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A numerical scheme for calculating the nonlinear energy transfer among wind
waves (RIAM method) was developed on the basis of the rigorous method of
Masuda. Then the performance of the RIAM method was examined by applying
it to various forms of wind-wave spectra and different situations of wind-wave
evolution, in comparison mainly with theWAM method. The computational time
of theMasuda method wasreduced by afactor of 300 by theRIAM method, which
isstill 2000timesslower than theWAM method simply becausethe RIAM method
processesthousands of resonance configurationswher easthe WAM method does
only one. The RIAM method proves to give accurate results even for spectra of
narrow band widthsor bimodal spectra, wher eastheWAM method often calculates
an unrealistic magnitude and pattern of nonlinear energy transfer functions. In
the duration-limited evolution of wind-wave spectra, the RIAM method yields a
unimodal directional distribution on the low-frequency side of the spectral peak,
whereas the WAM method produces a spurious bimodal one there. At higher
frequencies, however, both methods give a bimodal directional distribution with
two oblique maxima. The RIAM method enhancesthe growth of thetotal energy
and peak period of wind wavesin comparisonwiththeWAM method. Nevertheless,
Taoba'sconstant of his 3/2-power law approaches almost the same standard value
of 0.06in both methods. For spectraof anarrow band width or for thoseperturbed
by asmall hump or depression, the RIAM method tendstorecover themonotonic
smoother form of spectrum whereas the WAM method often yields unrealistic
humpsor depressions.

1. Introduction

Wave prediction today is based on the equation of energy balance for each spectral
component. For deep water the evolution of the spectral component is governed by

£+CQDDF=I+T+D 1)
ot

intheabsenceof surfacecurrents, whereF = F(k; x,t) denotesthetwo-dimensional spectrumwith
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respect to the wavenumber k at the horizontal position x and time t. The terms on the left-hand
sideindicatethelocal changeandtheenergy radiationat thegroup vel ocity Cgy, respectively, while
those on the right-hand side represent the source functions: | isthe energy input dueto wind, T
the nonlinear energy transfer function due to resonant wave-wave interaction, and D the energy
dissipation mainly due to wave breaking. Each of the source functions therefore must be
estimated precisely in order to predict the evolution of wave spectra accurately.

Among thethree sourceterms, the nonlinear energy transfer dueto four-waveresonance has
been considered one of the most important factors that control the evolution of wave spectra:
down shift of the spectral peak frequency, self-stabilization of the spectral form, and frequency-
dependent redistribution of angular distribution functions. Although the formulation of this
mechanismfor continuousspectrawasaccomplished by Hasselmannasearly as1962 (Hassel mann,
1962, 1963), the precise eval uation of nonlinear energy transfer functionsrequires considerable
efforts since it is expressed as a triple integration with singular points. Sell and Hasselmann
(1973) first presented a systematic numerical computation of the nonlinear energy transfer
function for the Pierson-Moskowitz spectrum (abbreviated as the PM spectrum) and the
JONSWAP spectrum. Their results, however, somewhat lack in numerical stability and showed
that even the spectral peak can gain energy through nonlinear energy transfer. This conclusion
appeared unacceptableintuitively at those days, because nonlinear energy transfer wasgenerally
supposed to redistribute energy in a smoothing way (Phillips, 1977). Thisis why many works
followed Sell and Hasselmannto el ucidate what thetrue energy transfer should belike (L onguet-
Higgins, 1976; Fox, 1976; Webb, 1978; Dungey and Hui, 1979). The controversy wasdecisively
resolved by Masuda (1980, 1986), who showed how the contradiction arose on the basis of a
stable and rigorous algorithm developed by himself. Applying his algorithm to different forms
of wind-wave spectra, heal so pointed out that the nonlinear transfer function sensitively depends
onthespectral formsbothin magnitudeandin pattern. Successive effortsbased on other rigorous
schemes have still been continued to reveal various properties of nonlinear energy transfer (for
example, Hasselmann and Hasselmann, 1985; Y oung €t al., 1987; Resio and Perrie, 1991).

Neverthel ess, the exact computation of nonlinear transfer functions consumesstill too much
time to be incorporated in operational models for wave forecast. First-generation models
therefore totally discarded the nonlinear energy transfer function except implicitly through
dissipation terms. Al so second-generation model s have abandoned the computation of nonlinear
energy transfer functionsby restricting the prediction only to several parametersthat characterize
wind-wave spectra; detailed spectra are determined according to some empirical form of wave-
spectra in generation areas. That is, second-generation models take the nonlinear transfer
function into account in an implicit way through empirical forms of spectra, which should be
controlled by nonlinear energy transfer. It became clear, however, that no model participatingin
the SWAMP Group (1985) intercomparison study could properly simulate the complex wind-
seas resulting from a sudden change of wind. This inadaptability of the models of the second
generation was ascribed to their insufficient degree of freedom, which is an unavoidable
consequence of the parametric representation of wave spectra.

The deficiency was overcome soon by the devel opment of the wave-forecasting model of
the third generation, in which nonlinear energy transfer functions are computed explicitly. The
WAM model (WAMDI Group, 1988) is a representative one that belongs to this generation. It
calculates nonlinear transfer functions explicitly according to the discrete interaction approxi-
mation (Hasselmann et al., 1985). Y oung et al. (1987) showed that, even for abruptly changing
wind fields, the WAM model fairly closely reproduced the wave evolution evaluated with the
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EXACT-NL model based on the exact cal cul ation of nonlinear energy transfer (Hasselmann and
Hasselmann, 1985). It must be noted, however, that the discrete interaction approximation (or
the WAM method henceforth), is a crudest way for computing nonlinear energy transfer
functions. Strikingly enough, the WAM method substitutes a single configuration of resonant
four waves for an infinite numbers of configurations. Accordingly, the WAM method is con-
sidered to have arather limited validity, aswill be shown later. In this sense, the WAM method
should be replaced by a better one in order to improve the performance of wave modelsand in
order to gain a better physical understanding of the evolution of wind-wave spectra. It is
indispensable for the desired algorithm to compute nonlinear energy transfer functions with
sufficient accuracy for any kind of spectral forms. The rigorous method, which may be precise
but consumes tremendous computational time, is not suitable for operational wave-forecasting
models of the next generation.

Thus, itisnecessary to devel op amethod equipped with both practically sufficient accuracy
and efficiency suitablefor practical waveforecasting model swith ageneral adaptability. Inorder
topresent acandidatefor or astarting onetoward suchamethod, webeginwith therigorousmethod
of Masuda(1980), which hasahigh precisionthroughitsanalytical processing of singular points.
Then, making full use of the symmetry of resonant i nteraction (cf. Hassel mann and Hassel mann,
1981) and truncating |l ess substantial configurations of resonance, we devel op an algorithm that
achieves shorter computational time without serious loss of accuracy. The primary purpose of
thispaper isthereforeto present some detail s of this new method and to compareits performance
with that of other available schemes, in particular, of the WAM method, which isadopted in a
most popular operational model. The performance is examined in the evolution of wind-wave
spectra as well. The dynamics, however, will be argued in another paper, asto how wind-wave
spectra evolve driven by three source terms parameterized in the wave model or what kind of
equilibrium isrealized in saturated spectra.

