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ABSTRACT

We consider the energy transfer equation for well-developed ocean waves under the influence of wind, and
study the conditions for the existence of an equilibrium solution in which wind input, wave-wave interaction
and dissipation balance each other. For the wind input we take the parameterization proposed by Snyder
and others, which was based on their measurements in the Bight of Abaco and which agrees with Miles’s
theory. The wave~-wave interaction is computed with an algorithm given recently by S. Hasselmann and
others. The dissipation is less well-known, but we will make the general assumption that it is quasi-linear in
the wave spectrum with a factor coefficient depending only on frequency and integral spectral parameters. In
the first part of this paper we investigate whether the assumption that the equilibrium spectrum exists and is
given by the Pierson-Moskowitz spectrum with a standard type of angular distribution leads to a reasonable
dissipation function. We find that this is not the case. Even if one balances the total rate of change for each
frequency (which is possible), a strong angular imbalance remains. Thus the assumed source terms are not
consistent with this type of asymptotic spectrum. In the second part of the paper we choose a different
approach. We assume that the dissipation is given and perform numerical experiments simulating fetch-
limited growth, to see under which conditions a stationary solution can be reached. For the dissipation we
take K. Hasselmann’s form with two unknown parameters. From our analysis it follows that for a certain
range of values of these parameters, a quasi-equilibrium solution results. We estimate the relation between
dissipation parameters and asymptotic growth rates. For equilibrium spectra, the input, dissipation and
nonlinear-transfer source functions are all significant in the energy-containing range of the spectrum. The
energy balance proposed by Zakharov and Filonenko in 1966 and Kitaigorodskii in 1983, in which dissipation
is assumed to be significant only at high frequencies, yields a spectrum that grows too rapidly and does not
approach equilibrium. One of our equilibrium solutions has a one-dimensional spectrum that lies close to
the Pierson-Moskowitz spectrum. However, the angular distribution differs in some important features from
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standard spreading functions. The energy balance of this equilibrium spectrum is analyzed in detail.

1. Introduction

The problem of evolution of ocean waves under
the influence of wind has been the subject of many
studies. It is known that the spectral wave-energy
density changes in space and time as the result of
several different physical processes: the propagation
of energy, the energy input by wind forcing, the
dissipation of energy through wave breaking (white-
capping) or turbulence, and the exchange of energy
between different wave components interacting weakly
among themselves. In practice, all these processes
compete, their relative importance varying with the
wind-field history and the coastal geometry.

To simplify the problem we will consider the case
of fetch-limited wave growth in deep water and with
a constant wind field. For this situation many obser-
vations have led to a fairly detailed understanding of
wind-sea evolution. In particular, it was found (Has-
selmann et al., 1973) that the shape of the spectrum
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remains approximately similar, so that the evolution
of the wind sea can be summarized by growth curves
of relatively few characteristic parameters.
Mathematically, the evolution of waves is described
by the energy transfer equation (Hasselmann, 1960;
Willebrand, 1975). In this equation the various phys-
ical processes are represented by source terms. It is
evident that there must be a close relationship between
the properties of these source terms and the observed
spectral evolution. In fact, qualitatively many of the
observed features of wave growth can be understood
in terms of known properties of the source terms: the
peak frequency decreases with fetch because the non-
linear interactions transfer energy to lower frequencies;
the growth rate decreases when the dominant wave
speed approaches the wind speed, because energy
transfer from the atmosphere is reduced; the high-
frequency part of the spectrum has a nearly fetch-
independent shape, because in that range the source
terms balance. However, despite our general under-
standing of observed wave growth and the quantitative
support of these concepts by computations of various
source functions for individual spectra, explicit nu-



1272

merical simulations of fetch-limited wave growth in
wave models have not been entirely satisfactory. For
instance, spectral models describing wave evolution
normally make ad hoc assumptions about the way in
which an asymptotic stage is reached and use param-
eterizations of the nonlinear interactions in this region
that are not based on exact calculations, but are
constructed to reproduce the desired growth charac-
teristics (SWAMP, 1984).

A basic problem with numerical wave-growth sim-
ulations has been the difficulty of obtaining reliable
estimates of the nonlinear transfer, since straightfor-
ward integration of the relevant Boltzmann integrals
requires excessive computing time. However, in recent
years several improved integration routines have been
written (Webb, 1978; Masuda, 1980; Hasselmann et
al., 1984a) and the one used by us was fast enough
to allow a series of numerical wave-growth experi-
ments to be made. An earlier account is given by
Hasselmann and Hasselmann (1984).

From this work it became clear that the detailed
evolution of the wave spectrum is a rather subtle
problem. This is related to the large number of
degrees of freedom in a spectral description and the
fact that all three source functions (input, dissipation
and nonlinear transfer) contribute significantly to the
energy balance in the main region of the spectrum.
The resulting energy balance is basically of a two-
scale structure. On a small spatial (or fast temporal)
scale the three source functions achieve an approxi-
mate balance through the rapid adjustment of the
spectral shape. The remaining small imbalance then
determines the actual evolution of the spectrum on
a larger (slower) scale. Although the general features
of the spectral shape and the migration of the spectrum
towards lower frequencies are largely controlled by
the nonlinear transfer (cf. Hasselmann et al., 1973),
one finds that the details of the spectrum near the
peak and thereby also the quantitative growth rates
also depend sensitively on the form of the input and
dissipation source functions.

