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A numerical scheme for calculating the nonlinear energy transfer among wind
waves (RIAM method) was developed on the basis of the rigorous method of
Masuda. Then the performance of the RIAM method was examined by applying
it to various forms of wind-wave spectra and different situations of wind-wave
evolution, in comparison mainly with the WAM method. The computational time
of the Masuda method was reduced by a factor of 300 by the RIAM method, which
is still 2000 times slower than the WAM method simply because the RIAM method
processes thousands of resonance configurations whereas the WAM method does
only one. The RIAM method proves to give accurate results even for spectra of
narrow band widths or bimodal spectra, whereas the WAM method often calculates
an unrealistic magnitude and pattern of nonlinear energy transfer functions. In
the duration-limited evolution of wind-wave spectra, the RIAM method yields a
unimodal directional distribution on the low-frequency side of the spectral peak,
whereas the WAM method produces a spurious bimodal one there. At higher
frequencies, however, both methods give a bimodal directional distribution with
two oblique maxima. The RIAM method enhances the growth of the total energy
and peak period of wind waves in comparison with the WAM method. Nevertheless,
Toba’s constant of his 3/2-power law approaches almost the same standard value
of 0.06 in both methods. For spectra of a narrow band width or for those perturbed
by a small hump or depression, the RIAM method tends to recover the monotonic
smoother form of spectrum whereas the WAM method often yields unrealistic
humps or depressions.

1.  Introduction
Wave prediction today is based on the equation of energy balance for each spectral

component. For deep water the evolution of the spectral component is governed by

  

∂F

∂t
+Cg ⋅ ∇ F = I + T + D 1( )

in the absence of surface currents, where F = F(k; x,t) denotes the two-dimensional spectrum with
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respect to the wavenumber k at the horizontal position x and time t. The terms on the left-hand
side indicate the local change and the energy radiation at the group velocity Cg, respectively, while
those on the right-hand side represent the source functions: I is the energy input due to wind, T
the nonlinear energy transfer function due to resonant wave-wave interaction, and D the energy
dissipation mainly due to wave breaking. Each of the source functions therefore must be
estimated precisely in order to predict the evolution of wave spectra accurately.

Among the three source terms, the nonlinear energy transfer due to four-wave resonance has
been considered one of the most important factors that control the evolution of wave spectra:
down shift of the spectral peak frequency, self-stabilization of the spectral form, and frequency-
dependent redistribution of angular distribution functions. Although the formulation of this
mechanism for continuous spectra was accomplished by Hasselmann as early as 1962 (Hasselmann,
1962, 1963), the precise evaluation of nonlinear energy transfer functions requires considerable
efforts since it is expressed as a triple integration with singular points. Sell and Hasselmann
(1973) first presented a systematic numerical computation of the nonlinear energy transfer
function for the Pierson-Moskowitz spectrum (abbreviated as the PM spectrum) and the
JONSWAP spectrum. Their results, however, somewhat lack in numerical stability and showed
that even the spectral peak can gain energy through nonlinear energy transfer. This conclusion
appeared unacceptable intuitively at those days, because nonlinear energy transfer was generally
supposed to redistribute energy in a smoothing way (Phillips, 1977). This is why many works
followed Sell and Hasselmann to elucidate what the true energy transfer should be like (Longuet-
Higgins, 1976; Fox, 1976; Webb, 1978; Dungey and Hui, 1979). The controversy was decisively
resolved by Masuda (1980, 1986), who showed how the contradiction arose on the basis of a
stable and rigorous algorithm developed by himself. Applying his algorithm to different forms
of wind-wave spectra, he also pointed out that the nonlinear transfer function sensitively depends
on the spectral forms both in magnitude and in pattern. Successive efforts based on other rigorous
schemes have still been continued to reveal various properties of nonlinear energy transfer (for
example, Hasselmann and Hasselmann, 1985; Young et al., 1987; Resio and Perrie, 1991).