The next section describes the algorithm of the new method, which is to be called as the
RIAM* method henceforth. We examine the basic properties of the RIAM method such as its
computational time, accuracy, and parameter sensitivity. Then the RIAM method is applied to
several cases of temporal evolution of wave spectrato be compared with those dueto the WAM
method. Finally, a summary and discussions are given in Section 4.

2. Algorithm and Basic Properties of the RIAM Method
The nonlinear energy transfer function T(k,) at the wave number k4 is expressed by the
Boltzmann integral (Hasselmann, 1962, 1963):

T(ka) = g f---f diydk dksG(Ky, Ky, K, Ky )O(ky + K, — ks~ K,)
x5(wl+w2—ws—w4){n1n2(n3+n4)—n3n4(nl+n2)}, (2)

wheren; = n(ki) = F(ki)/a (i = 1, 2, 3, and 4) denotes the action density for the wavenumber ki,
w = |gki|“2 the corresponding angul ar frequency with g the accel eration dueto gravity, and G the
coupling coefficient (Hasselmann, 1963). The deltafunction d meansthat nonlinear interaction
occurs among wave components which satisfy the four-wave resonance conditions:

*Research Institute for Applied Mechanics.
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Fig. 1. Figure of eight representing the conditions for the four-wave resonance: contours of ydefined in
Masuda (1980). Thisfigure showsthat apair of wavenumbers ks and k4 resonate with another pair of
ki and ky, such that ks + kq = k1 + k2, only when they lie on the same contour of y. Here and henceforth
solid and dashed lines indicate positive and negative contours, respectively. The contour values are
+(0.0, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18). The RIAM method deals with
about 2000 configurations among an infinite ones, while the WAM method uses only one configura-
tion, which is designated by the thick dashed arrows with a superfix (W).

k, +k, =k, +K,, 3
W+ W, = W3+ W,. (4)

There are infinite number of possible configurations of resonant four wavenumbers, as shown
by the figure of eight in Fig. 1 (Longuet-Higgins, 1962).

Inorder to devel op ascheme of wider applicability than that of the WAM method, wefollow
the algorithm of Masuda (1980), which is excellent in accuracy and numerical stability or
smoothness, but it consumes too much computational time for practical use. In this paper, we
therefore improve his algorithm to develop a new method as efficient as possible for future
models of wave prediction.

The highly technical portion of the algorithm was described in our preliminary report
(Masuda, 1980; Komatsu et al., 1993), sothat weonly giveabrief sketch of the scheme. Themost
significant revision to that report is that the outermost loop of computation is now the con-
figuration, instead of the frequency w, of the largest wavenumber among resonant four com-
ponent waves. It is to be noted that the actual algorithm is described in terms of the angular
frequency wand the propagation direction 8 rather than the wavenumber k.

2.1 Algorithm

In order to save computational time, we take advantage of the symmetry of theintegrand as
in Hasselmann and Hasselmann (1981) or Resio and Perrie (1991). In here, two kinds of
symmetry are discriminated from each other. The first kind is based on the well-known nature
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of the nonlinear resonant interaction among gravity waves expressed by integral formula (2).
Consider aparticular combination of four resonant waves with wavenumber vectorsk; (i=1, 2,
3, and 4). As explained in Hasselmann and Hasselmann (1981), on(k;)dki/dt (i = 1, 2, 3, and 4)
arethesamein magnitude, where dn(k)/dt indicatestheactiontransfer that isduetothisparticular
resonance combination. In addition, the lowest and the highest frequencies of the resonant four
waves make the pair of the outer frequencies, while the other frequencies make the inner
frequencies. Theresonance deprives energy of theinner pair to supply it to the outer pair, or vice
versa (Masuda, 1986). Accordingly, if we calculate on(k)/ét for one component of the resonant
four waves, then we immediately know dn(k)/& for the other three components. The action
transfers above for the four waves are converted into the corresponding nonlinear energy
transfers due to that specific combination of resonance 8T, dTt, dTH!, and oTHO, where the
suffixes on the shoulder LO, LI, HI, and HO denote the components of the lower frequency of
the outer pair (L O component), the lower frequency of theinner pair (L1 component), the higher
frequency of the inner pair (HI component), and the higher frequency of the outer pair (HO
component), respectively. This property reduces computational time by afactor of 4.

The second kind of symmetry is associated with the geometrical similarity of resonance
configurations. First of all themirror image of aresonance combination isalso another onewith
the same interaction coefficient. Secondly, arotation of aresonance combination gives another
onewith the same interaction coefficient. Thirdly, a scale transform of wavenumbers preserves
the resonance condition. Though thislast property isvalid only for deep water waves, it allows
usto estimate the interaction coefficient simply by multiplication of acertain power of the scale
ratio (Masuda, 1980).

Inorder to make use of the symmetries mentioned above, the (w,0) spaceisdividedintobins
of nonuniform finite areas (Hasselmann and Hasselmann, 1981; Resio and Perrie, 1991). The
central frequency wx of each bin is distributed on a logarithmic scale from the minimum
frequency cmin to the maximum . a a constant ratio

R, =1+ A(logw) (5)

Wiy = R, Loy, (6)

while the central direction 6., of the bin is distributed as

Omsr = B, + DO (7)

m+1
with thedirectional increment A@kept constant. By virtue of thisdistribution of bins, the second
kind of symmetry is expressed as follows. If a combination of certain four bins satisfies the
resonance condition, so do any combinations of four bins that are obtained from the origina
combination through the (1) mirror transform, (2) rotational transform, and (3) scale transform.
All the resonance combinations with the same geometry within the transforms above are said to
have the same configuration of resonance.
Finaly, the procedure is written schematically as
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T= z (éTLO +OTY + o7 +5-|-Ho)’ (8)

cnf scl rot

whereparameterscnf, scl, and rot symbolically denotetheconfiguration, scale, and rotation (plus
mirror image), respectively. The summation over theLO, L1, HI, and HO components represent
thesymmetry of thefirst kind, whilethesummation over cnf, scl, and r ot correspondtothesymmetry
of the second kind. In order to limit the number of the resonance combinations, we discard the
resonance configurationsfor whichtheratio of the higher and lower frequencies of the outer pair
w9/ w0 exceeds a prescribed value of C; defined later.