Fetch-limited wave growth may be divided into
three stages: an early stage, with a power-law evolution
of the parameters, a transitional stage, and a late
stage with strongly reduced growth. Because of the
complexity of the full problem we will limit our
attention in the present paper to the final stage. The
initial and transitional stage will be discussed in a
second paper (Hasselmann et al., 1984b). The appli-
cation of the results of these studies for numerical
wave models using a parameterized form of the
nonlinear transfer is considered by Hasselmann et al.
(1984a).

It is useful to study the final stage first as this
eliminates some of the uncertainties in the dissipation
source function. The dissipation level may be expected
to depend on the mean wave steepness, but it is not
known in which manner. The growth rates and the
transition from the early to the final growth stage are
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quite sensitive to the way this wave-steepness depen-
dence is chosen. In the discussion of the energy .
balance of a fully developed spectrum, however, the
wave-steepness dependence does not appear explicitly,
but can be simply absorbed in the general empirical
constant of the dissipation source function.

The paper consists of three parts. In Section 2 we
summarize what is known today about the source
terms, in Section 3 we study the energy balance for
the conventional Pierson-Moskowitz spectrum as
candidate of a quasi-equilibrium solution, and in
Section 4 we present the results of our numerical
experiments.

2, The energy transfer equation

The evolution of ocean wave spectra can be de-
scribed by the energy transfer equation (Hasselmann,
1960; Willebrand, 1975), which for deep water in the
absence of currents takes the form

oF

E + CgVF = Sin + Snl + Sdis’
where F = F(k; x, ?) is the two-dimensional wave
spectrum, which varies with x, ¢ on space-time scales
large compared to a typical wave length or period.
Wave energy propagates with the group velocity ¢,
and is changed by the three source terms on the
right-hand side representing the wind input, nonlinear
wave-wave interactions and dissipation.

For the wind input we take the parameterization
proposed by Snyder et al. (1981) on the basis of
direct measurements of the work done by the atmo-
spheric pressure fluctuations on the waves,

(2.1)

Si(k) = max[O, 0.25 fﬂ (? cos — l)wF(k)] .2

Here p, and p, represent the densities of air and
water, w = 2mf, us is the wind speed at 5 m, ¢, is the
phase velocity of waves with frequency f, and @ is the
angle between the wind vector and the wave propa-
gation direction. The measurements were made in
the range 1 < (us/c,) cosd < 3. More recent mea-
surements by D. E. Hasselmann, et al. (1984) at
larger fetches in the North Sea, which provided more
data particularly near us/c, ~ 1, are consistent with
(2.2). Eq. (2.2) has to be modified for us/c, > 3 (cf.
Plant, 1982; Mitsuyasu and Honda, 1982) but we
will not need this extension for our present work. In
its range of validity, Eq. (2.2) is in reasonable agree-
ment with the theory of Miles (1959), provided it is
suitably redefined in terms of u, /c,, where the friction
velocity uy = (./p.)"? is determined by the wind
shear stress 7,,.

The importance of scaling wave growth with u,
rather than with the wind speed at a fixed height has
been stressed by many workers (Miles, 1959; Pierson,
1964; Mitsuyasu and Honda, 1982; Plant, 1982;
Janssen and Komen, 1984). Nevertheless, wave growth
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analysis has often been carried out in terms of the
wind speed at a fixed height, for lack of wind-stress
data. If the ratio between u, and us were constant,
this would be immaterial. However, there is ample
evidence that the ratio increases with wind speed (cf.
Smith and Banke, 1975; Smith, 1980). From general
dimensional considerations, Charnock (1955) derived
a universal relation for the increase of the drag
coefficient C, = 2 /u,> with the wind speed u, at
height z in the constant stress layer. Wu (1982)
recently showed that Charnock’s relation can be well
approximated by the simpler formula

Cio = u3/uio* = (0.8 + 0.065u50) X 107, (2.3)

which is consistent with many observations over a
large range of wind speeds. According to (2.3), the
Uy /U)o Tatio varies by as much as a factor of V2 if
u;o varies from 5 to 25 m s~'. This clearly has
important consequences for wave modelling. If e.g.
the dimensionless wave energy E, = Eg*/u} for a
fully developed spectrum, expressed in terms of u,,
were a universal constant (which could be argued on
dimensional grounds) then the dimensionless maxi-
mum wave energy expressed in terms of u;, would
vary over this wind speed range by a factor of 4. As
important as this scaling question is, it is still far
from resolved, as illustrated by the SWAMP (1984)
study. Most of the models compared in the study
scaled with u,o, but several models were also based
on u,-scaling. All models were tuned against mea-
surements and were claimed to give satisfactory pre-
dictions.

We shall adopt u,-scaling, following the dimen-
sional arguments of Charnock (1955), Kitaigorodskii
(1962) and others: if u, is the only external parameter
defining the structure of the atmospheric boundary
layer and its coupling to the ocean, and the generating
mechanism is linear, the input source function must
be of the form S, = B(u,/c,) F (k), independent of
the detailed form of the assumed wave-generating
mechanism. We shall accordingly express Eq. (2.2)
in terms of u,, taking us ~ 0.94u,,, and C;p = 1.12
X 1073, This value of Cy is typical for the values
measured directly by Snyder er al. (1981) and also
follows from Eq. (2.3) for u;o = 5 m s™!, a typical
wind speed for their measurements. With these values
we obtain us/c, ~ 28u, /c,. However, in view of the
uncertainties that enter in the derivation of this
relation we have chosen a slight generalization, namely
us/c, = 288u, /c,, where 8 is an empirical factor we
expect to be approximately equal to one. In this way
we obtain

Si(k) = max[O, 0.25 La

Pw

X (288(ux /c,) cosf — l)wF(k)] . 4)
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The range of uncertainty of 8 is indicated by Mitsuy-
asu and Honda (1982), who scaled the Snyder et al.
parameterization using us = 23u,, which is equivalent
to B ~ 0.85. The effect of small variations of 8 on
the spectral energy balance will be discussed in Sec-
tions 3 and 4.