Nevertheless, the exact computation of nonlinear transfer functions consumes still too much
time to be incorporated in operational models for wave forecast. First-generation models
therefore totally discarded the nonlinear energy transfer function except implicitly through
dissipation terms. Also second-generation models have abandoned the computation of nonlinear
energy transfer functions by restricting the prediction only to several parameters that characterize
wind-wave spectra; detailed spectra are determined according to some empirical form of wave-
spectra in generation areas. That is, second-generation models take the nonlinear transfer
function into account in an implicit way through empirical forms of spectra, which should be
controlled by nonlinear energy transfer. It became clear, however, that no model participating in
the SWAMP Group (1985) intercomparison study could properly simulate the complex wind-
seas resulting from a sudden change of wind. This inadaptability of the models of the second
generation was ascribed to their insufficient degree of freedom, which is an unavoidable
consequence of the parametric representation of wave spectra.

The deficiency was overcome soon by the development of the wave-forecasting model of
the third generation, in which nonlinear energy transfer functions are computed explicitly. The
WAM model (WAMDI Group, 1988) is a representative one that belongs to this generation. It
calculates nonlinear transfer functions explicitly according to the discrete interaction approxi-
mation (Hasselmann et al., 1985). Young et al. (1987) showed that, even for abruptly changing
wind fields, the WAM model fairly closely reproduced the wave evolution evaluated with the
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EXACT-NL model based on the exact calculation of nonlinear energy transfer (Hasselmann and
Hasselmann, 1985). It must be noted, however, that the discrete interaction approximation (or
the WAM method henceforth), is a crudest way for computing nonlinear energy transfer
functions. Strikingly enough, the WAM method substitutes a single configuration of resonant
four waves for an infinite numbers of configurations. Accordingly, the WAM method is con-
sidered to have a rather limited validity, as will be shown later. In this sense, the WAM method
should be replaced by a better one in order to improve the performance of wave models and in
order to gain a better physical understanding of the evolution of wind-wave spectra. It is
indispensable for the desired algorithm to compute nonlinear energy transfer functions with
sufficient accuracy for any kind of spectral forms. The rigorous method, which may be precise
but consumes tremendous computational time, is not suitable for operational wave-forecasting
models of the next generation.

Thus, it is necessary to develop a method equipped with both practically sufficient accuracy
and efficiency suitable for practical wave forecasting models with a general adaptability. In order
to present a candidate for or a starting one toward such a method, we begin with the rigorous method
of Masuda (1980), which has a high precision through its analytical processing of singular points.
Then, making full use of the symmetry of resonant interaction (cf. Hasselmann and Hasselmann,
1981) and truncating less substantial configurations of resonance, we develop an algorithm that
achieves shorter computational time without serious loss of accuracy. The primary purpose of
this paper is therefore to present some details of this new method and to compare its performance
with that of other available schemes, in particular, of the WAM method, which is adopted in a
most popular operational model. The performance is examined in the evolution of wind-wave
spectra as well. The dynamics, however, will be argued in another paper, as to how wind-wave
spectra evolve driven by three source terms parameterized in the wave model or what kind of
equilibrium is realized in saturated spectra.

The next section describes the algorithm of the new method, which is to be called as the
RIAM* method henceforth. We examine the basic properties of the RIAM method such as its
computational time, accuracy, and parameter sensitivity. Then the RIAM method is applied to
several cases of temporal evolution of wave spectra to be compared with those due to the WAM
method. Finally, a summary and discussions are given in Section 4.

2.  Algorithm and Basic Properties of the RIAM Method
The nonlinear energy transfer function T(k4) at the wave number k4 is expressed by the

Boltzmann integral (Hasselmann, 1962, 1963):

  

T k4( ) = ω4 L∫ dk1dk2dk3G k1,k2 ,k3,k4( )δ k1 + k2 − k3 − k4( )∫
×δ ω1 + ω2 − ω3 − ω4( ) n1n2 n3 + n4( ) − n3n4 n1 + n2( ){ } , 2( )

where ni = n(ki) = F(ki)/ωi (i = 1, 2, 3, and 4) denotes the action density for the wavenumber ki,
ωi = |gki|1/2 the corresponding angular frequency with g the acceleration due to gravity, and G the
coupling coefficient (Hasselmann, 1963). The delta function δ means that nonlinear interaction
occurs among wave components which satisfy the four-wave resonance conditions:

*Research Institute for Applied Mechanics.
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k1 + k2 = k3 + k4 , 3( )

  

ω1 + ω2 = ω3 + ω4 . 4( )

There are infinite number of possible configurations of resonant four wavenumbers, as shown
by the figure of eight in Fig. 1 (Longuet-Higgins, 1962).