Inthe RIAM method, the energy transfer iscal culated for each bin. Whenwefix cnf, scl, rot,
and abin corresponding to the HO component (HO bin), thelocations of the other three resonant
binsrelativeto the HO bin in the frequency-direction space are determined according to the cnf
parameter. Therate of energy the HO bin receives through the resonance among the four bins of
assigned areas is calculated as

dTHO = Gl(cnf)EEZ(Sd)(nunHl (nLO +nHO)_ nLOnHO(nLI +nHI))’ (9)

where nt! denotes the action density for the LI bin, and so on. In here, the two factors G; and G,
describethestrength of theresonant i nteraction among thefour bins. Thekernel G; isdetermined
easily by means of the Masuda method, because the resonance configuration is fixed and the
properties of the bins are known; if the configuration is a singular one, it is to be dealt with
analytically (Masuda, 1980; Komatsu et al., 1993). On the other hand, G, is a simple power of
the frequency of the HO bin (Masuda, 1980). Note that the resonance configuration, G;, and G,
areindependent of the detailsof the spectrum. Thus, we can determine beforehand the resonance
configurations of the bins and the associated kernel G;, which is rather complicated.

Once 8THO is obtained, it is easy to calculate the energy of the other resonant bins receive
by virtue of the symmetry of thefirst kind. Then, thetotal nonlinear energy transfer isexpressed
asin (8).

2.2 Notations for wave spectra and nonlinear energy transfer functions
The two-dimensional wind-wave spectrum F(w,6) is rewritten as

F(w, 0) = R(w)Yw,b), (10)

where F;(w) denotes the one-dimensional (frequency) spectrum and S(w,6) the directional dis-
tribution (angular distribution function) satisfying

[ 7w, 0)d6 =1 (12)

Most of thefrequency spectralF; examined herearethoseof the JONSWA Ptype(Hasselmann
et al., 1973)
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O _ 2
D Dw 4|:| @(pD_((: pr)

Fl(w)=FJ(w;y) agw” exp[-l—_E_H a/

2
g wp

ooog

(12)

with the spectral peak frequency w,, Phillips parameter a, peak-enhancement parameter y, and

0.07, w< w, 3
= 1
g E) 09, w> wW,. ( )

The PM spectrum and the standard JONSWA P spectrum are recovered by putting y=1and y=
3.3, respectively.
On the other hand a most familiar expression for the directional distribution is

)= Es(s)cos (6 0) Os|9—§|s /2

@, otherwise

Yw,6

(14)

where S(s) isthe normalization factor and 8 denotes the average wave direction, which will be
put at zero unless stated otherwise. The parameter s, an index of directional concentration, may
or may not depend on the frequency. A frequency-dependent form that has been supposed to
represent theobservedwind seawell isdueto Mitsuyasu et al. (1975) and Hasselmann et al . (1980):

0e-60

Yw,0)=9s) COSZSE—E (15)

where
Ow D
s= 100-995(%5, (16)
p
#4.06, w< w,
a (17)
2.34, w=zw,.
A somewhat novel form of directional spreading was proposed by Donelan et al. (1985):
Yw,6) = sechZB(B 8). (18)

where
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61w w,) ", 0.56< w/ w, <0.95

B=2.28(w w,) ™, 0.95< w/ w, <16 (19)
%.24, otherwise.
0

Instead of the two-dimensional T(w,6), we often use
T(w)= [ /T(w,6)de (20)

asitsconciserepresentation. Also, weusually nondimensionalizethefrequency wand frequency
spectrum F1(w) so that both the peak frequency and the peak spectral density equal to unity. The
dimensional T is obtained by multiplying its nondimensional value by the dimensional value of

Fi3(ap) g™

2.3 Computational efficiency and accuracy of the RIAM method

Appliedtotypical spectra, the RIAM algorithm turned out to compute the nonlinear energy
transfer function about 300 times faster than the original Masuda method, when we put almost
the same conditions for computation mentioned below. The RIAM method, however, till
requires 2000 times longer computational time than the WAM method. Thisis simply because
the RIAM method processes thousands of resonance configurations whereas the WAM method

05+
T1

0.0

05}

O.OI - .1.0. - .2.0. - .3.0

Fig. 2. Comparison of the one-dimensional transfer functions T, obtained by theRIAM method, the WAM
method, Masuda (1980), Hasselmann and Hasselmann (H & H 1981), and Resio and Perrie (R & P
1991), where the wave spectrum examined isthe standard JON SWA P frequency spectrum with cos29
directional spreading. The transfer function is made nondimensional by the peak angular frequency
«p and the peak spectral density F1( ). The parametersfor theRIAM method are R, = 1.06, AG=10°,
and C; = 3, while those for the Masuda method are R, = 1.06, A@ = 10°, and C, = 7.
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dealswith only one configuration. See Komatsu et al. (1993) for further details. For the present
power of computers therefore the RIAM method is not fast enough for an operational model.
With respect to accuracy, however, the RIAM method turnsout to have much better performance
in comparison with the prevalent WAM method, which often givesan unrealistic magnitude and
pattern of nonlinear energy transfer functions, aswill be shown later. The greatest advantage of
the RIAM method is that it can be used as an efficient and almost rigorous method. It must be

(a) (b)
90 —————T 90°.,,,...|....
[ RIAM i ~ WAM i
60— — 60— —
30} — 30— —
0 00_— ] 0 0°: _
-30 — 30 === _
_600 - — -600 __ —
_go°—n--n|--nn|---n_ _90°_.1. [
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
® ®
(c)
90 ————— .
_ MASUDA 7
60— _|
30— —
0 0°: _
30 ]
60 |— —
o 3.0

Fig. 3. Comparison of the two-dimensional energy transfer T(cv,6) obtained by (a) the RIAM method,
(b) theWAM method, and (c) the Masudamethod, wherethemodel parametersand thewave spectrum
examined are the same as in Fig. 2. The contour intervals are (a) 7.62 x 1072, (b) 3.74 x 1072, and
(c) 7.25x 102, Notethat the contour interval in (b) duetothe WAM method isnearly half of the others.
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Fig. 4. Comparison of the one-dimensional energy transfer T, obtained by the RIAM method and the
WAM method, where the wave spectrum examined is (a) the PM spectrum with cos'°6 directional
spreading F(w,6) = Fi(w; 1) S(10)cos'°6, and (b) a double-peaked spectrum with cos?6 directional
spreading F(w,0) = (F3(w; 3.3) + 0.2 x F3(aw/2; 3.3)) S(2)cos?8 (see the text for the other notations).
The accuracy is examined by referring to the result through the rigorous algorithm of the Masuda
method. The model parameters are the same asin Fig. 2.

noted that, throughout the paper, the WAM method simply means the method based on the same
discreteinteraction approximation that was employed inthe WAM model, so that the remainder
of thealgorithm isthe same asin the RIAM method. For better comparison, wetried to keep the
resolution at the similar level to that for the standard RIAM method: R, = 1.1, A6 = 10°, and
C, = 3; the dependence of the performance of the RIAM method on these parameters will be
discussed later.