The second source function Sy, describes the non-
linear energy transfer due to resonant third-order
wave-wave interactions and is given by the Boltz-
mann-integral expression (Hasselmann, 1961)

Sn(K) = w f dk,dk,dkia(k,, k;, ks, k)

X 8 (k; + ky — k3 — K)o(w; + w; — w3 — w)

X [mny(ny + n) — nan(ny + ny)], (2.5)

where the action density n(k) = F(k)/w, w = (gk)'?
and n; = n(k;).

The integral kernel ¢ represents a net scattering
coefficient proportional to the square of an interaction
coeflicient (Hasselmann, 1963a). Equation (2.5) has
been integrated numerically by several workers, using
standard integration techniques (Hasselmann, 1963b;
Cartwright, 1966, unpublished; Sell and Hasselmann,
1972; Webb, 1978; Masuda, 1980). The é-functions
were eliminated by projection onto the three-dimen-
sional resonance subspace of the six-dimensional
k; - k2 - k3, space. Integrable singularities which arise
along the caustics of the resonance surfaces are nor-
mally removed by using stretched coordinates.

Because of the extensive computing time required
in the past to evaluate (2.5), various approximations
to the exact expression have also been considered.
Narrow-peak expansions (Longuet-Higgins, 1976; Fox,
1976; Dungey and Hui, 1979) reproduce many of the
qualitative features of the exact expressions, but are
nevertheless not sufficiently good approximations for
typical wind-sea spectra to be applied in detailed
quantitative investigations of the spectral energy bal-
ance. Similar limitations apply for the dispersion-
operator approximation for small scattering angles
(Hasselmann and Hasselmann, 1981; Hasselmann et
al, 1984a). An accurate and fast algorithm for the
computation of (2.5) remains an important require-
ment for systematic studies of the nonlinear transfer.

In this paper we use a new integration technique
which makes use of the symmetry properties of the
integrand by introducing symmetric variables at the
outset (Hasselmann and Hasselmann, 1981, and Has-
selmann et al., 1984a), thereby reducing the comput-
ing time considerably. Further saving is achieved by
precomputing the integration grid and the interaction
coefficient, and filtering out unimportant regions of
phase space. A compilation of results obtained with
this method for a variety of spectra is given by
Hasselmann and Hasselmann (1981).

For the dissipation source term Sy, we follow
Hasselmann (1974). Under rather general conditions,
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the dissipation was shown to be quasi-linear in the
wave spectrum, with a coefficient ¥, which depends
only on the wavenumber and integral spectral param-
eters, such as the average wave steepness,

Sais(k) = —Ya(K)F(K).

For whitecapping processes that are short in dura-
tion and spatial scale compared with the characteristic
periods and wavelengths of the spectrum, Hasselmann
found ¥, ~ k. The complete evaluation of ¥4(K) is
an outstanding problem in ocean-wave research. It is
a complicated problem requiring both a detailed
knowledge of the hydrodynamics of breaking waves
and the translation of the analysis of individual
breaking events into a spectral description.

In Section 3 we describe a first attempt to infer
VYq(k) for a fully developed spectrum from the re-
quirement that for this situation the dissipation should
just balance the wind input and nonlinear transfer.
However, this approach is not very fruitful, as the
conclusions are found to be very sensitive to the
assumed spectral distribution. In fact, the standard
Pierson-Moskowitz spectrum and angular spreading
functions yield unrealistic dissipation functions.

In Section 4 we adopt therefore the alternative
approach of exploring the consequences of specifying
a particular parameterization for y¥,(k). We assume
the general form

Sad) = —ca(i) (A‘"
w/ \dpm

in agreement with Hasselmann (1974) (for n = 2)
and Hasselmann and Hasselmann (1984). Here « is
the integral wave-steepness parameter

(2.6)

) F(k) 2.7

& = Ed‘/g?
where

w=E" fF(k)wdk

and apy = 4.57 X 1073 is the theoretical value of &
for a Pierson-Moskowitz spectrum [Eq. (3.1)]. For a
Pierson-Moskowitz spectrum (or generally for a
JONSWAP type spectrum with fixed shape parame-
ters) « is proportional to Phillips’ constant a.

The constants ¢ and 7 in (2.7) determine the overall
level of dissipation and the position of the maximum
dissipation relative to the peak of the frequency
spectrum, respectively. We shall treat them as adjust-
able tuning parameters. The power m determines the
dependence of dissipation on wave steepness. As
pointed out above, this parameter is important for
growing wind seas (cf. Hasselmann et al., 1984b), but
is irrelevant for the present investigation, since for a
quasi-fully-developed spectrum choosing different
values of m is equivalent to redefining ¢. We have
taken m = 2 in all of our computations.
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3. Energy balance of the Pierson-Moskowitz spec-
trum

From the analysis of a set of well developed wind-
sea spectra obtained with a shipborne wave recorder
in the North Atlantic, Pierson and Moskowitz (1964)
proposed the form

2 4
og 5 ﬁ’M)]
F = — - == .