In order to develop a scheme of wider applicability than that of the WAM method, we follow
the algorithm of Masuda (1980), which is excellent in accuracy and numerical stability or
smoothness, but it consumes too much computational time for practical use. In this paper, we
therefore improve his algorithm to develop a new method as efficient as possible for future
models of wave prediction.

The highly technical portion of the algorithm was described in our preliminary report
(Masuda, 1980; Komatsu et al., 1993), so that we only give a brief sketch of the scheme. The most
significant revision to that report is that the outermost loop of computation is now the con-
figuration, instead of the frequency ω4 of the largest wavenumber among resonant four com-
ponent waves. It is to be noted that the actual algorithm is described in terms of the angular
frequency ω and the propagation direction θ rather than the wavenumber k.

2.1  Algorithm
In order to save computational time, we take advantage of the symmetry of the integrand as

in Hasselmann and Hasselmann (1981) or Resio and Perrie (1991). In here, two kinds of
symmetry are discriminated from each other. The first kind is based on the well-known nature

Fig. 1.  Figure of eight representing the conditions for the four-wave resonance: contours of γ defined in
Masuda (1980). This figure shows that a pair of wavenumbers k3 and k4 resonate with another pair of
k1 and k2, such that k3 + k4 = k1 + k2, only when they lie on the same contour of γ. Here and henceforth
solid and dashed lines indicate positive and negative contours, respectively. The contour values are
±(0.0, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18). The RIAM method deals with
about 2000 configurations among an infinite ones, while the WAM method uses only one configura-
tion, which is designated by the thick dashed arrows with a superfix (W).
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of the nonlinear resonant interaction among gravity waves expressed by integral formula (2).
Consider a particular combination of four resonant waves with wavenumber vectors ki (i = 1, 2,
3, and 4). As explained in Hasselmann and Hasselmann (1981), δn(ki)dki/δt (i = 1, 2, 3, and 4)
are the same in magnitude, where δn(k)/δt indicates the action transfer that is due to this particular
resonance combination. In addition, the lowest and the highest frequencies of the resonant four
waves make the pair of the outer frequencies, while the other frequencies make the inner
frequencies. The resonance deprives energy of the inner pair to supply it to the outer pair, or vice
versa (Masuda, 1986). Accordingly, if we calculate δn(k)/δt for one component of the resonant
four waves, then we immediately know δn(k)/δt for the other three components. The action
transfers above for the four waves are converted into the corresponding nonlinear energy
transfers due to that specific combination of resonance δT 

LO, δT 
LI, δT 

HI, and δT 
HO, where the

suffixes on the shoulder LO, LI, HI, and HO denote the components of the lower frequency of
the outer pair (LO component), the lower frequency of the inner pair (LI component), the higher
frequency of the inner pair (HI component), and the higher frequency of the outer pair (HO
component), respectively. This property reduces computational time by a factor of 4.

The second kind of symmetry is associated with the geometrical similarity of resonance
configurations. First of all the mirror image of a resonance combination is also another one with
the same interaction coefficient. Secondly, a rotation of a resonance combination gives another
one with the same interaction coefficient. Thirdly, a scale transform of wavenumbers preserves
the resonance condition. Though this last property is valid only for deep water waves, it allows
us to estimate the interaction coefficient simply by multiplication of a certain power of the scale
ratio (Masuda, 1980).