We chose rather fine resolution of R, = 1.06 in this subsection, where the accuracy of the
RIAM method is compared with that of the WAM method or other rigorous algorithms. Thisis
because Hasselmann and Hasselmann and Resio and Perrie used even finer resolution of R, <
1.02, though we set R, = 1.06 for the Masuda method; later the result with the RIAM method of
R, = 1.06 will be shown in fairly good agreement with that obtained at the standard resolution
R, =1.1(Fig. 5).

For the standard JONSWAP spectrum (y = 3.3) with cos?6 directional spreading, Fig. 2
compares T; obtained by the present RIAM method with those by the WAM method or by
previous rigorous algorithms: Masuda (1980), Hasselmann and Hasselmann (1981), and Resio
and Perrie (1991). Among the rigorous methods we find that the Masuda or the Resio and Perrie
method provides smoother T; than that by Hasselmann and Hasselmann, probably due to the
adequate processing of singular pointsin the former two. The Masuda method gives aimost the
sameval uesasthe Hassel mann and Hassel mann method, whileasdlightly larger estimateisfound
in the Resio and Perrie method.

Figure 3 compares the two-dimensional distributions T(w,6) calculated by the RIAM
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(a) (b)
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Fig. 5. Sensitivity of T1(w) computed with the RIAM method to the grid resolution for the same
JONSWAP spectrum asin Fig. 2: (a) theangular meshsize ABisvaried as30°, 15°, 10°, and 7.5°, with
Ry fixed at 1.1 and (b) the frequency grid sizeisdecreased as R, = 1.12, 1.10, 1.08, and 1.06 with A
fixed at 10°, where C; = 3 always.

method, the WAM method, and the Masuda method, for the same nonlinear energy transfer
functionsasinFig. 2. Obviously, the RIAM method well reproduces T obtained with the Masuda
method, whereas the WAM method completely differs from the others aswell asin Fig. 2. In
particular, we note that the WAM method yields a bimodal directional distribution with peaks
around +30° near w = 0.8. This curious bimodality is interpreted as a consequence of the
preferred outflow of the energy to waves propagating at angles around £30° in the discrete
interaction approximation adopted in the WAM model.

These results show that the RIAM method preserves the same degree of accuracy and
smoothness as the Masuda method. The WAM method, on the other hand, gives a completely
different T both in magnitude and in pattern. It isto be noted that the spectrum examined wasthe
standard JONSWAP spectrum, which is quite common and typical. Apparently, the WAM
method lacks reliable accuracy for more precise forecast, even though its high speed has been
highly evaluated.

Thesuperiority of the RIAM method to the WAM method in accuracy isdemonstrated more
clearly for spectra with a narrow directional distribution or double-peaked spectra in the
frequency domain, where accuracy isjudged by the rigorous method of Masuda. Figure 4 shows
T, for the PM spectrum with cos'©8 directional spreading

F(w,6) = F,(w;1)§10) cos 6 (21)
and for a double-peaked spectrum with cos?6 directional spreading

F(w,8) = (F;(w;3.3) + 0.2 Fy (w/ 2;3.3))5(2) cos? 6. (22)
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(2) (b)

50
T1

0.0
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25 —r—r——r

20

T 15F

0'0. P .1.0. — 12.0. L .3.0

Fig. 6. Nonlinear transfer functions T, when C; = 2, 2.5, 3, and 7 for (@) the PM spectrum, (b) the
JONSWA P spectrum, and (c) a double-peaked spectrum defined in the text, with cos?0 directional
distribution.

The WAM method gives T; about twice as large as the RIAM method for the former spectrum
of anarrow directional band width, though both methods produce similar patterns of T. For the
double-peaked spectrum, the nonlinear energy transfer function T, depends crucially on the
method used. The RIAM method predicts an ailmost the same estimate as the Masuda method,
whereas the WAM method gives T; which is completely different from the exact result bothin
magnitude and in pattern. This deficiency of the WAM method can be serious, since such a
bimodal spectrum occurs in adjustment processes to changing winds; the largest merit of wave
models of the third generation has been said to be their adaptability to changing wind fields.
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(a) (b)

T1

w o

Fig. 7. The one-dimensional nonlinear energy transfer for different grid resolution: (a) A8 = 15° and
Ry =1.1, (b) AG=7.5° and R, = 1.06, where contributions from singular configuration (T ), con-
tributions from regular configurations (T1,), and the total transfer function (T1 = Tys + Ty1,) are
separately calculated for the same JONSWAP spectrum as in Fig. 2.

2.4 Sensitivity of the RIAM method to parameter values

At the end of this section, we should examine how the performance of the RIAM method
depends on various parameter values in typical situations.
2.4.1 Resolution in the frequency and direction: R, and A9

InFig. 5we examinethe sensitivity of T;(w) to the resolution in the spectral domain for the
same JONSWAP spectrumasinFig. 2. Intheformer figureABisvaried as30°, 15°, 10°,and 7.5°,
while R, isfixed at 1.1. On the other hand, the latter figure shows T; when R, is decreased from
1.12 to 1.06 with fixed A8 = 10°. We observe that the RIAM method nearly converges when
R,=1.1and A8=10°, in approximate accordance with the results of Masuda (1980). Therefore,
thislevel of resolutionisnecessary for practical cal culation without significant loss of accuracy.
2.4.2 Truncation of interaction with distant wavenumbers. C,

Strictly speaking, we have not dealt with all the possible resonance configurations. Even
Masuda’ s algorithm discards the resonance configurations for which the highest frequency wH°
is 7 times as large as the lowest frequency w'© i.e. C; = 7. From the economical viewpoint the
smaller C; isthemoredesirabl e, becauseit |eadsto areduced number of resonance configurations
to be processed. Thesmaller C;, however, should degrade the accuracy. It isnecessary therefore
to check the error due to thistruncation or cutoff at theratio C; on T(w,6). The question hereis
to what degree C; can be lowered without substantial loss of accuracy. Figure 6 indicates the
nonlinear energy transfer functions T1(w) when C, =7, 3, 2.5, and 2, for the PM spectrum, the
JONSWAP spectrum, and a double-peaked spectrum Fi(w) = F;(cw; 3.3) + 0.05 x F3(a3; 3.3),
wherethe cos?@directional distributionisassumed irrespectiveof thefrequency spectrum. Since
T appears to be settled when C, = 3 even for the double-peaked spectrum, we conclude that
C, = 3issufficient for practical use. By reducing C; from 7 (the Masudamethod) to 3 (the RIAM
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method), we can save computational time by a factor of 3. It is to be noted that the ratio C; =
max{ wH°/w%} = 3 corresponds to max{ |kHO|/|k-C|} = 9 with respect to the wavenumber.
2.4.3 Contributions from singular resonance configurations

AswasshowninMasuda(1980), all theresonanceconfigurationsareclassifiedintosingular
and regular configurations (points) in the Boltzmann integral in the RIAM method, which owes
its accuracy and stability to the semi-analytical calculation of singular configurations. We
quantify how important the contribution from singular configurationsis in the total nonlinear
energy transfer T;(w). For thesame JONSWAP spectrumasinFig. 2, Fig. 7 comparesT; obtained
with and without the contributions from singular configurations for two kinds of resolution:
(a) AG=15°,R,=1.1and (b) AB=7.5°, R, = 1.06. Theregular configurations shares the major
portion of the total energy transfer function in the finer resolution, as is expected. The
contribution from singular configurations, however, cannot be neglected for a practically
reasonable level of resolution AG= 10°. It is preferred therefore to process singular configura-
tionssinceit improvestheaccuracy without requiring almost no additional timefor computation.
Itisto be added that, though lowering the accuracy, careful exclusion of singular configurations
makes it possible to avoid the numerical instability or spurious ruggedness that is observed
amost awaysintheEXACT-NL method (Hasselmannand Hasselmann, 1985; Y oungetal ., 1987).