PM(f) (271')4f5 exP[ 4 ( f (3 l)
for the frequency spectrum of a fully developed wind
sea, where Phillips’ constant « = 0.0081, and the
peak frequency fpvm is related to the wind speed at
19.5 m by

Jom = 0.14g/uy95 (3.2)
In terms of 10 m winds u,0, Eq. (3.2) may be written

ﬁaM = 0.13g/u10. (33)

The selection of fully developed spectra was based
on the synoptic situation. It was ensured that no
swell was present and that the fetch and duration
were sufficiently large to expect a stationary and
homogeneous fully developed wave state (Moskowitz,
1964). However, there is no strict experimental evi-
dence that the Pierson-Moskowitz spectrum really
corresponds to a stationary state in a constant wind
field, since infinite fetch and infinite duration do not
occur in nature, and even for very large fetch and
duration, there may always be a small residual growth
which escapes detection. Exceptionally stationary wind
conditions can be found in tropical wind systems,
but even these exhibit significant fluctuations. In a
wave hindcast study for the South China Sea, for
example, Chang et al. (1983) found that disturbances
originating in midlatitudes can lead to an occasional
doubling of the wind speed of the monsoon in that
area. Similarly, in wave measurements east of Bar-
bados, Regier and Davis (1977) found important
spectral contributions at frequencies below the Pier-

. son-Moskowitz frequency, which were ascribed to

remote wind intensification. At all events, however,
it seems plausible that the growth rates for well
developed waves are strongly reduced, and in fact
most wave models take the Pierson-Moskowitz spec-
trum or a variation thereof as a stationary limiting
spectrum. It is of interest therefore to test whether
the spectral form (3.1) is consistent with a stationary
solution of the energy transfer equation and our
knowledge of the source terms summarized in the
previous section.

To investigate this question we need to rewrite
(3.3) first in terms of u,. This was stressed already
by Pierson and Moskowitz (1964), and indeed the
arguments of the previous section in favour of u,-
scaling for S;, apply equally here. Again the question
arises as to the appropriate drag coefficient to use for
the conversion. Since the observations of Moskowitz
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(1964) were made for wind speeds between 10 and
20 m s~!, we should choose a drag coefficient corre-
sponding to this wind-speed range. We have taken
the mean SWAMP value C;, = 1.8 X 1073, which
corresponds to a wind speed 1,0 = 15 m s~ for the
drag law (2.3). Thus we set

S = fomtts /8 = 5.6 107, (3.4)
E¥v = Epug*/ust = 1.1 10°. (3.5)
[The Pierson-Moskowitz energy Epy = 0.20g°

X (27 fom) ™ follows from integration of (3.1).]

To study the full two-dimensional energy balance
we need to make also an assumption about the
angular distribution of the wave spectrum. Many
wave models assume a simple cos®d distribution about
the wind direction. The experimental evidence, how-
ever, suggests that the angular distribution is frequency
dependent and narrower near the peak frequency f;,.
On the basis of their own measurements and a
summary of earlier work, Hasselmann et al. (1980)
suggest the following directional distribution for a
growing wind sea

F(f,8) = F(f)D(f, 9)
where the spreading factor
D(f, 6) = N, ™! cos?(6/2)
p =977 flfm)'
_ (406, f<fm
“- {—2.34, > fon

(3.6)
with
(3.7)

The normalization constant

. T@p+1)
= 71-2p, R
N, =2"g Tp + 1)

is defined such that [T Ddf = 1.

In this section we assume the angular distribution
(3.6) throughout. However, we also performed ali
calculations with a simple cos? distribution, with
similar results.

Figure 1 shows Si,(f) and S, (f) (integrated over
6) as computed for the Pierson~Moskowitz spectrum
(3.1), (3.3), and (3.6). The wind input is given by
(2.4) with 8 = 0.85 in accordance with Mitsuyasu
and Honda (1982). If the Pierson-Moskowitz spec-
trum is in equilibrium, the sum of S, and S, must
be balanced by the dissipation,

‘6 L —
Sdis = Tin T Snl~

The dissipation “Sy;” inferred by this relation is
also shown in Fig. 1. It has positive values at about
1.4 times the peak frequency. If we require the
dissipation to be negative, it follows that our assump-
tions cannot be consistent. One could argue that the
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FIG. 1. Source terms for Pierson-Moskowitz spectrum (3.1) with
spreading function (3.6). The input source function (panel b) is
given by Eq. (2.4) with 8 = 0.85. The dissipation source function
“S¥&s" is computed as a residual from S% + S% + “S3.” = 0. All
functions are nondimensionalized in terms of g and u,.
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discrepancy is not serious because the range over
which positive values occur is rather small. But even
if Sgis were zero in this range the dissipation would
still contain two highly implausible pronounced min-
ima. The origin of these problems is easily recognized.
The inferred positive values of “Sy” result from the
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gap between the positive low-frequency lobe of the
nonlinear transfer and the wind input maximum. In
addition, the nonlinear transfer appears rather too
large and is driving the dissipation to adopt a similar,
but inverted distribution.

On the basis of these observations it may be
anticipated that the nature of the balance is quite
sensitive to the precise values of a and 8. A reduction
of o reduces the relative importance of the nonlinear
transfer, which scales with o, while the spectrum
and thus Sj, scale with a. An increase in 8 tends to
close the gap between the spectral peak and wind
input maximum. To demonstrate this explicitly, Fig.
2 shows the results of computations analogous to Fig.
1, but with « = 0.005 and 8 = 1.02. The one-
dimensional dissipation is seen now to be an accept-
able function of frequency, and one could be tempted

to conclude that the Pierson-Moskowitz spectrum, -

with a@ = 0.005, represents a conceivable stationary
solution of the energy balance equation.

