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ABSTRACT

In the continuous frequency spectrum of wind-generated water waves Fourier components have
different origins. At a particular frequency, some will be harmonics resulting from the nonlinear profiles
of lower frequency waves, others will be near-free gravity waves. In this paper the relative importance
of these two different contributions is studied in the case that the nonlinearities can be treated per-
turbatively. The calculation starts from a fit to observed spectra: in the sea the JONSWAP spectrum
is chosen; in the laboratory a different fit with a sharper fall-off near the spectral peak is taken. The
nonlinear corrections are most significant at frequencies larger than twice the peak frequency and in-
crease with increasing frequency. They are determined mainly by the behavior of the spectrum near the
peak. The relative importance of the nonlinear contributions increases with decreasing dimensionless
fetch. This is in agreement with experimental observations. In the laboratory, with narrower spectra,
nearly all of the spectral energy at twice the peak frequency is due to the nonlinear contributions. The

_ observed magnitude agrees reasonably well with our calculated value. In the open-ocean nonlinear cor-

rections are a small fraction of the linear contribution at this frequency. For a nonlinear system the
concept of phase velocity loses its meaning in general. Nevertheless, experimentally, nonlinearities will
show up as an anomaly in the observed phase velocity. This anomaly is studied. In the laboratory,
where the nonlinearities dominate, a large anomaly is expected and this agrees with the observations.
In the open sea experimental evidence is conflicting. It is found that several mechanisms tend to sup-
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press the anomaly, so that small deviations from the linear value are obtained.

1. Introduction

A periodic nonlinear water wave is sharpened at
the crests and flattened at the troughs. It can be
viewed as a superposition of an infinity of discrete
harmonics, bound to a fundamental wave.

In case of wind-generated waves one encounters
a continuum of such nonlinear waves. Therefore, in
a spectral analysis of a time record, high-frequency
Fourier components can have different origins.
Some will be harmonics resulting from the nonlinear
profiles of lower frequency waves, others will be
near-free gravity waves. Sometimes the harmonics
are called bound waves to distinguish them from the
fundamental waves. In this paper we intend to study
the relative importance of the way in which bound
waves and fundamental waves contribute to the
wave spectrum.

Of course, it has to be realized that a bound wave
is not a physical phenomenon in its own right. The
concept arises when a Fourier analysis is made of
the real motion at one position of a water surface.
This analysis has its shortcomings because the
Fourier modes, forming a complete basis of funda-
mental waves in the linear case, are somewhat
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artificial in the case of real nonlinear waves. Never-
theless, for weakly nonlinear systems the analysis
in terms of Fourier modes is very useful be-
cause the nonlinearities can be treated as a
perturbation.

The nonlinearities, in general, have two effects.
One is a very weak interaction between the
Fourier modes. This interaction is weak because it
is not a first-order effect. It first occurs at second
order as a resonant interaction arising from a secu-
lar term in the perturbation series. The slow inter-
action can have great dynamic significance and it
has been studied in detail by several authors
(Hasselmann, 1962; Fox, 1976; Webb, 1978). In this
paper we address our attention to the other effect,
namely the occurrence of bound waves. The first
calculations on this were made by Tick (1959)
even before the importance of resonant interactions
had been realized. For weak nonlinearities both
effects have their own characteristic time scale.
Harmonic generation—or generation of bound
waves as we call it—can take place in a few wave
periods, whereas resonant interaction is not sig-
nificant until after many periods.
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In practice, a wave field is analyzed with the help
of the Fourier analysis of wave records. Such a
record is chosen to cover a duration which is small
with respect to changes in the spectrum, such as the
secular change due to resonant interactions. There-
fore, as far as the analysis is concerned, the spec-
trum can be considered stationary and the funda-
mental Fourier modes behave as free waves. In this
way one consequence of the nonlinear nature is
transferred from wave analysis to the domain of
spectral evolution. Bound waves cannot be disposed
of in this way. However, as we will see, a distinc-
tion between fundamental and bound waves is pos-
sible under certain conditions on theoretical
grounds. An early indication of the presence of
bound waves in the ocean came from HF back-
scatter measurements. There, in addition to the pri-
mary Bragg line which results from interaction with
free waves, a second-order line was observed and
it was explained as originating from a discrete
higher order contribution to the wave spectrum
(Crombie, 1955).

Our study has been motivated by measurements
of the phase velocity of spectral components of
wind-generated water waves in the laboratory
(Ramamonjiarisoa and Coantic, 1976; Ramamon-
jiarisoa ef al., 1978; Mitsuyasu et al., 1978; Lake
and Yuen, 1978) and in the sea (Yefimov et al.,
1972, Ramamonjiarisoa and Giovanangeli, 1978).
Deviations from the free phase velocity were
found and it has been suggested that these indi-
cate the presence of bound waves. Mitsuyasu et al.
(1978 and 1979) and Masuda et al. (1979) have
given a satisfactory explanation for their observed
anomalous phase velocity. They used a perturba-
tion method to calculate the nonlinear effects in
their own observations. Here we will use a similar
approach to study a wide class of spectra. This will
enable us to discuss the importance of bound
waves as a function of the parameters character-
izing the wave spectrum, such as fetch and total
wave energy.