We thus conclude the section by recommending parameter values R, = 1.1, A6 = 10°, and
C, = 3, asaresult of the trade-off between economy and accuracy. Singular configurations are
to be processed for these parameter values. All the numerical experiments described in the next
section were carried out with these values of parameters.

3. Duration-Limited Evolution of Wave Spectra: the RIAM Method in Comparison with
the WAM Method

A wave model with the RIAM method incorporated is applied to the duration-limited
evolution of wind-wave spectra for various conditions of winds and initial spectra. The results
are compared with those obtai ned with amodel withthe WAM method incorporated to elucidate
the difference due to the different algorithms for nonlinear energy transfer.

Details of thewave model such astheintegration schemewill be presented in another paper
in preparation, so that we here describesonly the parameterization of the other sourceterms. Our
approach hereisalmost similar to that of the WAM model as follows (WAMDI Group, 1988).
The energy input | due to wind follows the formula by Snyder et al. (1981)

|(w,6) = max%) 0.25P E28 0 cos(6- 6, 1%m: ,6)> (23)

where p, and py are the densities of air and water, respectively, C,, is the phase velocity of the
component wave, and u- denotes the friction velocity, which isrelated with the wind speed U
at 10 m height through the drag coefficient Cp due to Wu (1982)

C, =(0.8+0.065U.,) x107S. 24
D 10

The energy dissipation D is parameterized by the formula proposed by Komen et al. (1984)
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(25)

(26)

(27)

(29

which becomes @, =3.014 x 10-3for the PM spectrum. The high-frequency tail abovethe cut-
off frequency wyy is dealt with just as in the WAM model (WAMDI Group, 1988): Fi(w) =
F1(on) (o cone)™ and S w,0) = F wre, B) for w= wrs. In this section, the experimental results are
presented chiefly in nondimensional units based on the friction velocity u- and the gravitational

(a) (b)
10° 10°g
= = WAM
. 1045— . 1045—
FoF FioF
10° 10°
E )16 I F 16
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Fig. 8. Duration-limited evolution of the nondimensional frequency spectrum F1* = F1g%/u+5, obtained
by (a) the RIAM method and (b) the WAM method, where «* = wg/u- is the nondimensional fre-

guency. The solid line shows the initial spectrum of the standard JONSWAP form.
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acceleration g. The frequency normalized by the spectral peak frequency and the one-dimen-
sional spectrum normalized by its peak value are denoted by @ and F, respectively.

3.1 Growth by the steady wind

Wefirst examine the temporal evolution of wave spectra under the steadily blowing wind.
Astheinitial spectrum we set the standard JONSWA P frequency spectrum together with cos?26
directional distribution, where the peak frequency w, and Phillips' a correspond to those of the
PM spectrum for U;p =5 m/s. At the moment of t = 0 we let the wind speed increaseto Uip = 20
m/s with the wind direction as ever.

Figure 8 showsthe evol ution of the frequency spectrum, wheretimeintegration was carried
out with At = 10 min (At* = 6.42 x 109) till t = 100 hours (t* = 3.85 x 106), when the spectrum
seemed to have achieved an amost saturated state. The spectrum growsin different mannerswith
different methods for calculating nonlinear energy transfer functions. The RIAM method
predicts faster growth of the spectral density than the WAM method. Also the spectral forms
differ from each other. It isto be noted, however, that self-similar growth of spectraisrealized
in both methods (Fig. 8).

Figure 9 showsthe evolution of spectral density at several frequencies, wherethefrequency
spectrum F;(w) is normalized by its saturated value F; ..(w), or more correctly, Fi(w) att = 100
hours (t* = 3.85 x 106). Wefind that both the RIAM and WAM methods reproduce not only the
overshoot but also undershoot around the saturated spectral density (Barnett and Sutherland,
1968, Mitsuyasu, 1969), though the undershaoot is less conspicuous in the latter method. This
result is in contrast with the conclusion of Young et al. (1987), who reported that the WAM
method failed in reproducing the undershoot by comparing the EXACT-NL model with the
WAM model. This discrepancy about the reproducibility of undershoot by the WAM method

(a) (b)
20 T T .', TT 2.0 [ — : L _
i & ] %
— 09 — 09
I — 19 - 1.0
15 o 1; — 15 e 1; ]
_F_1 I ,. Fay —— 1:3 ﬂ I I'\\ i \\_‘ . . 1:3
F1 ,00 i /"\!' \“I' y -—— 14 F1|oo [ ! ) \r\\é —— 14
1.0 - 1o
0.5} 05
0.0 0.0 r_
| 10°

Fig. 9. Thetime evolution of particular frequency components F1(w)/F1 () obtained by (a) the RIAM
method and (b) the WAM method, whereF « isthe saturated value of F; and ¢ denotesthefrequency
normalized by the peak frequency of the saturated spectrum.
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might be ascribed to difference in schemes for time integration.
As representative macroscopic quantities of wind-wave spectra, Fig. 10 shows the growth
of the nondimensional significant wave height H* and dominant period P* which are defined by

2.2m; la, w R (w)dw

g IQP F(w)dw (29)

HD=4—gx\s’E and P"=
U5

respectively, in terms of frequency spectra, where the latter integration is made over Q,, five
frequency bins around the spectral peak frequency. That integration isasimplest kind of filter
for more appropriate selection of the peak frequency than the nominal central frequency of the
bin that hasthe maximum spectral density. We seethat both H* and P* grow faster and approach
higher values by the RIAM method than by the WAM method. Note that their asymptotic values
obtained herearealittle smaller thanfamiliar ones. For exampl e, the present WAM method gives
H..* =90.1 and P..* = 130 which isto be compared with H..* = 120 and P.* = 122 predicted by
the WAM model used by Tolman (1992). Also thefinal values obtained with the RIAM method
areH.* =101 andP.* =142, whicharelessthan H.* =132 and P..* = 188 expected fromWilson's
formula (Wilson, 1965). It appears that the discrepancy does not imply the worse performance
of the present method, but suggests some deficiency in the wave model itself used here. The
detailed argument, however, will be provided in the next paper in preparation.