However, the picture is less satisfactory if we turn
now to the directional distributions. Fig. 3 shows the
two-dimensional transfer function (15° intervals) cor-
responding to the case shown in Fig. 2. The two-
dimensional dissipation has been calculated from
(2.6) assuming

Va(f) = Sas( ) F(S) (3.8)

with S4(f) given as in Fig. 2 (i.e., the factor y, is
assumed to be isotropic, and we have ensured that
the directionally integrated net rate of spectral change
at any frequency vanishes). The figure indicates a
strong angular imbalance, which must lead to a
redistribution of energy. Thus our tentative equilib-
rium spectrum is in fact clearly not a stationary
solution of the transfer equation. This was confirmed
by numerical integrations in which we simulated the
wave evolution starting from a Pierson—-Moskowitz
spectrum with o = 0.005 and 8 = 1.02. The spectrum
rapidly changed to a new spectrum with a new
angular distribution, for which the source terms were
then no longer balanced even for the one-dimensional
frequency distributions.

This may have been anticipated also on the basis
of Webb’s (1978) calculations, in which he showed
that for the Pierson-Moskowitz spectrum the nonlin-
ear energy transfer is directed away from the mean
direction. A transfer of this form cannot be balanced
with the directional dependencies assumed for our
input and dissipation source functions. We conclude
that the Pierson-Moskowitz spectrum with the
spreading function (3.6) cannot represent a stationary
solution of the energy transfer equation for the form
of source functions assumed in Section 2.

To continue, we could attempt to construct a
balance between all three source functions by appro-
priate modification of the input and dissipation source
functions. However, inspection of the structure of the
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FiG. 2. Source terms for Pierson-Moskowitz spectrum with
Phillips’ constant changed from 0.0081 to 0.005. The input source
function is given by Eq. (2.4) with 8 = 1.02. The inferred
dissipation source function “S¥.” (panel d) is computed as a
residual from S% + S% + “S§" = 0.

energy balance suggests that this cannot be successfully
achieved using plausible source functions for the
assumed spectral distribution (3.1)-(3.6). Therefore,
in the next section, we invert the problem and
determine the possible asymptotic spectra that may
develop from given source functions. This appears a
more fruitful approach in view of the sensitivity of
the energy balance to small changes in the form of
the spectrum. We shall discover that quasi-equilibrium
solutions to the energy balance equation do in fact
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FIG. 3. Two-dimensional spectrum (panel a, with polar isoline representation in panel b) and source functions corresponding to Fig.
2. The two-dimensional dissipation source function “S3%,” is computed from the one-dimensional distribution of Fig. 2 assuming a
directional-independent factor v, in (2.6). The net source function S%, = S% + S% + “S¥%,” is significantly different from zero.

exist that exhibit frequency spectra rather close to the 4. Simulation of asymptotic wave evolution
Pierson-Moskowitz spectrum, but that the directional

distributions differ from (3.6) in some minor, yet The type of numerical growth-simulation experi-
dynamically essential, features. ments discussed in this section are described briefly
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by Hasselmann and Hasselmann (1984). The transport
equation (2.1) is solved numerically for the case dF/
dt = 0, taking F(x = 0) = 0 as upwind boundary
condition. We shall be concerned here particularly
with the influence of the dissipation parameters on
the solution for large fetches. We used a straightfor-
ward first-order forward-difference scheme with a
dynamically adjusted Ax. The computations were
made with a logarithmic frequency discretization
(fs = L.1f,—1, /o = 0.01) and with an angular resolution
of 30°. The spectrum was predicted explicitly in the
energy-containing frequency range of 0 < f < 2.5f,,..
For higher frequencies a Phillips type f > tail was
added. A simple first-order integration scheme was
considered adequate, since Ax was determined by the
rapidly responding high-frequency region of the spec-
trum just below the 2.5/, limit. As a result the AF
were very small in the energetically relevant region
near the spectral peak. A number of runs was made
to establish that the results were insensitive to the
details of the high-frequency parameterization, the
choice of frequency and directional discretization and
the numerical integration scheme.

A total of 19 full integration runs, listed in Table
1, was carried out for various combinations of dissi-
pation parameters ¢ and n [cf. Eq. (2.7)). The wind
input term was taken as in (2.4) with 8 = 1.0
(different B-values correspond simply to rescaling
with different wind speeds). The principal properties
of the asymptotic spectra for large fetch are summa-
rized in Fig. 4, which show the distribution of the

TABLE 1. List of runs, with values of spectral parameters and
growth rates at large fetch (x* = 1.2 X 10%). The letters L, M, MH
and H of a run designation refer to the coefficients ¢ = 1.67 (low),
3.33 (medium), 5.00 (medium-high), and 6.67 (high) (X107°), re-
spectively, in the dissipation expression (2.7). The index 2, 3 or 4
following the letter(s) refers to the power of w in (2.7).