The formalism is outlined in Sections 2-5. In Sec-

tion 6 we give applications to the JONSWAP spec- °

trum (Hasselmann et al., 1973, 1976), which is
consistent with many observed wave fields. In
laboratory situations the JONSWAP fit seems less
useful. Therefore, laboratory-generated waves are
discussed separately in Section 7. Our conclusions
are summarized in Section 8.

“2. Definitions.

We consider a one-dimensional, homogeneous
and stationary distribution of weakly nonlinear,
irrotational, deep-water waves, all moving in the

same direction. The space-time correlation of the
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water height 7(x,¢) is defined by
P(g,r) = (n(x + &t + Dmx,1) .
Its Fourier transform P(k,w) is defined by

(1)

P = [ dh j dac*-P(k,w). Q)

— oo — o0

From the reality of n and the homogeneity of the
wave field it follows that

P(k,0) = P*(k,w) = P(~k, —w). 3)

The assumption of weak nonlinearity makes it
meaningful to introduce the zeroth-order spec-
trum P,

P(k,0) = Po([k|)8(0 — Vg |k|) + P'(k,w)

+ ke -k oo —w), @)

where g is the gravitational constant. Since all waves
move in the same direction, P can be taken to vanish
unless ¥k and » have the same sign. Therefore, a
one-sided wavenumber/frequency spectrum can be
defined as

2P(k,w), k, @ >
0, elsewhere.
This implies the normalization
E=(n?)= J dkdwS (k, ). 6)
0

The total energy of the wave field equals g pE, where
p is the water density. The frequency spectrum can
be defined as

S(w) = r dkS (k, ),

0

Q)

while wavenumber spectrum and cross spectrum are
defined as

St = j dS(k o), ®)
0
S(w,ry) = J dke™rS (k,w). )
(]
For all of these spectra one may define
S =S,+85, (10)
where .
So(k) = 2Py(k), (11)
: 4 2
Sofw) = —21’0(—“’—) : (12)
g g
So(w,r) = So(wei . (13)
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Occasionally we will find it convenient to discuss
results in terms of

x(@) = §'(@)/So(w), (14)

which is a parameter characterizing the relative
importance of the nonlinearities.

G. J. KOMEN
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3. Perturbation results

From a perturbation expansion in the wave slope
one can obtain an approximate expression for §’
in terms of §,. This approximation takes the form
(Barrick and Weber, 1977)! .

‘ ko — gk
Sk w) = —— — 2 8§ (k)So(k-)
2¢ gk — )2 '
. . (gh)'? < w < (2gk)'? (15a)
k: = _[k + (2gk . w2)1/2jl
2 g
k2 2k2 — w4
- D Sk Sutk )
gw 0 < w < (gk)' (15b)
k+ = k + )2
S (gk = &)

This expression is the lowest order, non-vanishing
perturbation correction. It should be noted that in
the same order of the perturbation expansion there
is a small change in the energy on the free-wave
dispersion surface. However, in this paper we will
not consider this change. It is of some use to visual-
ize the properties of S(k,w) in the k,w plane (Fig.
1). In general, S, is non-vanishing for 0 < w
< (Rgk)V? only. If, in addition, Sok) =0 for &
< kmin, as is always the case in practice, then S,
is nonzero in regions a and b only, i.e.,

k > 2kpins  @Omin + [g(k — kmin)1'?
< o< Q2gk)'?, (16a)
0 < w<[glk+ knin))"* — Omin,
Omin = (8kmin)"%. (16b)

Therefore, to this order of perturbation theory there
is a clear separation between the free waves at
«* = gk and the forced waves in the regions (a) and
(® . These regions are indicated in Fig. 1 for the case
Wrin = 1/2(1)0.

S.(k,w) peaks near the line w = (2gk)"2. In fact,
it has a (kinematic) singularity on this line. This
singularity is integrable and has no dynamical
origin, unlike the additional peaking which may

-arise from the behavior of S, Normally S, is
peaked sharply at some value of k, say, k,. This
then is reflected in a peaking of .S, at

I o=+ [glk — ko],
k> ko, @y = (gko)'
! w=w, — [glke — OIV?, k <k,
OI: o =[gtk + ko)]V? — w,.