Another interesting aspect is found in the evolution of the so-called Toba’s constant B =
H*P*-32_ At the initial moment it takes 0.029, which is rather lower than its standard value
Br=0.062 (Toba, 1972). It soon increasesto avalue close to the standard value Br, adjusting to
the new wind condition. We notethat both the RIAM method and the WAM method yield almost
the same asymptotic values of B = H*P*-32, though the two methods give rather different

150— 150 —r—rrpram—r—rrprem——rrprrm—r—rrrm 0.12
- —-0.10

H 100 P~ 100 :o.os B
:o.oe
o[- sol- —-0.04
:o.oz
0 —— 0 -3 . --l----|4 . 1-1....15 . ..|....I6 . ,.|,,,:9_00

10 10 10, 10 10

Fig. 10. The evolution of the nondimensional significant wave height H*, dominant period P*, and B =
H* P*-32 where t* = tu-/g is the nondimensional duration time. The results of the RIAM method is
denoted by solid lines and those of the WAM method by dashed lines.
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saturated values for H* and P* themselves. Judging from the way B approaches the saturation
value, we observe that local equilibrium is attained within t* < 4 x 10* (t =< 1.04 hours) for the
WAM method, whilet* < 8 x 10* (t =< 2.08 hours) for the RIAM method. Another noteworthy
phenomenon isthat B overshoots, then undershoots, and finally approachesthe final value from
below to B., = 0.06 = By in both methods.

3.2 Saturated spectra

Long time integration over t = 100 hours (t* = 3.85 x 106) yielded nearly saturated spectra
asisobservedintheprecedinglogarithmic plotinFig. 8. Onthelow-frequency side, the saturated
spectra obtained by the two methods have slightly different slopes. Also we note that the
spectrumthrough the RIAM method hasanarrower transition zonefromlow to high frequencies.
Toward higher frequencies, the frequency spectrum decreases as, but slightly more slowly than,
w irrespective of the method for nonlinear energy transfer T.

The saturated spectra obtained with the RIAM and WAM methods are distinguished from
each other better in the linear normalized plot of Fig. 11, wherethe spectral peak frequency and
the peak density are unity. We observe that the saturated frequency spectraare far from the PM
spectrum, which has long been envisaged as the saturated spectrum. On both sides of the peak
frequency, either method yieldsasimilar form that isbroader than the JONSWA P spectrum but
narrower than the PM spectrum. A closer examination shows that the spectrum around the peak
frequency obtained with the RIAM method is stegper than that of the WAM method.

Two-dimensional distributions F* (w*,w,*) = F*(w*,0) o of saturated spectra are exam-
ined in contours (Fig. 12) and angular distribution functions S w,8) = F(w,0)/F1(w) at severd
frequencies (Fig. 13). In comparison with the RIAM method the WAM method gives a narrow
and concentrated directional distribution at high frequencies with ailmost no energy distributed
to|6]=120°. Themost curiousaspect at high frequenciesisthat thedirectional distribution seems
to approach acertain bimodal one in both methods. Similar featureswere reported, however, by
Banner and Y oung (1994), who dealt with the fetch-limited evolution with the rigorous method
of Resioand Perrie(1991). Onthelow frequency sideof thepeak frequency (o =0.8), aunimodal
directional distribution appears for the RIAM method, but a conspicuous bimodal feature is
observed for the WAM method. The bimodal distribution obtained with the WAM method is
presumably a spurious consequence of the insufficient approximation of the WAM method as
was pointed out beforein Fig. 3.

Remarkable differencesin directional distributions are found not only between the RIAM
and WAM models, but also between these model results and the empirical one either by
Mitsuyasu et al. (1975) and Hasselmann et al. (1980) or by Donelan et al. (1985) shown in Fig.
13(c) or (d), respectively; see 2.2 for the formulas for those empirical directional distributions.
Near the peak frequency, both models predict lower concentration of energy near the main
direction than the empirical ones. Thedirectional concentration of the RIAM method, however,
issimilar to the distribution of Mitsuyasu et al. (1975) or Hasselmann et al. (1980) rather than
that by Donelan et al. (1985), which predicts much more concentrated distribution near the peak
frequency. In general the empirical ones have notable energy in wide angles, whereas the
directional distribution of the models shows arapid decay away from 8— 8 ~ +90°. The most
interesting difference at high frequenciesis that the modelsyield directional distributions with
two maximaat two oblique angles while empirical formulas assert unimodal distributions with
a peak along the wind direction. The former double-peaked structure at high frequencies is
presumably a consequence in the present wave models. A serious degree of uncertainty bothin
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model formulation and in measurement at the sea, however, prevent usfrom determining which
directional distribution describes the real spectra best.

The different methods for calculating T thus yield different saturated spectra F(w,6), sug-
gesting different energy balance in different models. Here, however, we do note get into details
about why the saturated spectrum differs between the two model s or between the modelsand the
empirical ones. Such arguments will be addressed in the next paper.

1.2 e
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1.0— e WAM n

- 1 — JONSWAP

F1
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(O}

Fig.11. Normalized formsof saturated frequency spectra l51 obtained by the RIAM method andthe WAM
method. The standard JONSWAP spectrum and the PM spectrum are shown for reference.
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Fig. 12. Contours of the two-dimensional saturated spectrum F* (w*,w,*) = F*(w*,6)w* obtained by
(a) the RIAM method and (b) the WAM method, where the contours are (a) 4.09 x 103, 8.18 x 103,
2.04 x 104, 4.09 x 10%, 1.02 x 10°, 2.04 x 10°, 3.07 x 105, and 3.68 x 10°, and (b) 2.63 x 103, 5.26 x
108, 1.31 x 104, 2.63 x 104, 6.57 x 104, 1.31 x 10°, 1.97 x 105, and 2.37 x 10°, respectively.
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Fig. 13. The directiona distributions Sw,0) = F(w,0)/F1(w) at severa frequencies for the saturated

3.3 Adjustment to the abrupt change of the wind direction

spectra obtained by (@) the RIAM method and (b) the WAM method, together with those of (c) the
Mitsuyasu-Hasselmann type, and (d) the Donelan type.