b E EE:
Run Jom Epm a X 10? ¥ E dx Jieai 208
L1 1.1 0.87 13. 1.1 10°¢
L2 0.92 1.28 9.6 1.3 0.4 X 107®
L3 0.91 1.5 7.8 1.6 1.1 X 107
Ml 1.44 0.41 15.0 1.2 0.1 X 107¢
M2 1.0 0.98 9.6 1.0 0.1 X 10°¢
M3 0.97 1.02 8.3 1.1 0.2 X 10°¢
M4 0.82 1.41 5.0 1.6 1.1 X 107¢
M5 0.84 1.28 48 1.9 0.5 %X 107
MHI 1.7 0.21 17.0 11 0.2 X 1077
MH2 1.25 0.49 12.0 1.0 0.5 X 1077
MH3 1.07 0.76 8.7 1.0 ~0
MH4 0.93 0.96 5.8 1.4 03X 1078
MHS$ 0.86 1.05 4.8 1.5 0.5 x 107¢
H1 2.0 0.11 19.6 1.1 ~0
H2 1.3 0.4 11.0 1.2 ~0
H3 1.07 0.64 79 11 ~0
H4 0.95 0.86 5.8 1.1 0.3 X 10°¢
HH2 1.44 0.31 11.0 1.1 ~0
00 zero dissipation: strong growth, no equilibrium
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principal spectral parameters E (total energy), f.
(peak frequency), « (Phillips constant, defined for the
frequency range 1.5f, < f < 2.5f,) and v (peak
enhancement factor = ratio of spectral value at peak
frequency to value of the Pierson-Moskowitz spec-
trum at this frequency for the same «) in the ¢ — n
plane for a fetch of x* = 1.2 X 108 At this fetch
most wave models predict an equilibrium spectrum,
and the parameters are accordingly normalized by
the corresponding values for a Pierson-Moskowitz
spectrum. However, only the bottom-right segments
of the ¢ — n parameter planes in Fig. 4 actually
orrespond to equilibrium spectra; in the top-left
regions the spectra are still evolving. The associated
non-dimensional growth rates

~ 1 ¢ 0E
4.1
Stot = FEox 4.1
for the total energy at the fetch x* = 1.2 X 10® are

shown in Fig. 5, while Figs. 6 and 7 show the growth
and growth rates of E as a function of fetch for some
sample cases.

With the exception of the zero-dissipation case 00,
the growth rates for all spectra are strongly reduced
at large fetch. Runs number M2 and H4 yield similar,
small asymptotic growth rates and may be regarded
as quasi-stationary, but some of the other cases with
lower dissipation coefficients ¢ (L2) or higher powers
n (M4) still show growth rates that are 4 or 5 times
as large at x* = 10%. Generally, we find no asymptotic
growth for high dissipation (high ¢) and low n, and
increasing asymptotic growth for decreasing ¢ and
increasing ». It is not difficult to understand this
result. A stationary solution can exist only if there is
no significant leakage of energy to low frequencies.
This is possible only if the low frequency lobe of the
nonlinear transfer is balanced by a sufficiently strong
dissipation at low frequencies. This requires a suffi-
ciently large value of ¢. The power 7 should also not
be too.large, as this tends to shift the d1ssxpat10n
away from lower to higher frequencies.

The case 00 with no explicit dissipation is seen to
be quite unrealistic and yields a continually growing
wave spectrum, at a growth rate that far exceeds
observed growth rates for fetch-limited waves. It
should be noted that the zero-dissipation case 00
corresponds in fact to an energy balance with zero
dissipation only in the region below the cut-off fre-
quency 2.5 f,,. The condition that an f~* frequency
tail is maintained for frequencies beyond this cut-off
implies an effective dissipation above the cutoff in
order to balance the wind input and the nonlinear
transfer into this region of the spectrum. Thus case
00 corresponds to the energy balance considered by
Zakharov and Filonenko (1966) and Kitaigorodskii
(1983), in which. there is zero dissipation in the
energy-containing range of the spectrum and a sink .
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FIG. 4. Distribution of spectral parameters E/Epy (panel a), f/fem (panel b), o (panel c), and « (panel d) for runs listed in Table 1 in
the ¢ — n dissipation parameter plane [cf. (2.7)]. All values are taken at a fetch of x* = gx/u? = 1.2 X 108 Isolines are approximate and
meant to guide the eye. The best agreement with observations is given by run M2.

ns . ‘" T i at high frequencies. Our numerical experiments do
GROWTH RATES not support this form of energy balance.
We have made an attempt to select a best run
from our set of 19. Figures 4 and 5 indicate some
LT GROWING 1 characteristic trends in the dependencies of the spectral
parameters and growth rates on the dissipation pa-
rameters ¢ and n. As one moves horizontally to the
Nl 3 right of the diagonal separating the stationary from
(< 5410 the nonstationary regime (Fig. 5) towards higher
QUASIZ6TATIONARY / coefficients ¢, the total energy E decreases below the
i //// / Pierson-Moskowitz value. This is accompanied by a
MH2 H2 HH2 . s
21 . . . { weak increase in the peak frequency and a weak
//// /// decrease in Phillips’ constant « and the peak enhance-
/ ment factor v, all of which contribute to the net
, 75 i i // reduction of E. On the other hand, if one moves
o 167 2.3 5.00 667 833710 upwards and to the right in the direction of the
¢ diagonal separating the growth and quasi-stationary
FIG. 5. Asymptotic growth rates £ 9E 2t 5% = 1.2 % 108, regimes, the total energy remains more or less con-

JE dx stant, while both « and f,, decrease. The increase in
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F1G. 6. Energy-fetch growth curves for selected runs of Table 1.
Run M2 approaches a quasi-stationary asymptotic state close to
the Pierson-Moskowitz spectrum (cf. Fig. 8). Lower coefficients ¢
and higher powers n in the dissipation expression yield spectra

which continue to grow at large fetch. Higher coefficients ¢ yield
equilibrium sea states with too low energies.

c along the diagonal tends to reduce the total energy,
but is counteracted by the increase in #, which shifts
the dissipation towards higher frequencies and allows

1.4 x 10°

| f

1
E dx

X%
FiG. 7. Nondimensional growth rates corresponding to Fig. 6.
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more energy to build up at low frequencies (while
reducing the energy level at higher frequencies). Thus
although the total energy along the diagonal remains
at the Pierson-Moskowitz value, the spectral shape
becomes distorted relative to the Pierson-Moskowitz
form towards lower frequencies. The best agreement
with the Pierson-Moskowitz spectrum is found near
the bottom of the diagonal in the neighborhood of
run M2 (medium dissipation coefficient, frequency
exponent 2). The dissipation for this run is given by

Sais = —3.33 X 1073 (w/@)? - d(&/apm)? - FK). (4.2)

The value of the frequency exponent agrees with
Hasselmann’s (1974) result for small-scale whitecap-
ping.

