a reported RMSE of 202 m
when compared with manually drawn vectors [25]. However,
the accuracy will vary depending on the time separation
between the images as longer time separation increases the
chance of image pattern decorrelation. Thus, it is expected that
studies combining multiple satellites like S1A and Sentinel-1B
will perform well just due to the increased time resolution. The
specific algorithm used in our example is as follows.

Given two detected images A1 and A2 and a set of latitude/
longitude positions (θlat(k), θlon(k)), k = 1, . . . , K , we find
the pixel corresponding to the geographical reference point in
each of the two images, p1(k) = (x1(k), y1(k)) and p2(k) =
(x2(k), y2(k)). Around each point, we extract a square block
of data with side length w = 129 (∼6.5 km) and compute the
normalized CC (NCC)

ρ(sx , sy) =
∑

x

∑
y

b1(x, y)b2(x + sx , y + sy) (20)

where the image blocks b1 and b2 have been normalized by
subtracting the mean and dividing by the standard deviation.
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The offset that maximizes the correlation is taken as an
estimate of the displacement of the reference point in pixels

ŝ = (ŝx , ŝy) = arg max
(sx ,sy)

ρ(sx , sy) (21)

where coordinates are relative to the block center. Thus,
if we extract a block from A2 centered on p′

2 = p2 + ŝ,
it should look similar to b1. Blockwise correlation is repeated
independently for each geographical reference point, forming
a collection of point correspondences {( p1(k), p′

2(k))}K
k=1.

The algorithm blindly maximizes the correlation which
may be low over, e.g., open ocean. Therefore, some of the
estimated vectors will likely be incorrect. It is common to
reduce incorrect vectors by thresholding the NCC under the
assumption that low NCC values indicate incorrect matches.
In our case, all vectors with an NCC value of less than
0.3 were discarded. However, this is often not enough to
filter out all incorrect matches. Therefore, several algorithms
employ a two-pass strategy where the first pass matches
reference points from A1 to A2 and the second pass takes the
matched points p′

2(k) as reference points in A2 searching for
matches p′′

1 (k) in A1 [7], [21]. If the estimate obtained in the
backward pass agrees with the initial reference point (|| p1(k)−
p′′

1 (k)|| = 0), the match is accepted. This strategy removed
the majority of the incorrect points.

Several motion estimation algorithms include steps to
account for large displacements using multiresolution analy-
sis [27] and some also include rotation estimation via the
log-polar transform [7], [28]. The short time lag between
the scenes used in this paper made such optimizations not
necessary and we settled for a very basic implementation.

SAR images are degraded by speckle, a noise-like phe-
nomenon, which is a consequence of the coherent imaging
process [29]. Speckle is often modeled as multiplicative noise,
which means that high intensity areas have a larger intensity
variation than low backscatter areas. Better estimates of the
noise free backscatter intensities can be obtained through a
process known as multilooking, where the SAR signal band-
width is split into a set of frequency bands. An image (“look”)
is formed from each band, and all looks are incoherently
averaged to form a smoothed (lower resolution) version of
the original image. Typically, wide swath SAR data are
already multilooked when delivered (see Table I), so no further
smoothing has been applied. Before input to the correlation
algorithm, the following preprocessing was applied using the
open source Sentinel-1 Toolbox [30]. A logarithmic transfor-
mation of the image intensities was used to reduce the dynamic
range of the data and ease visual interpretation. Each image
was then geocoded to a north polar stereographic projection
using square pixels with a spacing of 40 m (the nominal
pixel spacing for S1A) including terrain correction with a high
resolution digital elevation model (DEM) for Svalbard.

V. RESULTS AND DISCUSSION

To assess that the CC algorithm performs as expected,
we compared the estimated CC drift with GPS positions of the
research vessel Lance that was frozen into and drifting with
the ice. We placed a reference point at the GPS coordinate

that was closest in time to scene S1 and measured the drift
between S1 and R1 for that specific position. The estimated
displacement differed from the GPS position by less than one
pixel in the geocoded image (within 40 m). The accuracy
is attributed to the small time lag between S1 and R1 and
will in general be poorer. Depending on the amount of
deformation and speckle, the matching could in general be
off by several pixels. Using 100-m pixels and longer time
lags between images, earlier validation studies found RMSE
values of around 400–600 m for similar correlation algo-
rithms [7], [27]. The geolocation accuracy of S1A over land
has been found to be very good [31]. However, the combined
effects of speckle, changing viewing geometry (ascending
and descending pass from different satellites), interpolation
artifacts, and geolocation uncertainty over ocean mean that
subpixel displacement estimation will likely not make sense.
Therefore, no subpixel estimation was implemented, which
optimistically limits the resolvable displacements to the pixel
spacing of the geocoded product. Hence, a time lag of 25 min
and a pixel size of 40 m mean that we cannot resolve
speeds less than 3 cm/s. In order to assess the impact of
speckle and the changing viewing geometry on the estimated
CC drift, we look at displacements estimated over land
assuming that the land is stationary during the time between
acquisitions. A DEM with a resolution of 50 m was used for
terrain correction during geocoding and visual inspection of
the coastline shows good agreement between scenes. A few
one-pixel displacements were found over land, which is
attributed to speckle and interpolation noise. This gives an
estimate of the noise in the CC drift and displacements less
than two pixels were therefore ignored in the comparison.