These curves are parabolas with their symmetry

(17)

axis parallel to the k axis; they are indicated in Fig.
1. Double peaking [i.e., peaking of both factors S,
in Eq. (15)] occurs at (k,w) = (0,0) and at (k,w)
= (2ko,2w). It is readily seen that the secondary
peak at (2ky,2w,) dominates the nonlinear correc-
tions, provided the peaking of Sy(k) is sufficiently
sharp. The low-frequency corrections have been
studied by Tick (1963). In the following we will con-’
centrate on the behavior of §; near the first har-
monic, at @ = 2w,, which is the region of our main
interest. '

It is instructive to calculate S, for a few lowest
order spectra. As a first example, we take a Dirac
S function for S,

So(k) = Aky28(k — ko). (18)
Substitution in (15a) gives a Stokes-like result
Sik,w) = Aky28(k — 2ko)d(w — 2ay),
wo = (gko)'™, (19)
which leads to a cross-spectrum
Si(w,r) = A%g2wy* X eFMNG(w — 2am,), (20)

which is periodic in space with a wavelength equal
to one-half of the dominant wavelength.
A different simplified spectrum has been con-

sidered by Barrick and Weber (1977). They
started from
il__ , k> kg
So(k) = | 2k3 1
0, 0<k <k,

! Note that our Eq. (15) has been corrected for two misprints,
which appear in the formulas given in (24) and (25) of Barrick
and Weber (1977). An error in their Eq. (28) is corrected in
our Eq. (22).
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which is a reasonable spectrum in the so-called saturation range. The following expression results:

2A2g5k2

k > 2k,

.Sl(krw) = <
‘ 64 A2g%w%?

For o ~ 2w, this yields the following result for
the cross-spectrum:
6A%g?

Si(w,r) = ! — (mglr\ 2’ 2[C(d) + iS(d)],

d = (0 — 2w,)(r/2g)"?, 23)

where C and § are the Fresnel integrals. Note again
that S,(w,r) is periodic in space with a wavelength
equal to one-half of the dominant value, albeit, with a
slowly varying amplitude.

From both examples we see that a lowest order
peak at (ko,w,) leads to a secondary peak near
(2ky,2w). This peak results in a (near) periodic
behavior of the corresponding cross-spectrum.

4. Phase velocities

A phase velocity can be defined when there

exists a definite relationship between the wavelength’

and the wave period. In the linear, deep-water case
c = whk = (glk)”? = glo. 24)

The nonlinear corrections discussed above, do
not, in general, allow for the definition of a phase
velocity, as was stressed by Tick (1959). However,
if §,(k,w) is sharply peaked in a small region of the
(k,w) plane, say, around (k,,w,), an approximate
velocity can be defined as

@25

Obviously, this definition works for the ‘discrete
spectrum of Eq. (19). One finds

c; = wof[ko = g/(l)o

c, = (Up/kp-

(26)

as expected, because in the discrete case the non-
linear corrections define a steady modification of the
fundamental wave with wavenumber k,. The same
value for the phase velocity is obtained in the
example of Eq. (22), where S, peaks near (2kg,2w;).

An alternative definition for the phase velocity can
be given from the behavior of the cross spectral
density. This definition,

wr

, @D
arctan(ImS(w,r)/ReS(w,r))

c(w) =

Qgk — )(e? — gky
‘wy + [glk — ko)]'? < w < (2gk)"",

(g2k2 —_ w4)5

0,  elsewhere.

w > 2(00,

(22)
o < [gk + k)" — o,

is used in practice to calculate phase velocities from
an experimental determination of the cross spec-
trum. In the linear case, this definition is inde-
pendent of r and coincides with the definition given
in (24), as can be verified when (13) is substituted
into (27). . o

Taking r — 0 in (27), the definition of ¢ can be
applied in nonlinear situations, although, in general,
¢ loses its meaning in this case as a phase velocity.
However, in the cases where a phase velocity can
be defined, as in (25), it can be checked that Egs.
(27) and (25) are consistent. This is easily under-
stood because strong peaking in the (k,®) plane im-
plies approximate periodicity of the cross spectrum.
This is best illustrated with Eq. (23) which can be
written as t

Si@,r) = f(@r)etn,

where f is a slowly varying function of r. Applying
(27) to (28) we find

28)

¢ = 2glw, (29)
which for o = 2w, agrees with (26).

When, for a given w, S(k,w) peaks for several
values of k (e.g., gk = o® and 2gk = ?) the defini-
tion (27) loses its physical meaning. Nevertheless,
Eq. (27) has been used for the analysis of non-
linear data. It is therefore interesting to see what
one may expect from such an analysis when several
peaks are present. As an example, we consider the
case where S(k,w)is peaked for w = 2wy atk = 4k,
(free waves) and at 2k, and 8%, (nonlinear waves
in regions (@) and"(® of Fig. 1, respectively). This
case is encountered in Section 6. If the nonlinear
peaks are sufficiently narrow, the cross spectrum
behaves as

S(w,r) = So(w)e™ + A(w,r)e*? + B(w,r)e?*",

w = 2w, o =gk, 30)
with A and B slowly varying as functions of r. A (w,0)
and B(w,0) measure the relative contribution of the
nonlinear corrections to the spectrum from re-

gions (@) and () . Analyzing the individual terms of
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FiG. 1. Linear deep water waves contribute to the wavenumber/frequency
spectrum along the line @® = gk only. The nonlinear corrections, as given by
Eq. (15), are non-vanishing in the regions (@ and ® . It has been assumed that
the spectrum peaks at (ko,w,) and, for the sake of illustration only, that there is a
lowest frequency at wpn = 2w, in the linear spectrum. The function S, is peaked

on the lines I, IT and III [cf. Eq. (17)].