Figure 8 shows the evolution of the characteristic
spectral parameters E, f,,, « and v for run M2. The
agreement with the Pierson-Moskowitz values for
large fetch is excellent (other runs could be adjusted
to yield the correct asymptotic energy by varying 8,
however, a simultaneous agreement of all spectral
parameters could be achieved only for this case).

The recovery of an equilibrium spectrum close to
the Pierson-Moskowitz form may appear surprising
in the light of the discussion of the previous section,
in which we found that the Pierson-Moskowitz spec-

F-PM

%
o)
E/

b

m Fo|

F>PM pu
4

» -PM -

0 0 OlS 16
2 . X& o
FI1G. 8. Growth of spectral parameters for optimal model M2.
The Pierson-Moskowitz values are denoted by arrows.

x 108
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trum with a standard type of angular distribution our present finding and the conclusion of Section 3
could not be a stationary solution of the energy is resolved if we look in detail at the angular properties
transfer equation. The essential difference between of the energy balance. Fig. 9, panels a and b, show

o | £/ tm
F | — T T T T T 7 1 b
a
34 -
0 — |
2+ 3
14
1 -
0 L 1
0
*
ST T T 01— 808 T
| s;‘f i 0° d -
is
0.61 -0.2+4 -
0.4+ 044 .
0.2¢ -0.64 —
0 A1 | 1 _0.8 1 1 1 I 1 1 % 1 1 1
0 0 1 2 3
f/ fm
* %
Snl 1 1 I T ] I T ] I i Stot 1 T I T 1 I T i | I
" e - n f 4
0.2+ - 0.2+ . -
”o
0 0 0/60°
-0.2+4+ - -0.24 .
_0.4 1 L ] 1 __0.1. 1 1 1 | 1 1 % | 1 1
0 1 3 0 1 2 3
f/fm f/fm

F1G. 9. Two-dimensional spectrum (panels a and b) and source function for run M2 at x* = 1.2 X 108 The net source function
(panel f) is two orders of magnitude smaller than the individual source functions (panels c, d, e). This may be contrasted with panel f of
Fig. 3, for a Pierson-Moskowitz spectrum with a prescribed spreading function. The difference may be attributed to the differences in
the two-dimensional spectral distributions, cf. panels a, b, for the two cases.
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the asymptotic two-dimensional spectrum that re-
sulted from run M2 (averaged over a few successive
spectra to eliminate numerical noise). The line f/f,
= ] indicates the position of the peak of the corre-
sponding one-dimensional frequency spectrum. We
see immediately that our equilibrium spectrum has
unusual angular properties, in that the waves in the
forward direction peak at a 15% higher frequency
than the one-dimensional spectrum. It is this feature
that enables a nearly perfect balance between the
different source terms (panel f). In the late stage of
development of the spectrum the wind-input maxi-
mum is displaced to the right of the spectral peak
towards higher frequencies. At the peak of the input
maximum the energy transfer from the atmosphere
is predominantly into waves running in the direction
of the wind. This wind input into forward running
waves is balanced by the energy loss due to dissipation
and nonlinear transfer. The energy extracted from
the waves by nonlinear interactions is transferred
towards both lower and higher frequencies. A large
transfer is found to occur in directions at an angle to
the wind (cf. Webb, 1978; Fox, 1976; Longuet-
Higgins, 1976). This explains the broadening of the
spectrum at the peak energy density, to the left of
the input peak. The resulting two-dimensional spec-
trum is very close to equilibrium, the individual
source functions cancelling each other to within two
orders of magnitude. The balance is clearly very
delicately dependent on the precise form of the two-
dimensional distribution near the peak. It would be
interesting to test the predictions of this analysis by
detailed directional measurements of a fully developed
spectrum. '

For completeness we show in Fig. 10 a comparison
between the one-dimensional asymptotic spectrum
and its JONSWAP fit, and in Fig. 11 the exponent
p(f) from a cos?(8/2) fit to the directional distribution
of Fig. 9, together with p(f) as given by Eq. (3.7).

It is of some interest to determine the relative
overall contribution that each source term makes to
the energy balance. For this purpose we calculated

. 2.5 fm
S;= f Si(f; 0)dfdo
0
for each source term. We obtained the ratios
‘§in:§nl :gdis = 3(—1)(—2)

Since the integral of S, over all frequencies vanishes
(the nonlinear interactions are conservative) a negative
value of S, implies a transfer of energy to the high-
frequency tail of the spectrum f > 2.5f,,. It follows
that the energy loss in the range 0 < f < 2.5f,, occurs
in two ways: about two-thirds of the energy is dissi-
pated directly, while one-third is transformed to fre-

quencies higher than 2.5f,,, where it is then also
dissipated.
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FIG. 10. JONSWAP spectral fit to the simulated spectrum for
run M2 at x* = 1.2 X 108 JONSWAP parameters: cf. Table 1).

5. Concluding remarks

We have shown that quasi-stationary solutions of
the energy transfer equation (2.1) can exist, with
source terms given by (2.4), (2.5) and (2.7), provided
the dissipation parameters lie in a certain region of
the parameter space.