To simplify comparison between the Doppler-derived drift
and the correlation drift (Section V-B), we used the center of
each Doppler grid cell as reference positions when estimating
the CC drift. This allows direct cell-to-cell comparison without
further interpolation. Because of the small time lag, the dis-
placements measured using CC between S1 and R1 were also
small. Therefore, visual inspection of the arrows at their true
scale does not easily reveal trends in the flow. Instead, Fig. 2
shows a subset of the displacement vectors where the length
has been greatly exaggerated to illustrate the relative changes
in flow direction across the image as ice drifts from west to
east. At near to midrange, the flow is almost directly toward
the LOS of the antenna that should allow good estimation
of the Doppler component. At far range, however, the flow
direction has a stronger along-track component [Fig. 2 (left)]
than across track, and hence the observable speeds using the
Doppler estimator should be lower. The pair (S1, R1) was
acquired during high wind conditions with mean wind speeds
between 15 and 16 m/s in the time between the two scenes.
Corresponding ice drift speeds as measured with the ship GPS
were 0.26–0.31 m/s over the same period. Because of the
gradients in the drift direction and the high drift speeds caused
by the wind, the pair (S1, R1) represents the ideal case for a
direct comparison between the Doppler-derived drift and the
CC drift. The rationale is that if it is not possible to observe the
drift under these conditions, there is little hope in measuring
slower drift speeds (which is the normal situation [32]).
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Fig. 2. Amplitude SAR images in a polar stereographic projection with
overlaid displacement vectors showing ice moving from west to east. Only a
subset of the estimated vectors are shown and the length of the vectors has
been greatly exaggerated in order to indicate the overall flow direction. The
northern part of Svalbard is visible in the bottom end of the images. Satellite
flight and look directions are indicated by white arrows.

Before comparing the CC and radial surface velocity mea-
surements, it is worth considering sources of uncertainty to
allow correct interpretation of the results.

A. Doppler Calibration
The two main challenges for estimating sea ice drift using

Doppler shifts are estimator variance and mispointing determi-
nation. For S1A, an offset of 1 Hz in Doppler would translate
to an error in the LOS velocity of 2.8 cm/s. When the incidence
angle is taken into account in the conversion to ground range,
the 1-Hz error grows to 3.8 cm/s at 47◦ and 8.6 cm/s at 19◦.
Average ice drift speeds in the central Arctic are in the order
of 3–20 cm/s [32]. Thus, accumulated errors of a few hertz
quickly reach the target speeds we want to measure, and it is
therefore imperative that all known system effects are taken
into account before interpretation of the Doppler anomaly
measurements. The precision of the Doppler estimator is good
with standard deviations in in the order of 2–5 Hz over
homogeneous rain forest areas for EW model data with an
estimation cell size of roughly 6 km × 6 km. Assuming
bias-free correction of the mispointing and geometric Doppler,
further reduction of the standard deviation should be possible
using ensemble averaging.

Fig. 3 shows examples of mispointing profiles estimated
from rainforest data (scenes S2 and S3) and profiles predicted
by the antenna model from [13] for each of the S1A EW
swaths. For the HH polarization, the electronic mispointing
profiles predicted by the S1A antenna model coefficients
provided by Airbus Defence and Space do not agree well
with Doppler profiles estimated from rainforest data for all
swaths. The profiles for EW1 and EW2 deviate significantly
in shape from profiles estimated from data, and hence it
is difficult to draw any conclusion from these swaths. For
EW3–EW5, the deviation between model and data is generally

less than the variability of the Doppler estimator. The agree-
ment between the antenna model and estimates from data
seems to be better in the case of vertical polarization,
although EW1 and EW2 still have significant deviations.
It would therefore be interesting to perform this analysis using
vertical transmit/vertical receive (VV) data as opposed to HH.
Unfortunately, no S1A vertical transmit/vertical receive (VV)
polarization data were over ice during the N-ICE campaign.