In order to make use of the symmetries mentioned above, the (ω,θ) space is divided into bins
of nonuniform finite areas (Hasselmann and Hasselmann, 1981; Resio and Perrie, 1991). The
central frequency ωk of each bin is distributed on a logarithmic scale from the minimum
frequency ωmin to the maximum ωmax at a constant ratio

  

Rω ≡1+ ∆ logω( ) 5( )

as

  

ωk +1 = Rω ⋅ωk , 6( )

while the central direction θm of the bin is distributed as

  

θm+1 = θm + ∆θ 7( )

with the directional increment ∆θ kept constant. By virtue of this distribution of bins, the second
kind of symmetry is expressed as follows. If a combination of certain four bins satisfies the
resonance condition, so do any combinations of four bins that are obtained from the original
combination through the (1) mirror transform, (2) rotational transform, and (3) scale transform.
All the resonance combinations with the same geometry within the transforms above are said to
have the same configuration of resonance.

Finally, the procedure is written schematically as
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T = δT LO + δT LI + δT HI + δT HO( )
rot
∑

scl
∑

cnf
∑ , 8( )

where parameters cnf, scl, and rot symbolically denote the configuration, scale, and rotation (plus
mirror image), respectively. The summation over the LO, LI, HI, and HO components represent
the symmetry of the first kind, while the summation over cnf, scl, and rot correspond to the symmetry
of the second kind. In order to limit the number of the resonance combinations, we discard the
resonance configurations for which the ratio of the higher and lower frequencies of the outer pair
ω 

HO/ω 
LO exceeds a prescribed value of Cr defined later.

In the RIAM method, the energy transfer is calculated for each bin. When we fix cnf, scl, rot,
and a bin corresponding to the HO component (HO bin), the locations of the other three resonant
bins relative to the HO bin in the frequency-direction space are determined according to the cnf
parameter. The rate of energy the HO bin receives through the resonance among the four bins of
assigned areas is calculated as

  

dT HO = G1 cnf( ) ⋅G2 scl( ) nLInHI nLO + nHO( ) − nLOnHO nLI + nHI( )( ), 9( )

where nLI denotes the action density for the LI bin, and so on. In here, the two factors G1 and G2

describe the strength of the resonant interaction among the four bins. The kernel G1 is determined
easily by means of the Masuda method, because the resonance configuration is fixed and the
properties of the bins are known; if the configuration is a singular one, it is to be dealt with
analytically (Masuda, 1980; Komatsu et al., 1993). On the other hand, G2 is a simple power of
the frequency of the HO bin (Masuda, 1980). Note that the resonance configuration, G1, and G2

are independent of the details of the spectrum. Thus, we can determine beforehand the resonance
configurations of the bins and the associated kernel G1, which is rather complicated.

Once δT 
HO is obtained, it is easy to calculate the energy of the other resonant bins receive

by virtue of the symmetry of the first kind. Then, the total nonlinear energy transfer is expressed
as in (8).

2.2  Notations for wave spectra and nonlinear energy transfer functions
The two-dimensional wind-wave spectrum F(ω,θ) is rewritten as

  

F ω,θ( ) = F1 ω( )S ω,θ( ), 10( )

where F1(ω) denotes the one-dimensional (frequency) spectrum and S(ω,θ) the directional dis-
tribution (angular distribution function) satisfying

  

S ω,θ( )dθ
−π

+π
∫ =1. 11( )

Most of the frequency spectra F1 examined here are those of the JONSWAP type (Hasselmann
et al., 1973)
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F1 ω( ) = FJ ω;γ( ) ≡ αg2ω−5 exp − 5
4

ω
ωp








−4










γ

exp −
ω−ωp( )2

2σ2ωp
2















12( )

with the spectral peak frequency ωp, Phillips’ parameter α, peak-enhancement parameter γ, and

  

σ =
0.07, ω ≤ ωp

0.09, ω > ωp .





13( )

The PM spectrum and the standard JONSWAP spectrum are recovered by putting γ = 1 and γ =
3.3, respectively.