(30) with (27) we find for @ = 2w, that

Ctree = 1/260 =c’
Ca=c¢Co=2", co=glwy 3D
Cb=%6‘0= I/ZC’, c’ =g/2w0

These quantities have some physical significance
in that they indicate the occurrence of three types
of Fourier modes, each characterized by a specific
propagation velocity. Taking all terms together one
obtains from (27)

_ 1+ xel@) + x@) g
1 + Vaxa(@) + 2xp(@) ©
_ (A(@,0),B(«,0)
So() '

The deviations from linear behavior are deter-
mined by the magnitude of x, and x,. As it happens,
the deviation can be suppressed, because the
contributions from regions (@ and (® have an
opposite effect on ¢. When x, = 2x, the suppres-
sion is complete. Therefore, nonlinearities do not
necessarily show up as an anomaly in the phase
velocity, although in general they will lead to a de-
viation from the value for free waves.

l
0 -
S

(32)

Xa.b

5. The frequency spéctrum

It is standard practice to determine frequency
spectra from wave measurements. From the fore-
going discussion it follows that these frequency
spectra contain contributions from fundamental
waves, satisfying o = gk, as well as from bound
waves. In order to separate these, we propose to
calculate §, in an iterative way, as follows:

SP@) = SPw), i=1,2... ]

Sél) = S, SéiH) =98 — S{i) (33)

where § is the measured frequency spectrum. It is
important that realistic wave spectra behave in the
way we discussed in Section 4, i.e., S, peaks at
o = w,, while §; peaks at twice this frequency.
Further, it is important that the magnitude of §,
near w = 2w, is determined by the value of S, at
® = w,, because this leads to a rapid convergence of
the iterative scheme. In the following we will make
one iteration only, since this leads to reasonable
accuracy in most cases. To obtain S from S§
we must use Eq. (15), where for a given value of o
we have to integrate over all k. For later use it is
convenient to derive an expression for the cross-
spectrum S(w,r). This is the Fourier transform of
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(15) and for r = 0 this reduces to the frequency
spectrum. Introducing a transformation of the in-
tegration variable, and expressing Sy(k) in terms of
So(w), the resulting integral can be simplified and
we find

Sl(war)
1 .
=— J do’ exp{irlo” + (0 — ) |0 — o' |1g71}
2g wf2Z

X [K(ow',w) + K(w — o', w)]
X So(@)So( |0’ — w]), (34)
0¥ (@ - 200 + 207, 0<o <w

Ko w) = { 0<w<o

(0 — 20")Y’ow',
This is essentially equivalent to Tick’s (1959) result.
It is convenient to scale the quantities involved. This

is often done by scaling the spectrum with respect .

to the total energy. Here we find it more convenient
to scale with respect to the value of the spectrum at
the peak. [For a given spectral shape the energy and
the peak value are simply proportional; in fact, from
Mitsuyasu (1968), E = S(w¢)w,.] Defining

5(x) = S(wox)/S(w,), - (35)

x = wlw,,

we obtain for the first-order nonlinear correction to -

the frequency spectrum

S o(wo)wo5 J

dx'[K(x',x) + K(x — x’, x)]
2g°

xl2

51(35) =

X so(x’)so(lx - x' I). (36)

We will use this equation in the recursive scheme
(33) to analyze fits to observed spectra for their non-
linear content. The factor Sy(w,)w,® has a physical
interpretation. It is proportional to the square of the
significant wave steepness H,;/Ly3. This can be
easily seen. The significant wave height H,;; squared
is proportional to the total energy, and this in turn
is proportional to S(wp)w,. The significant wave-
length L,;; is proportional to w,~2. It is not surpris-
ing that the importance of the nonlinear corrections
is determined by the wave steepness, since this is
the parameter in which the perturbation expansion
leading to (15) has been made: steeper waves are
more nonlinear.

6. Application to the JONSWAP spectrum

It is claimed (Hasselmann et al., 1976) that the
majority of observed spectra of wind-generated
waves agrees well with the functional form

og? 5/ we\*
Siw) = —a% exp{— Z(—O)

w
(0 — @p)* :l
20’2w02 )

37

+ (lnyj exp( -

ay,
G =

Tr,

(}J<w0

® > Wy.
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In this five-parameter fit the parameters « and wq
have been correlated with the fetch X:

a = 0.076£7°%2, ¢ = gX/ Uz}
Uwylg = 226703 '

Here U is the wind velocity at 10 m height above
sea. The remaining parameters, o;, o, and vy, show
no clear correlation with fetch. The average
JONSWAP values are y = 3.3, o; = 0.07 and o,
= 0.09.

It is important to note that the parameters in (37)
were determined from a fit to data for w < 2w,. For
the present discussion it is convenient to assume
that (37) holds up to at least three times the peak
frequency. For 1 < w/wy < 2cy/uy = 2g/(Up) [yl
= 7/p with 7 the wind stress-at the surface, u,’
= CpU%, C, = 107%], Phillips (1978) assumed the
existence of a saturation range. In this range the
spectrum is proportional to ™, so that the
JONSWAP fit may be extended into this range. The
drift velocity in the wind-drift layer is proportional
to u4, and cy/u, is therefore an important physical
parameter. It can be related to the dimensionless
fetch with the help of (38). For C, = 10~® we find

Coltty = 1.44£033 39)

and as a consequence the assumption that (37) holds
for w/w, < 3 is reasonable for ¢ = 10.