The utility of thethird-generation model has often been said to lieinitsability to predict the

adjustment of wave spectrato sudden changes of wind directions. We therefore examine how
differently spectra respond to the change of wind directions when different schemes for T are
used. Consider an initial frequency spectrum of the standard JONSWAP type, where the peak
frequency and Phillips a correspond to those of the PM spectrum for U;o = 10 m/s. We assume
afrequency-independent directional distribution of cos?Otypewith 8 = §| =0°,whichisreferred
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Fig. 14. Evolution of the two-dimensional spectrum F* («*,w,*) obtained by the RIAM method for the
initial JONSWA P spectrum with cos?0 directional distribution: (a) t = 1 hours, (b) t =2 hours, (c) t =
5 hours, and (d) t = 30 hours. The contours are (a) 1.97 x 102, 3.95 x 102, 9.88 x 102, 1.98 x 103,
4.94 x 108, 9.88 x 103, 1.48 x 104, and 1.78 x 10%, (b) 2.01 x 102, 4.03 x 107, 1.01 x 108, 2.01 x 103,
5.04 x 108, 1.01 x 10%, 1.51 x 104, and 1.81 x 104, (c) 6.09 x 102, 1.22 x 103, 3.05 x 103, 6.09 x 102,
1.52 x 104, 3.05 x 10%, 4.57 x 10, and 5.48 x 10%, and (d) 4.00 x 103, 8.00 x 103, 2.00 x 104, 4.00 x
104, 1.00 x 10°, 2.00 x 10°, 3.00 x 10°, and 3.60 x 10°.

toastheinitial direction of thewave spectrum. Att=0welet thewind change abruptly: thewind
speedisincreased to U;o = 20 m/sand thewind directionisrotated anticlockwise by aright angle
toward the direction of §n =90°, whichwerefer to asthe new direction. Figures 14 and 15 show
different stagesof theevolution of thetwo-dimensional spectrum F* (a*,w,*) = F* (o, 6) w* for
the RIAM method and the WAM method, respectively, att = 1, 2, 5, and 30 hours (t* = 3.85 x
104,7.70x 10%,1.92 x 105, and 1.15 x 106). Theevolution of spectral density intheinitial direction
6, and the new direction 6, are shown in Figs. 16 and 17 for the RIAM and WAM methods,
respectively.
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Fig. 15. The sameas Fig. 14 except that the results are obtained by the WAM method. The contours are
(@) 2.05 x 102, 4.10 x 102, 1.03 x 103, 2.05 x 108, 5.13 x 108, 1.03 x 10%, 1.54 x 104, and 1.85 x 104,
(b) 1.61 x 102, 3.22 x 102, 8.04 x 102, 1.61 x 108, 4.02 x 103, 8.04 x 103, 1.21 x 104, and 1.45 x 104,
(c) 3.09 x 102, 6.18 x 102, 1.54 x 103, 3.09 x 108, 7.72 x 108, 1.54 x 10%, 2.32 x 104, and 2.78 x 104,
and (d) 1.90 x 103, 3.80 x 108, 9.51 x 103, 1.90 x 104, 4.75 x 104, 9.51 x 104, 1.43 x 10°, and 1.71 x
10°.

We seethat the energy of the peak spectral frequency oncedecreasesat theinitial stage. This
issimply because energy-containing waves propagating in the initial direction suffer enhanced
dissipation but no energy is supplied from the wind blowing to the right angle. The decreasein
thespectral energy intheinitial directionisobservedinboth methods, butitislargerinthe WAM
model than in the RIAM model. The spectral density begins to increase at higher frequencies
adjusting to the new wind condition. The secondary peak thus appears at a high frequency ina
direction that is close to the new direction but slightly deviated toward the initial direction. A
noteworthy phenomenon is that the spectral density at the initial direction shows a clear
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Fig. 16. Evolution of the spectral density F* (c*,6) obtained with the RIAM method for (a) the direction
of 8= 6 = 0° and (b) the direction of 6= 6, = 90°.
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Fig. 17. The same as Fig. 16 except through the WAM method.

frequency downshift in the RIAM model, whereas no such tendency is observed in the WAM
model. The spectral density in the new direction growsin away similar to that of F; under the
steady wind (Fig. 8). In the case of the WAM method, however, a curious hump near aw* = 0.06
was observed for awhile. After t =30 hours (t* = 1.15 x 106), in both methods, frequency spectra
and directional distributions become almost the same as at the saturated state discussed in
Subsection 3.2, except for the scale, magnitude, and main direction.
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3.4 Response to the perturbation to the locally equilibrated spectral form

Nonlinear energy transfer has often been referred to as the most important agent that
stabilizes the spectral form as it is observed actually. Masuda (1980) tested this problem by
adding a small spectrum to a standard form of spectrum. Although he did not carry out time
integration, he showed that T at theinitial moment worksto smooth out the spectral ruggedness.
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Fig. 18. Evolution of the one-dimensional frequency spectrum F1* («w*) for theinitial spectrum perturbed
by a small hump F1(cw) = Fi(w; 3.3) + 0.2 x F5(awf2; 3.3), where the angular distribution function is
cos?0 irrespective of the frequency and input | and dissipation D are discarded.
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Fig.19. ThesameasinFig. 18 except that theinitial frequency spectrumisperturbed by asmall depression
F1(w) = Fi(c 3.3) —0.03 x Fy(awf2; 9).



A New Scheme of Nonlinear Energy Transfer among Wind Waves: RIAM Method 533

Thisproblemwas|ater investigated by Resio and Perrie (1991) for abump or by Y oung and Van
Vledder (1993) for adepression. Using rigorous algorithms, they carried out timeintegration to
confirm that the perturbed spectrum recovers its original smooth form. Masson (1993) also
discussed the problem of a hump in relation to the nonlinear coupling between swell and wind
waves.

Thesimilar problemsareinvestigated hereinorder to comparethe performanceof theRIAM
method with that of the WAM method for three kinds of initial spectra: (1) spectrum perturbed
by a small hump

F(w,8) = (Fy(;3.3) +0.2x Fy (w/ 2;3.3))5(2) cos? 6, (30)
(2) spectrum perturbed by a small depression
F(w,8) = (F;(w;3.3) - 0.03F, (w/ 2;9))(2) cos? 6, (31)
and (3) spectrum with avery narrow frequency band (y=9)
F(w,6) = F,(;9.0)52) cos’ 6, (32)

where the peak frequency «, and Phillips' a correspond to those of the PM spectrum for U,o =
10 m/s. Inthis subsection, we discard | and D asin Resio and Perrie (1991), so that the spectral
evolution is governed by nonlinear energy transfer T only.

Figures 18 to 20 show the evolution of F; for the three initial spectra above, respectively,
predicted with the RIAM method and the WAM method. We see that nonlinear energy transfer
removesthe hump or the depression to recover the original smooth spectral form, aswaspointed

F110°k F110°

10*E

Fig. 20. Thesameasin Fig. 18 except that the initial spectrum has a narrow band width (y=9) Fi(w) =
Fo(w; 9).
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out by Masuda (1980), Resio and Perrie (1991), and Y oung and Van Vledder (1993). Also the
too narrow spectrum is changed into a broader moderate one. In these figures, we see that the
RIAM method representstherestoring rolesof nonlinear energy transfer inasmoothregular way.
On the other hand the WAM method yields other unrealistic bumps or depressions during the
adjusting process.

4. Summary and Discussions

A new schemecalled the RIAM method was devel oped to cal cul ate efficiently the nonlinear
energy transfer function among wind waves. In this scheme, the symmetric properties of wave
resonance are fully incorporated into the rigorous method of Masuda (1980). Thus, the RIAM
method inheritsthe accuracy from Masuda’ sa gorithm (1980) and the computational efficiency
from the discrete interaction approximation of Hasselmann et al. (1985).