On the other hand a most familiar expression for the directional distribution is

  

S ω,θ( ) =
Ŝ s( )coss θ − θ( ), 0 ≤ θ − θ ≤ π / 2

0, otherwise






14( )

where 
  ̂

S (s) is the normalization factor and 
  

θ  denotes the average wave direction, which will be
put at zero unless stated otherwise. The parameter s, an index of directional concentration, may
or may not depend on the frequency. A frequency-dependent form that has been supposed to
represent the observed wind sea well is due to Mitsuyasu et al. (1975) and Hasselmann et al. (1980):

  

S ω,θ( ) = Ŝ s( )cos2s θ − θ
2






, 15( )

where

  

s =100.99 ω
ωp








b

, 16( )

  

b =
4.06, ω < ωp

–2.34, ω ≥ ωp .





17( )

A somewhat novel form of directional spreading was proposed by Donelan et al. (1985):

  

S ω,θ( ) = β
2

sech2β θ − θ( ), 18( )

where
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β =

2.61 ω / ωp( )+1.3
, 0.56 ≤ ω / ωp < 0.95

2.28 ω / ωp( )−1.3
, 0.95 ≤ ω / ωp <1.6

1.24, otherwise.













19( )

Instead of the two-dimensional T(ω,θ), we often use

  

T1 ω( ) = T ω,θ( )dθ
−π

+π
∫ 20( )

as its concise representation. Also, we usually nondimensionalize the frequency ω and frequency
spectrum F1(ω) so that both the peak frequency and the peak spectral density equal to unity. The
dimensional T is obtained by multiplying its nondimensional value by the dimensional value of
F1

3(ωp)ωp
11g–4.

2.3  Computational efficiency and accuracy of the RIAM method
Applied to typical spectra, the RIAM algorithm turned out to compute the nonlinear energy

transfer function about 300 times faster than the original Masuda method, when we put almost
the same conditions for computation mentioned below. The RIAM method, however, still
requires 2000 times longer computational time than the WAM method. This is simply because
the RIAM method processes thousands of resonance configurations whereas the WAM method

Fig. 2.  Comparison of the one-dimensional transfer functions T1 obtained by the RIAM method, the WAM
method, Masuda (1980), Hasselmann and Hasselmann (H & H 1981), and Resio and Perrie (R & P
1991), where the wave spectrum examined is the standard JONSWAP frequency spectrum with cos2θ
directional spreading. The transfer function is made nondimensional by the peak angular frequency
ωp and the peak spectral density F1(ωp). The parameters for the RIAM method are Rω = 1.06, ∆θ = 10°,
and Cr = 3, while those for the Masuda method are Rω = 1.06, ∆θ = 10°, and Cr = 7.
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deals with only one configuration. See Komatsu et al. (1993) for further details. For the present
power of computers therefore the RIAM method is not fast enough for an operational model.
With respect to accuracy, however, the RIAM method turns out to have much better performance
in comparison with the prevalent WAM method, which often gives an unrealistic magnitude and
pattern of nonlinear energy transfer functions, as will be shown later. The greatest advantage of
the RIAM method is that it can be used as an efficient and almost rigorous method. It must be

Fig. 3.  Comparison of the two-dimensional energy transfer T(ω,θ) obtained by (a) the RIAM method,
(b) the WAM method, and (c) the Masuda method, where the model parameters and the wave spectrum
examined are the same as in Fig. 2. The contour intervals are (a) 7.62 × 10–2, (b) 3.74 × 10–2, and
(c) 7.25 × 10–2. Note that the contour interval in (b) due to the WAM method is nearly half of the others.
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noted that, throughout the paper, the WAM method simply means the method based on the same
discrete interaction approximation that was employed in the WAM model, so that the remainder
of the algorithm is the same as in the RIAM method. For better comparison, we tried to keep the
resolution at the similar level to that for the standard RIAM method: Rω = 1.1, ∆θ = 10°, and
Cr = 3; the dependence of the performance of the RIAM method on these parameters will be
discussed later.