To separate free waves and bound waves we can
use Eq. (36) with

(33)

R S(1 )
) = e =35 1)

X

1

+ ln'ye‘“‘“”’z"’} . (40)

from Eq. (37). This leads to one of our main results,
namely,

53(x) = £°0%yf(x; y, o). @1)

The function f, which can be calculated numerically,
is plotted in Fig. 2. With the help of this figure the
magnitude of the nonlinear contribution to the fre-
quency spectrum can be determined. An example is
given in Table 1, where x; = 100[S,(w)/S J(w)] is
shown for o, = o, = 0.1, y = 3, for several fre-
quencies and for different values of the dimension-
less fetch. The values clearly illustrate the increas-
ing importance of nonlinearities with decreasing
dimensionless fetch and with increasing frequency.
We will comment on each of these trends.

a. The frequency dependenée'

We first consider a fixed fetch, not too small, i.e.,
£ = 10. In the region 2w, < o < 3w, the relative
magnitude of the nonlinear contribution to the total
spectrum ranges from a few to several tens of per-
cents. Since by assumption the total spectrum is
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20¢ o

W/,

F1G. 2. The function f of Eq. (41), for several values of the JONSWAP param-
eter o (upper and lower illustration) and y (1, 3 or 5). With the help of the inset -
nonlinear corrections to the frequency spectrum can be estimated as a function of

the dimensionless fetch &€ = gX/U?.

JONSWAP, the contribution of free waves can be
estimated by subtracting the values of Table 1 from
100%. We have made only one iteration but this
should be a good approximation, since §, is mainly
determined by the value of S, near the peak, while,
in turn, the value of S, near the peak is com-
pletely negligible (cf. Fig. 2). )

To get a rough idea of the accuracy of the
approximation we have repeated the calculation
starting from a different zeroth-order spectrum,
namely, one with free -waves totally absent for
@ > 2wy, but JONSWAP otherwise. From the re-
sults, which are given in parentheses in the table,
one gets an estimate of the error made by stopping
after one iteration. For w = 2w, the error is of the
order of 20%. For @ = 2.8w, the errors become
larger, because then a significant portion of §, is
determined by the high-frequency behavior of S,.

It would be straightforward to improve the accuracy
by performing a few more iterations, but this is not
meaningful because at the higher frequencies the
total spectrum is not known to sufficient accuracy.

TABLE 1. §,(w)/S(w) X 100 as a function of the dimensionless
fetch ¢ = gX/U® The linear part of the spectrum has been
identified with the JONSWAP spectrum, i.e., S, =S,. The
figures in parentheses are obtained when S, = S5, @ < 2w,;
otherwise S = 0 is chosen.

logé -1 0 1 i 2 3 4
Coltiy 0.7 1.4 3.1 6.6 14 30
wlwy

2.0 75 (60) 45 (36) 27 (22) 16 (13) 10 (8) 6(5)
22 121 (56) 73 (58) 44 (35) 2721 16 (13) 10 (8)
24 176 (139) 106 (84) 64 (51) 38 30) 23 (18) 14 (11
2.6 153 (121) 92 (73) 56 (44) 33 Q26) 20(16)
2.8 126 (97) 76 (58) 46 (35) 28 (21)
kX 99 (53) 60 (32) 36 (19)
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b. Fetch dependence

From Eq. (41) it can be seen that for decreasing
£ the nonlinearities increase like £7%22, For & = 10
the JONSWAP spectrum ceases to be a good fit. At
the corresponding small values of co/u, the physics
changes as microscale breaking, caused by the
relatively strong surface drift, starts to eliminate free
waves at high frequencies. At small fetches, there-
fore, the numbers in Fig. 1 lose their physical
meaning. Nevertheless, it is instructive to see just
how significant such increasing nonlinearities are. At
w = 2.6w, and ¢ = 1 the nonlinearities exceed the
JONSWAP value, and this results in a breakdown
of the recursive scheme. As a consequence, a spec-
trum which for £ = 1 is JONSWAP for o < 2w,
cannot be JONSWAP for w = 2.6w,. In the next
section we will consider a fit which is more realis-
tic in laboratory situations.