Assuming that electronic mispointing profiles are accurate,
the mispointing profiles can be joined to form a single
profile covering all swaths. Any residual offset can then
be accounted for by subtracting the average Doppler offset
calculated over flat and homogeneous land areas. However,
given that our knowledge of the mispointing is poor for some
swaths, we have chosen to calibrate each swath individually by
subtracting the mispointing profile and subsequently removing
any residual offset over land. This prevents any errors in
mispointing from EW1 and EW2 to propagate into the other
swaths. Note that EW5 does not cover any land areas, and
therefore only the mispointing profile has been accounted
for in this swath. The S1A satellite uses total zero-Doppler
steering to provide a nominally zero geometric Doppler. How-
ever, [33] presented data-derived geometric Doppler estimates
using S1A wave mode data over land, which revealed a
latitude-dependent geometric Doppler variation with offsets
up to 50 Hz. Geometric Doppler values as predicted using
the downlinked quaternions are severely underestimated.

B. Comparing Doppler-Derived Velocities and
Cross-Correlation Velocities

The calibrated Doppler RVL product can now be compared
with the drift measured using CC. For direct comparison,
the CC velocities were projected onto the ground projection
of the vector pointing from the sensor to the center of the
Doppler estimation cell. Since the CC drift used reference
points placed at the cell centers, no interpolation of the vectors
was required. A side-by-side comparison between: 1) CC drift
as measured between S1 and R1, projected onto the LOS of
S1 and 2) Doppler-derived speeds obtained using only S1 is
shown in Fig. 4. The ice edge is easily identified as an abrupt
transition from lower to higher speeds, and the overall gradient
in the drift speeds is also similar in the two RVL plots. Fig. 5
shows binned scatter plots between these two measurements
for each of the EW swaths.

As explained above, EW1 and EW2 have larger uncer-
tainties with respect to mispointing and geometry correction.
These two swaths also contain a large amount of wide
open cracks in the ice, which is likely to bias the Doppler
estimates. We are therefore not able to interpret the results
with much confidence; however, they are shown for com-
pleteness. Furthermore, 1/ sin(θi ) changes dramatically from
near range (EW1) to far range (EW5), causing errors at
near range to scale very quickly when converted to ground
range [see (6)]. Hence, we expect the variance of the ground-
projected Doppler estimates to improve as we go from near
toward far range.

Except in the marginal ice zone (MIZ), leads in EW3–EW5
seem to be small. We therefore expect the signal away from
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Fig. 3. Comparison between electronic mispointing estimated from data and predicted by antenna model showing much better agreement for VV than HH.
Gray dots indicate estimates from data, while the black solid line shows antenna model predictions.

Fig. 4. Side-by-side comparison of (Middle) Doppler-derived speeds
with (Right) CC speeds projected onto the LOS for the EW3 swath.
(Left) Amplitude image is oriented with azimuth up and range right and shows
the sea ice in the bottom half and open ocean, as well as the North end of
Svalbard in the top half.

the MIZ to be predomenantly from the ice. Linear regression
between the two variables gives a slope around 1.3, which
indicates that calibration of the Doppler is not perfect. This
is not surprising as we do not have perfect knowledge of the
antenna mispointing as well as a known underestimation of
the geometric Doppler contribution as mentioned earlier. Drift
speeds above 0.5 m/s are all observed in the MIZ and open
water. We were able to obtain CC drift in these areas because
of floating bands of ice in the open water that could be matched

reliably. It is clear that the Doppler signal in the MIZ and open
water is dominated by waves and ripples on the water surface.
Hence, the two methods no longer measure the same thing,
and the CC values therefore underestimate the “drift” due to
the wind. The CC drift speeds saturate around 1 m/s, which
is high, but not unheard of during storms.

Due to the size of the estimator variance relative to the
expected ice drift speeds, it is likely not meaningful to interpret
the Doppler values on a pixel-by-pixel basis. Over open ocean,
the observed Doppler will be a combination of contributions
from swells, surface wind, and surface currents. Dense pack
ice far away from the MIZ should in principle be the easiest
to interpret under the assumption that vertical motion can
be neglected. In general, however, the assumption of no
vertical motion component in the ice may not be valid until
several kilometers into the MIZ [34]. However, if leads are
present within a resolution cell, there will unavoidably be a
mix between signals from ice and water. This is even more
complicated in the MIZ where we always have a mix of ice
and water. Also, ridges, rubble fields, brash ice, or frost flowers
cause intensity variations relative to smooth ice. Fourier-based
Doppler estimators are very sensitive to such intensity varia-
tions, and it has been shown that the uncertainty of the Doppler
estimates grows as the within-cell contrast grows [19]. Large
intensity contributions from the side bands are accounted for
during Doppler estimation, but the within-cell variance is still
an open issue. Madsen [18] proposed a Doppler estimator that
considered only the signs of the real and imaginary part of
the SLC data to make the estimator more robust to intensity
variations; however, it did not account for the side bands.