The accuracy and computational efficiency of the RIAM method were examined in
comparison with other previous methods by applying them to some typical spectra. The RIAM
method turned out to have the same degree of accuracy as the other previous rigorous methods.
As processing singular points adequately, the RIAM method proved much better than the
Hassel mann and Hassel mann method (1981) innumerical stability or smoothness. Inadditionthe
RIAM method is 300 timesfaster than the original Masuda method. Asregardsto the Resio and
Perriemethod, it required 20 min= 1200 sec on an IBM-PC with an accel erator board to cal cul ate
the nonlinear energy transfer for a given spectrum (Resio and Perrie, 1991), while the RIAM
method consumes 1 sec on an HP-735 Work Station for the same job. Unfortunately, however,
it is difficult to compare the efficiency of the two methods because of different machines,
different resolution, and others. In any case, the RIAM method bel ongsto the fastest schemesin
the (semi-)rigorous algorithms. The RIAM method is thus capable of computing nonlinear
energy transfer functionsal most to the accuracy of rigorous methodsin much lesscomputational
time.

Then the performance of the RIAM method was compared with that of the WAM method,
arepresentative onein operational use. The RIAM method still requires about 2000 times more
computational time than the WAM method, simply because the former processes about 2000
configurations of resonance while the latter only one. It was shown, however, that the WAM
method gives quite unrealistic nonlinear energy transfer functions both in magnitude and in
pattern, when the spectrum is either directionally concentrated, frequency-concentrated, or
double-peaked; the WAM method is unreliable even for the standard JONSWAP spectrum. In
short, the RIAM method has a much wider range of validity and better accuracy than the WAM
method.

In addition, the parameter sensitivity of the performance of the RIAM method was
investigated to give desirable values of parametersfor the method to operatein apractical level
of computational time without losing substantial accuracy. The proposed values are R, = 1.1,
AB=10° and C, = 3. Also it isrecommended to process singular points (configurations) since
it improves accuracy without almost no additional time for computation.

The performance of the RIAM method was examined as well in the temporal evolution of
wave spectra. We assumed the same formulas of sourcetermsasthe WAM model except for the
nonlinear term. Wefirst investigated the growth of wind wavesunder the steadily blowing wind.
It was shown that the peak period and the total energy of wind waves grow faster by the RIAM
method than by the WAM method. Nevertheless, Toba' s constant of his 3/2-power law
asymptotically approaches the standard value about 0.06 in both methods. The saturated wave
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energy and dominant peak frequency werealittle smaller than thosereported so far with previous
WAM models or those predicted by Wilson'sformula. Not only the RIAM method but also the
WAM method could reproduce well both overshoot and undershoot phenomena, which isin
contrast with the conclusion of Young et al. (1987), who reported that the WAM model could
not realize undershoot.

Even after along-run, the spectrum does not approach the Pierson-M oskowitz spectrum, but
it seemsto have achieved an almost saturated one, irrespective of the two methods. On the low-
frequency side of the peak frequency, the spectrum obtained by the RIAM method i s steeper than
the JONSWA P spectrum, in agreement with afinding for the evolution of wind-wave spectrain
a wind flume (Kusaba and Masuda, 1988). On the other hand, the WAM method gives the
spectrum with abroader band width around the peak frequency. Furthermore, the WAM method
yieldsthe angular distribution function with two oblique maximain front of the peak frequency.
Thisdouble-peaked directional distributionisnot found for the spectrum predicted by theRIAM
method. A closer examination suggests that this is due to the insufficient approximation of the
WAM method.

We found a curious feature of saturated spectra at high frequencies, commonly to either
method. Theangular distribution function attainsitsmaximum at theangles of £40° or morefrom
the main propagation direction. Though for the fetch-limited growth, a similar structure was
pointed out by Banner and Y oung (1994), who ascribed this bimodal angular spreading to the
unsuitable assumptions about the ambiguousempirical formulafor energy dissipation and about
the spectral tail in the frequency domain. On the other hand, the frequency spectrum decreases
approximately asbut slightly slower than w at high frequenciesin boththeRIAM andthe WAM
methods.

Then we examined the response of wave spectrato the abrupt turning of the wind direction
by aright angle. We see that the spectral energy decreases moreinthe WAM method thanin the
RIAM method. At the later stage, both methods yield the secondary peak located at high
frequencies with its direction close to the new direction of the wind but slightly shifted to the
initial direction. Intheinitial main direction, the spectrum shows an evident transfer of energy
toward lower frequencies, while such a downshift is not produced by the WAM method.

Toexaminethestabilizing role of nonlinear energy transfer, wetested the spectral evolution
for three forms of initial spectra that are deviated from the moderate and smooth one in the
approximatelocal equilibrium: aspectrumwithasmall local hump, aspectrumwithasmall local
depression, and a spectrum with an extremely narrow band width. In these experiments, only T
wastaken into account with the other termsof | and D discarded. The RIAM method effectively
smooths out the hump or depression of the spectrum or change the too steep spectrum into that
with a moderate band width. Reflecting the basic role of nonlinear energy transfer, the WAM
method shows the same tendency of spectral evolution, but produces spurious humps or
depressions at other frequencies during the adjusting process.

Inthis paper, we have restricted oursel vesto the description of the computational aspects of
the RIAM method such asits algorithm and performance mainly in comparison with the WAM
method. The next paper will be devoted to the physics and dynamics of the wave evolution that
is realized when the RIAM method is applied together with the other source terms. We will
discusstherewhy bimodal angular spreading occursin high frequencies, how energy balanceis
maintained in saturated spectra, or how wave models are to be improved in view of the RIAM
method.

Finaly, a few remarks should be made about the speed of the RIAM method. As was
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mentioned before, the RIAM method deals with a few thousands of configurations of resonant
four-waves, in contrast with only one configuration in the WAM method. The RIAM method
therefore must necessarily require a few thousands times larger computational time than the
WAM method, so that even the efficiency of the RIAM method is far from what is available to
operation modelsfor wave forecast today. The advantage of the RIAM method isto give almost
the same degree of accuracy as the other exact algorithm such as the Masuda method even for
rather atypical wave spectra. Therefore, the RIAM method can still be used asan efficient means
for theoretical investigation, whichisindispensablein order to improve wave models above the
empirical level.

In any case, the RIAM method cannot be used as an algorithm for operational wave
prediction for the present power of computers. We need to develop a scheme of practica
efficiency with aslightly lower level of accuracy for thealgorithmto beindaily use. The method
required is called asimplified RIAM method (SRIAM method), which processes adiminished
number of resonance configurations. Another paper will bedirected to the operational model for
waveforecasting that incorporatesthe SRIAM method for cal culating nonlinear energy transfer
functions.
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