It is not so hard to find a qualitative under-
standing of the decrease of x;, when ¢ increases.
The factor So(wp)w,® in Eq. (36) is a measure for the
steepness of waves with a frequency w = wy,. With
increasing fetch this factor decreases, the profiles
of the fundamental waves become less nonlinear,
and as a consequence bound waves will have less
influence on the frequency spectrum at o =~ 2w,.

c¢. Phase velocities

For medium to long dimensionless fetches the
results of Table 1 suggest the presence of small but
non-negligible nonlinear corrections for frequencies
higher than twice the peak frequency. Experimen-
tally, there is little known about nonlinearities in
this range, for cy/u, = 10. Information on the full
wavenumber/frequency spectrum is completely
lacking, but several investigators (Yefimov et al.,
1972; Ramamonjiarisoa and Giovanangeli, 1978)
have measured spatial correlations in this frequency
range, and from these phase velocities have been
calculated. Near the spectral peak deviations from
g/w are generally small (~20%) and explainable in
terms of angular spread and Doppler shift caused by
the wind drift layer. For higher frequencies the
observed deviations are larger, although the exact
size varies considerably from measurement to meas-
urement. Theoretically, starting from the JONSWAP
spectrum a small anomaly is expected. Taking, as
an example, x, = 20% and x, = 0 [cf. Eq. (32)] an
anomaly of only 10% would follow. The contribu-
tions from region b would lead to a further
reduction, since the suppression mechanism de-
scribed in the text following Eq. (32) seems to be
operative. We find x, = 0.2x, and this would re-
duce the anomaly to only 3%.

Unfortunately, the experimental results have been
obtained from wave fields which have not been
described in terms of JONSWAP spectra, so that a
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comparison with our results is not easy. However,
a few comments can be made. Yefimov ef al. (1972)
made measurements 300 m off the coast of the Black
Sea under variable meteorological conditions,
whereas a value of & was not given. They es-
timate the net excess of the phase velocity over
the linear value (at 2w,) at 30%. In view of the
foregoing remarks this is surprisingly large. Neglect-
ing contribution from (b, it would require x(2w,)
= 100%. In two measurements Ramamonjiarisoa
et al. (1978) obtained small deviations from the free
phase velocity, which is consistent with our theoreti-
cal expectations. In one other measurement results
were obtained that were compatible with those of
Yefimov. It would be interesting to see if the large
anomalies can be accounted for with an iterative
approach starting from a precise fit to the observed
spectra. Such a calculation is outside the scope of
the present paper, however.

7. Spectra describing laboratory situations

The difference in dynamics of wind waves in the
laboratory and in the sea has been stressed by
Phillips (1977, 1978). An important parameter char-
acterizing this difference is c,/ut,, a measure for the
ratio of the phase velocity of waves at the spectral
peak and the velocity in the wind-drift layer. When
coluy is of the order 1, which corresponds to small
dimensionless fetch, the importance of small-scale

"breaking is strongly enhanced. As a consequence,

observed spectra fall off very rapidly away from the
spectral peak. Often a secondary peak is observed
at twice the peak frequency. Examples of observed
spectra are given by Mitsuyasu (1968), Hidy and
Plate (1966), Ramamonjiarisoa and Coantic (1976)
and Lake and Yuen (1978). The JONSWAP fit
fails to describe the detailed structure of these
spectra. In this section we suggest a simple fit to the
observed behavior near the spectral peak. With this
fit as an input to the recursive scheme we then
calculate the nonlinear corrections for higher
frequencies.
The fit we suggest near the spectral peak is

K(—aﬂ) r, wy <. < 1.6y,
S(w) = @ (42)
w\M
K(——) , 0.6w, < 0 < w,,
\(1)0
or in terms of the scaled spectrum {Eq. (35)]
x 1 <x=<1.6,
=1 : 43
s(0) {x"’ 06<x<l1. (@3)

We will not attempt to explain the observed values
of n, and n;, which are found to lie in the range be-
tween 7 and 13, or «, which is the magnitude of the
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frequency spectrum at the peak. Instead we will use
observed values as an input for our calculations.
The data indicate a considerable variability in the
value of x. From Ramamonjiarisoa and Coantic
(1976) and Mitsuyasu (1968) we would infer « to be of
the order of 10~ m? s. Unfortunately, Lake and
Yuen (1978) do not give their absolute normaliza-
tion, so that a determination of « from their data
is not possible. In the following we will always take
k =3 x 107% m? s as derived from Ramamonjiarisoa
and Coantic {1976 (case U = 8 m s™1].

Of course, our fit is a schematic one, and very
rough especially at the peak frequency. In addition
to the “‘triangular fit’’ (in the InS — Inw plane) we
have considered a ‘‘trapezoid fit,”” where the apex
of the triangle was replaced by a small, horizontal
line element. This did not lead to substantial changes
in our conclusions. Here we will report results for
the triangular fit only, so as to avoid the intro-
duction of additional free parameters.

It is straightforward to calculate the nonlinear
corrections from Eq. (36), which take the form

$1(x) = ';“"’: Jw dx'[K(x' x) + K(x ~ x', )]
g

xi2
X so(x')so(|x = x']). (44)

The peaking of the laboratory spectra [Eq. (42)]
is more pronounced than that of the JONSWAP
spectrum. As a consequence the contribution from
region b in Fig. 1 turns out to be negligible
in the laboratory. The dominant contribution comes
from a , where the integrand in (44) peaks doubly.
In practice this means that for x = 2, the integral
can be cut off at x’ = 2, when for s, we take s of
Eq. (43) extended to x > 1.6.