The Doppler method struggles to reliably estimate the speed
of slow moving ice. The advantage of the Doppler method lies
in its ability to obtain estimates even when the assumption
of pattern stability does not hold. This becomes especially
relevant when the ice is fast moving, and we therefore consider
the Doppler method to be complimentary to CC drift estima-
tion. However, if the reason for lack of pattern stability is that
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Fig. 5. Scatter plot between projection of CC vectors onto LOS of scene S1 (x-axis) and Doppler RVLs (y-axis). The solid line is the one-to-one line and
the dashed line shows a least squares linear regression between the two variables with parameters listed in the box. The drift from west to east (see Fig. 2)
means that the drift is toward the radar, and hence we get negative speeds. (a) EW1. (b) EW2. (c) EW3. (d) EW4. (e) EW5.

the surface has gone from dry to wet, the loss of backscatter
and hence low SNR means that the Doppler shift cannot be
measured reliably. Mixing of signals from ice and water could
potentially be solved by separate Doppler estimation over ice
and water. However, automated ice/water discrimination using
SAR data is not trivial and estimation of the Doppler centroid
over irregular regions needs to be further explored.

For the Doppler-derived measurements, significant spatial
averaging was needed to reduce the variance. Before creating
the scatter plot, the Doppler measurements were averaged
over a region of 11 km ×11 km. The flow field measured
between S1 and R1 was highly regular with smooth large-
scale trends as shown in Fig. 2. However, in general, there
may be fronts and shear zones introducing discontinuities in
the Doppler grid in which case averaging over such a large
area may not be meaningful. The combination of low spatial
resolution and the necessity of spatial averaging over large
geographical areas to reduce estimator variance means that
the EW mode is not ideal for large-scale investigations of
Doppler-derived ice speeds. Higher resolution modes like the
interferometric wide swath (IW) or wave modes implemented
on S1A are likely better candidates for panarctic studies.

VI. CONCLUSION

We have presented SAR Doppler measurements for sea ice
motion estimation using the preferred modes for operational
monitoring of Arctic sea ice: SCW for RS2 and EW for S1A.
For fast moving ice, we are able to see a trend in the

Doppler-derived velocities, which is consistent with velocities
observed using CC. Calibration of the Doppler offsets is
difficult because it requires accurate knowledge of the antenna
in addition to a land reference for absolute calibration. Further-
more, estimation of low drift speeds requires substantial spatial
averaging to reduce estimation uncertainty. The smoothing
must also make sense over the relevant geophysical scales,
i.e., we want to avoid averaging over local deformation zones.
With average drift speeds in the Arctic in the order of
3–20 cm/s [32], the EW mode will not be able to obtain
Doppler estimates with the required precision for the majority
of cases. More precise measurements can likely be obtained by
using the higher resolution modes like IW or wave mode data
instead of the EW mode. As our knowledge of the electronic
mispointing of the antenna improves and restituted attitude
data become available, the proposed methodology could poten-
tially be used (in combination with buoy measurements) for
calibration of Doppler-derived RVLs even without land as
reference.

APPENDIX

MERGING BURSTS INTO A CONTINUOUS SWATH

Targets located at the start and end of a burst have not been
illuminated by the entire antenna pattern, and hence only a
partial azimuth spectrum can be obtained in these regions.
However, the TOPS mode sweeping is designed such that
there is a slight overlap in azimuth between successive bursts
within a given swath. The simplest merging strategy would
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be to truncate the start and end of each burst so that there
is no overlap between neighboring bursts and position them
at the correct azimuth offset in the merged grid. In principle,
the bursts could just be cut at the center of the overlap and
glued together, but in order to preserve the spectral shape in
the overlap, we use a slightly more involved approach.

Given a set of deramped full-bandwidth SLC bursts, I (m)d (t),
we first defocus the data using

I (m)df (t) = I (m)d (t) ∗ c∗(τ ) (22)

where c∗ is the conjugate of the chirp used for azimuth
compression. We then apply a window wb in the azimuth
direction

I (m)w (t) = I (m)df (t)wb
(
t, τ − τ (m)c

)
(23)

which tapers the partially exposed data at the burst edges. The
window is constructed such that the power contributions from
two overlapping bursts at any given azimuth time sum to one∑

m

w2
b

(
t, τ − τ (m)c

) = 1.

We then refocus the data in azimuth, which makes the win-
dow above a sliding window in the azimuth time–frequency
diagram

I (m)rf (t) = I (m)w (t) ∗ c(τ ). (24)

The requirement that the total power contribution of all over-
lapping bursts sum to one at any azimuth time means that we
can produce a merged image by summing the contributions on
a common grid

I (t) =
∑

m

I (m)rf (t). (25)

Note that the above procedure assumes that all bursts are
focused onto the same grid, i.e., every line falls at an integer
multiple of the sample spacing relative to the start time of the
merged data grid. Otherwise, the data have to be interpolated
onto the common grid before the final summation.
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