We chose rather fine resolution of Rω = 1.06 in this subsection, where the accuracy of the
RIAM method is compared with that of the WAM method or other rigorous algorithms. This is
because Hasselmann and Hasselmann and Resio and Perrie used even finer resolution of Rω <
1.02, though we set Rω = 1.06 for the Masuda method; later the result with the RIAM method of
Rω = 1.06 will be shown in fairly good agreement with that obtained at the standard resolution
Rω = 1.1 (Fig. 5).

For the standard JONSWAP spectrum (γ = 3.3) with cos2θ directional spreading, Fig. 2
compares T1 obtained by the present RIAM method with those by the WAM method or by
previous rigorous algorithms: Masuda (1980), Hasselmann and Hasselmann (1981), and Resio
and Perrie (1991). Among the rigorous methods we find that the Masuda or the Resio and Perrie
method provides smoother T1 than that by Hasselmann and Hasselmann, probably due to the
adequate processing of singular points in the former two. The Masuda method gives almost the
same values as the Hasselmann and Hasselmann method, while a slightly larger estimate is found
in the Resio and Perrie method.

Figure 3 compares the two-dimensional distributions T(ω,θ) calculated by the RIAM

Fig. 4.  Comparison of the one-dimensional energy transfer T1 obtained by the RIAM method and the
WAM method, where the wave spectrum examined is (a) the PM spectrum with cos10θ directional
spreading F(ω,θ) = FJ(ω; 1)

  ̂

S (10)cos10θ, and (b) a double-peaked spectrum with cos2θ directional
spreading F(ω,θ) = (FJ(ω; 3.3) + 0.2 × FJ(ω/2; 3.3))

  ̂

S (2)cos2θ (see the text for the other notations).
The accuracy is examined by referring to the result through the rigorous algorithm of the Masuda
method. The model parameters are the same as in Fig. 2.
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Fig. 5.  Sensitivity of T1(ω) computed with the RIAM method to the grid resolution for the same
JONSWAP spectrum as in Fig. 2: (a) the angular mesh size ∆θ is varied as 30°, 15°, 10°, and 7.5°, with
Rω fixed at 1.1 and (b) the frequency grid size is decreased as Rω = 1.12, 1.10, 1.08, and 1.06 with ∆θ
fixed at 10°, where Cr = 3 always.

method, the WAM method, and the Masuda method, for the same nonlinear energy transfer
functions as in Fig. 2. Obviously, the RIAM method well reproduces T obtained with the Masuda
method, whereas the WAM method completely differs from the others as well as in Fig. 2. In
particular, we note that the WAM method yields a bimodal directional distribution with peaks
around ±30° near ω � 0.8. This curious bimodality is interpreted as a consequence of the
preferred outflow of the energy to waves propagating at angles around ±30° in the discrete
interaction approximation adopted in the WAM model.

These results show that the RIAM method preserves the same degree of accuracy and
smoothness as the Masuda method. The WAM method, on the other hand, gives a completely
different T both in magnitude and in pattern. It is to be noted that the spectrum examined was the
standard JONSWAP spectrum, which is quite common and typical. Apparently, the WAM
method lacks reliable accuracy for more precise forecast, even though its high speed has been
highly evaluated.

The superiority of the RIAM method to the WAM method in accuracy is demonstrated more
clearly for spectra with a narrow directional distribution or double-peaked spectra in the
frequency domain, where accuracy is judged by the rigorous method of Masuda. Figure 4 shows
T1 for the PM spectrum with cos10θ directional spreading

  

F ω,θ( ) = FJ ω;1( )Ŝ 10( )cos10 θ 21( )

and for a double-peaked spectrum with cos2θ directional spreading

  

F ω,θ( ) = FJ ω;3.3( ) + 0.2 × FJ ω / 2;3.3( )( )Ŝ 2( )cos2 θ. 22( )
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The WAM method gives T1 about twice as large as the RIAM method for the former spectrum
of a narrow directional band width, though both methods produce similar patterns of T1. For the
double-peaked spectrum, the nonlinear energy transfer function T1 depends crucially on the
method used. The RIAM method predicts an almost the same estimate as the Masuda method,
whereas the WAM method gives T1 which is completely different from the exact result both in
magnitude and in pattern. This deficiency of the WAM method can be serious, since such a
bimodal spectrum occurs in adjustment processes to changing winds; the largest merit of wave
models of the third generation has been said to be their adaptability to changing wind fields.