The quasi-stationary solution M2, with a dissipation
source function of the form proposed by Hasselmann
(1974) for small-scale whitecapping processes, gave
the closest agreement with observations and was
studied in detail. The net residual of the energy
balance for this case was two orders of magnitude
smaller than the individual source terms. Whether
this form of equilibrium actually occurs in nature
cannot easily be decided, however, since it is difficult
to distinguish experimentally between a small residual
growth and complete stationarity. Some of the cases
studied resulted in a weak asymptotic growth with
frequency spectra that were also reasonably close to
the Pierson-Moskowitz form. Thus a slow residual
asymptotic growth cannot be excluded theoretically.
(We note, however, that the distinction between no
growth and weak growth at very large fetches, although
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FIG. 11. Power p of spreading functions of the form (3.6) fitted
to the simulated two-dimensional spectrum for run M2 at x*
= 1.2 X 10% Also shown is the form (3.7) found by Hasselmann
et al. (1980) for fetch limited spectra.

of theoretical interest, is not very important in prac-
tice).

The two-dimensional spectral distribution of the
quasi-stationary solution M2 exhibits some interesting
features. Although the one-dimensional spectrum
agrees rather closely with the conventional Pierson-
Moskowitz spectrum, the directional distribution does
not conform to standard spreading-function assump-
tions. The directional distribution is narrowest at
frequencies somewhat higher than the peak frequency,
and is significantly broader at the peak. A number of
spectral-direction measurements have indicated a
minimum angular spread near the peak frequency,
with a monotonically increasing spread towards both
lower and higher frequencies (e.g., Mitsuyasu et al.,
1975; Hasselmann et al., 1980; Kuik and Holthuijsen,
1981). However, the detailed fetch dependence of this
feature, and the expected shift in the position of
minimum spread to the right of the spectral peak in
the transition stage to a fully-developed spectrum,
have not been clearly established. More measurements
are needed to clarify this point. Theoretically, the
angular properties of the asymptotic spectrum depend,
of course, on the assumed angular properties of all
source terms, and future theoretical and experimental
investigations should address the angular properties
of both the spectrum and the source terms in more
detail. However, we expect that the characteristic
directional distribution found in the present study is
a rather robust feature produced by the nonlinear
transfer and is only weakly affected by the detailed
directional properties of the other source functions.

We have investigated the spectral energy balance
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as originally proposed by Zakharov and Filonenko
(1966) and as extended by Kitaigorodskii, 1983 (see
also Kitaigorodskii et al, 1975, and Zakharov and
Zaslavskiy, 1982). In this approach, wind input dom-
inates at low frequencies and the dissipation is con-
fined to high frequencies. Energy is transformed from
low to high frequencies by a constant flux through
nonlinear interactions, in analogy with Kolmogorov’s
theory of isotropic turbulence. We find that such an
energy balance, with no dissipation in the range
0 < f < 2.5f, is unrealistic: it yields a spectrum
which grows much too rapidly and does not approach
equilibrium. The importance of direct dissipation in
the energy containing range of the frequency spectrum
is in agreement with a study by Bouws and Komen
(1983), who analyzed an observed stationary shallow-
water wind-sea spectrum. (Nevertheless, it is possible
that the observed f~* form of the spectrum at inter-
mediate frequencies, cf. Kawai et al (1977) and
Kahma (1981), is related to the fact that the nonlinear
flux divergence is indeed relatively small for this
spectral form. Computations of the nonlinear transfer
for other power-law spectra normally yield a too
strongly pronounced minus-plus signature of the
negative and high-frequency positive lobes.)

Our study of the energy balance was carried out
for a single wind speed, or friction velocity. However,
the analysis can be applied to arbitrary wind speeds,
or friction velocities, provided the scaling laws for
the input source function are known. We have chosen
to scale the relevant input relation (2.4) and the
relation (1.3) for the empirical fully developed Pier-
son-Moskowitz spectrum with the friction velocity
uy. This form of scaling follows by general dimen-
sional arguments for any wave growth theory in
which it is assumed that the structure of the atmo-
spheric boundary layer and the interactions with the
free ocean surface can be characterized by the single
external parameter u, (in addition to g). This has
been proposed by Charnock (1955), Kitaigorodskii
(1962) and numerous other workers, and has found
increasing corroboration in recent years by field data
(for neutral stability). The increase of C;o with wind
speed according to Charnock’s formula [or its ap-
proximation (2.3)] implies that the usual dimension-
less Pierson-Moskowitz frequency, scaled in terms of
U0, decreases with increasing wind speed, while the
usual dimensionless wave energy increases. Once one
accepts u,-scaling, the dependence of the drag coef-
ficient on mean wind speed (2.3) has important
consequences for wave modelling. An experimental
verification of these trends would be highly desirable.

In summary, our study of the energy balance of
wind-wave spectra by direct numerical integration of
the transport equation based on a complete represen-
tation of all source functions supports the qualitative
structure of the energy balance inferred from earlier
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wave growth experiments and computations of indi-
vidual source functions for particular spectra. How-
ever, previous studies have suffered from inadequate
knowledge of the dissipation source function. Through
numerical experiments with different dissipation
source functions the dependence of the asymptotic
wave growth and the structure of the spectrum at
large fetches on the form of dissipation could be
established. A dissipation source function, Eq. (4.2),
is proposed which reproduces most of the known
features of a quasi-fully-developed spectrum and can
be used in numerical wave models. A complementary
analysis on wave growth for finite fetches, which also
supports the dissipation expression (4.2), is given by
Hasselmann et al. (1984b).
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