It is instructive to do a rough analytic calculation
first. This can be done for x = 2. Approximating
the K functions {Eq. (34)] by their values at x’ = 1
and taking n; = n, = n, we obtain the simple
integrable expression

4 5 1 n
8@ =250 L= [t @9
4 ode (A +zy

where I, can be shown to equal

In=—1/2+(—1)"[1—‘/2+1/3

F o (=1 - lnz]n. (46)

n-—1

Choosing n = 10, w, = 4 and k = 3 X 10~° m? S,
which are reasonable values, we find7,, = 0.025 and

§1(2) = 0.01. 47)
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Comparing this with

1
30(2) = F = 0.001, (48)

we see that the nonlinearities exceed the linear part
of the spectrum at this frequency by one order of
magnitude.

In Fig. 3 we have plotted both s, and s, + 5, for
several values of n,; n; has been chosen as —12.5 to
fit the rapid fall-off at low frequencies. The plot is
based on a numerical evaluation of Eq. (44). It shows
how the relative importance of the nonlinearities
near the harmonic peak grows when 7, increases.
The spectra observed by Ramamonjiarisoa and
Coantic (1976) seem to be closest to the case n,
= 7.5. Their data fall within the band indicated in
Fig. 3. For n, = 7.5 we have s, + s, = 0.017 at the
harmonic peak, while the observed value is roughly
1072. We think that this is a reasonable agree-
ment, given the roughness of our fit. The spectra
reported by Lake and Yuen (1978) show a steeper
high frequency face, n, = 11.5, and a more pro-
nounced harmonic peak. This is in accord with our
Fig. 3. A quantitative comparison cannot be made,
because the experimental normalization is not
available.

Ramamonjiarisoa and Coantic (1976) investigated
how the frequency spectra depend on the dimen-
sionless fetch 3 < ¢ < 10. Their results for different
fetches were plotted in a double logarithmic plot,
in a scaled form, i.e., S(w)w,/E is given as a function
of w/w,. Spectra presented in this way seem to be
independent of the dimensionless fetch, not only
near the spectral peak, but also near the first har-
monic. This scaling behavior is quite surprising at
first sight, since roughly, S'(2w,) is determined by
S(wo) squared and this depends on the dimension-
less fetch. However, it can be understood with the
help of Eqs. (42) and (44) and with the independent
observation (Mitsuyasu, 1968) that the wave steep-
ness is approximately constant for all wind waves
at short fetch. First, note that scaling near the
spectral peak is obvious, because, for fixed n, and
n;,, E = kaw,, so that

S(w)wy/E = s(x) 49)

which is independent of «. Next, to demonstrate
scaling near the first harmonic, we have to show that
the factor xwy® in Eq. (44) scales. This factor is
proportional to the significant wave slope squared,
as we discussed in the text following Eq. (36). In
general, this wave slope depends on the dimension-
less fetch £ However, from Mitsuyasu (1968) it
follows that this dependence is small, and therefore

(50)
to a fair approximation. Using this in Eq. (44) the

Kwy® = constant
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F1G. 3. 50 + s, (solid line) and s, (dotted line) as a function of @/w, for the fit of
Eq. (42) to laboratory spectra. n, = 12.5; the values of n, label the various curves.
The fetch-limited data of Ramamonjiarisoa and Coantic (1976) all fall within the

shaded band.

scaling of the nonlinear corrections follows. Note
that our scaling arguments are valid for given
‘slope parameters (n,,;). It seems that n, increases
for extremely short fetches (¢ < 1) such as those

£
9/w

£
9/W,

w/w,

FIG. 4. The phase velocity ¢ calculated from the definition
equation (27), starting from Eq. (42), with n, = n; = '12.5.

considered, e.g., by Lake and Yuen (1978). Ob-
viously, the scaling property is lost in this case.
Finally, we would like to consider the influence of
the nonlinear corrections on the phase velocity
measurements, such as have been reported by
Ramamonjiarisoa and Coantic (1976) and Lake and
Yuen (1978). Using the definition of Eq. (27), we
have calculated the phase velocity for the spectrum
(42). The result is given in Fig. 4 for the some-
what extreme case 1, = n; = 12.5. There is a clear
deviation from the linear value, which sets in at twice
the peak frequency, the calculated value being
twice the linear one, and equal to the phase speed
of the dominant waves. It represents the nonlinear
modification of the profiles of the dominant waves,
and is exactly twice the free value because the
free waves-at twice the peak frequency are strongly
suppressed [ x 12wp) = S;2w,)/S:2w,) = 2%) and
the nonlinear contributions from regions other than
(w,k) = (Quwy,2ky) are completely negligible. Of
course, Fig. 4 corresponds to an extreme spectrum.
In less extreme cases the anomaly is less pro-
nounced. To give a few examples: for (n;,n,)
= (12.5, 10) we find x '(2wy) = 11% and cQRuwy)
= 0.9¢(w,), while for (n;,n,) = (12.5, 7.5), which
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is closer to the spectra reported by Ramamon-
jiarisoa and Coantic (1976), we find x'(2w,)
= 53% and

cQawy) = 0.75¢ (). (51

In the latter case the contributions from regions
other than (k,w) = (2k,,2w,) are still quite small, of
the order of 1% of the nonlinear part. This has to be
compared with the 20% obtained for waves in the
sea (see Section 6¢). Eq. (51) does not fully explain
the observed value cg,sQwy) = c(wy), © > 2wy.
1t is very likely that the 30% discrepancy can
be accounted for by the effects of surface drift
and angular spread.