Fig. 6.  Nonlinear transfer functions T1 when Cr = 2, 2.5, 3, and 7 for (a) the PM spectrum, (b) the
JONSWAP spectrum, and (c) a double-peaked spectrum defined in the text, with cos2θ directional
distribution.
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2.4  Sensitivity of the RIAM method to parameter values
At the end of this section, we should examine how the performance of the RIAM method

depends on various parameter values in typical situations.
2.4.1  Resolution in the frequency and direction: Rω and ∆θ

In Fig. 5 we examine the sensitivity of T1(ω) to the resolution in the spectral domain for the
same JONSWAP spectrum as in Fig. 2. In the former figure ∆θ is varied as 30°, 15°, 10°, and 7.5°,
while Rω is fixed at 1.1. On the other hand, the latter figure shows T1 when Rω is decreased from
1.12 to 1.06 with fixed ∆θ = 10°. We observe that the RIAM method nearly converges when
Rω = 1.1 and ∆θ = 10°, in approximate accordance with the results of Masuda (1980). Therefore,
this level of resolution is necessary for practical calculation without significant loss of accuracy.
2.4.2  Truncation of interaction with distant wavenumbers: Cr

Strictly speaking, we have not dealt with all the possible resonance configurations. Even
Masuda’s algorithm discards the resonance configurations for which the highest frequency ω 

HO

is 7 times as large as the lowest frequency ω 
LO i.e. Cr = 7. From the economical viewpoint the

smaller Cr is the more desirable, because it leads to a reduced number of resonance configurations
to be processed. The smaller Cr, however, should degrade the accuracy. It is necessary therefore
to check the error due to this truncation or cutoff at the ratio Cr on T(ω,θ). The question here is
to what degree Cr can be lowered without substantial loss of accuracy. Figure 6 indicates the
nonlinear energy transfer functions T1(ω) when Cr = 7, 3, 2.5, and 2, for the PM spectrum, the
JONSWAP spectrum, and a double-peaked spectrum F1(ω) = FJ(ω; 3.3) + 0.05 × FJ(ω/3; 3.3),
where the cos2θ directional distribution is assumed irrespective of the frequency spectrum. Since
T appears to be settled when Cr ≥ 3 even for the double-peaked spectrum, we conclude that
Cr = 3 is sufficient for practical use. By reducing Cr from 7 (the Masuda method) to 3 (the RIAM

Fig. 7.  The one-dimensional nonlinear energy transfer for different grid resolution: (a) ∆θ = 15° and
Rω = 1.1, (b) ∆θ = 7.5° and Rω = 1.06, where contributions from singular configuration (T1,s), con-
tributions from regular configurations (T1,r), and the total transfer function (T1 = T1,s + T1,r) are
separately calculated for the same JONSWAP spectrum as in Fig. 2.
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method), we can save computational time by a factor of 3. It is to be noted that the ratio Cr =
max{ω 

HO/ω 
LO} = 3 corresponds to max{|kHO|/|kLO|} = 9 with respect to the wavenumber.

2.4.3  Contributions from singular resonance configurations
As was shown in Masuda (1980), all the resonance configurations are classified into singular

and regular configurations (points) in the Boltzmann integral in the RIAM method, which owes
its accuracy and stability to the semi-analytical calculation of singular configurations. We
quantify how important the contribution from singular configurations is in the total nonlinear
energy transfer T1(ω). For the same JONSWAP spectrum as in Fig. 2, Fig. 7 compares T1 obtained
with and without the contributions from singular configurations for two kinds of resolution:
(a) ∆θ = 15°, Rω = 1.1 and (b) ∆θ = 7.5°, Rω = 1.06. The regular configurations shares the major
portion of the total energy transfer function in the finer resolution, as is expected. The
contribution from singular configurations, however, cannot be neglected for a practically
reasonable level of resolution ∆θ ≥ 10°. It is preferred therefore to process singular configura-
tions since it improves the accuracy without requiring almost no additional time for computation.
It is to be added that, though lowering the accuracy, careful exclusion of singular configurations
makes it possible to avoid the numerical instability or spurious ruggedness that is observed
almost always in the EXACT-NL method (Hasselmann and Hasselmann, 1985; Young et al., 1987).