For w < 2w, we do not find a significant non-
linear effect. Therefore the anomaly sets in at
® = 2wy, as in Fig. 4. This is not inconsistent with
the results of Ramamonjiarisoa and Coantic (1976).
The onset of the anomaly is expected to be sharper
in the data of Lake and Yuen (1978), because their
spectra peak more sharply. It is surprising, there-
fore, that their reported phase velocity is a constant
over the whole range of values w > w,. This result
cannot be explained by our perturbative calculation.

8. Conclusion,

In the spectral analysis of a single nonlinear water
wave one finds a fundamental contribution at (ky,wq)
and harmonics, the first of these at (2k¢,2w,). In
the case of wind-generated waves one has a con-
tinuum of Fourier modes, which, as in the discrete
case, one would like to distinguish in fundamental
and harmonic contributions. We have tried to make
a few general conclusions about the way in which
this distinction can be made. We restricted our-
selves to weak nonlinearities and based our study on
a perturbative scheme, which started from simple
fits to observed spectra.

In the continuum case, we found the distinction
between fundamental waves and bound waves can
still be made. Fundamental waves are approxi-
mately free and satisfy the free dispersion relation
w® = gk. Bound waves, which are the continuum
generalization of the discrete harmonics, do not
satisfy this relation. The condition that a distinction
can be made is the occurrence of an infrared cut-
off in the wave spectrum, because this led to the
vanishing of $'(k,w) in the neighborhood of «? = gk.
In practice this condition is always satisfied. Nor-
mally, the wave spectrum peaks at a particular
value (wy,k,). The bound-wave contribution to the
spectrum then peaks near (2w,,2k) in region a of
Fig. 1. This can be seen as a generalization of the
discrete result. However, for w =~ 2w, there is a
secondary peakneark = 8k,(inregion b of Fig. 1),
which has no analogue in the discrete case.

These results are in agreement with the results
from HF backscatter experiments (Barrick, 1978).
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There one finds a sharp first-order Bragg line, with
a Doppler shift given by the linear dispersion rela-
tion; a relatively unimportant background cor-
responding to the bound wave continuum; and a
secondary peak which corresponds to the harmonic
peaking of the bound wave continuum. Our results
bring together the original explanation by Crombie
(1955) for this secondary peak, and the work of
Hasselmann (1971) which concentrated on the con-
tinuum contribution.

The magnitude of the bound-wave contribution to
the frequency spectrum can be given as a fraction
of the peak value [cf. Eq. (35)] or equivalently
as a fraction of the (total wave energy multiplied
by w,). This quantity is found to be proportional
to the product of the peak value of the frequency
spectrum and the fifth power of the peak frequency
[Eq. (36)] or the significant wave slope squared.
In general, this wave slope—and therefore the im-
portance of bound waves—decreases with increas-
ing dimensionless fetch. This has been illustrated for
the JONSWAP spectrum. In Table 1 the magnitude
of the nonlinear contribution is given as a fraction
of the linear contribution. The effect increases with
increasing frequency. For @ > 2.6w,, however, our
estimate becomes less reliable for reasons that have
been explained in Section 6. For not too small
dimensionless fetches, effects are of the order of
10%. Nonlinear anomalies in measured phase
velocities are suppressed at least by a factor of 2
cf. Eq. (32)]. An even stronger suppression may
occur because of the delicate interplay of contribu-

\tions from regions a and b (Fig. 1).

In the laboratory, the JONSWAP fit loses its
applicability. For extremely short fetches (c/u
< 10) a significant feature of wave spectra is the
rapid fall-off of the spectrum just above the peak.
The harmonic peak, frequently observed, reflects
the absence of free waves. We have shown that the
magnitude of the observed harmonic peak is in rea-
sonable agreement with what we calculate, starting
from the behavior of the spectrum near the peak.
If the free waves fall off sufficiently fast, bound
waves dominate completely for @ > 1.7w,.

The results of laboratory measurements are some-
times presented in dimensionless form [wS(wo)/E
vs w/wy]. These laboratory results then seem to
scale, independent of fetch. This scaling behavior
can be understood as a consequence of the ap-
proximate fetch independence of the significant
wave slope.

In the laboratory the dominance of bound waves
at the harmonic peak leads to a clear anomaly in
the phase velocity for w = 1.7 (cf. Fig. 4). At lower
frequencies no anomaly is found.

Our application of simple perturbation results to
realistic spectra could be extended to include the
directional dependence as well as higher frequencies.
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For general conclusions these extensions are useful
only when experimental information is available,
especially for the larger fetches, where virtually
nothing is known about the high-frequency content
of the spectrum.
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