We thus conclude the section by recommending parameter values Rω = 1.1, ∆θ = 10°, and
Cr = 3, as a result of the trade-off between economy and accuracy. Singular configurations are
to be processed for these parameter values. All the numerical experiments described in the next
section were carried out with these values of parameters.

3.  Duration-Limited Evolution of Wave Spectra: the RIAM Method in Comparison with
the WAM Method

A wave model with the RIAM method incorporated is applied to the duration-limited
evolution of wind-wave spectra for various conditions of winds and initial spectra. The results
are compared with those obtained with a model with the WAM method incorporated to elucidate
the difference due to the different algorithms for nonlinear energy transfer.

Details of the wave model such as the integration scheme will be presented in another paper
in preparation, so that we here describes only the parameterization of the other source terms. Our
approach here is almost similar to that of the WAM model as follows (WAMDI Group, 1988).
The energy input I due to wind follows the formula by Snyder et al. (1981)

  

I ω,θ( ) = max 0,0.25
ρa

ρw

28
u∗

Cp

cos θ − θw( ) −1

















ωF ω,θ( ) ≥ 0, 23( )

where ρa and ρw are the densities of air and water, respectively, Cp is the phase velocity of the
component wave, and u* denotes the friction velocity, which is related with the wind speed U10

at 10 m height through the drag coefficient CD due to Wu (1982)

  

CD = 0.8 + 0.065U10( ) ×10−3. 24( )

The energy dissipation D is parameterized by the formula proposed by Komen et al. (1984)
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D ω,θ( ) = −2.33 ×10−5 ω̂ ω
ω̂







2 α̂
α̂ PM







2

F ω,θ( ), 25( )

where 
  ̂

ω  is the characteristic frequency of the spectrum defined by

  

ω̂ ≡ E

ω−1F1 ω( )dω
0

∞
∫

26( )

with

  

E ≡ F1 ω( )dω
0

∞
∫ , 27( )

and 
  ̂

α  is the nonlinearity

  

α̂ = Eω̂4

g2 , 28( )

which becomes 
  ̂

α PM  = 3.014 × 10–3 for the PM spectrum. The high-frequency tail above the cut-
off frequency ω hf is dealt with just as in the WAM model (WAMDI Group, 1988): F1(ω) =
F1(ω hf)(ω/ω hf)–4 and S(ω,θ) = S(ω hf,θ) for ω ≥ ω hf. In this section, the experimental results are
presented chiefly in nondimensional units based on the friction velocity u* and the gravitational

Fig. 8.  Duration-limited evolution of the nondimensional frequency spectrum F1* = F1g3/u*
5, obtained

by (a) the RIAM method and (b) the WAM method, where ω* = ωg/u* is the nondimensional fre-
quency. The solid line shows the initial spectrum of the standard JONSWAP form.
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Fig. 9.  The time evolution of particular frequency components F1(ω)/F1,∞(ω) obtained by (a) the RIAM
method and (b) the WAM method, where F1,∞ is the saturated value of F1 and 

  ̃

ω  denotes the frequency
normalized by the peak frequency of the saturated spectrum.

acceleration g. The frequency normalized by the spectral peak frequency and the one-dimen-
sional spectrum normalized by its peak value are denoted by 

  ̃

ω  and 
  

F̃1, respectively.

3.1  Growth by the steady wind
We first examine the temporal evolution of wave spectra under the steadily blowing wind.

As the initial spectrum we set the standard JONSWAP frequency spectrum together with cos2θ
directional distribution, where the peak frequency ωp and Phillips’ α correspond to those of the
PM spectrum for U10 = 5 m/s. At the moment of t = 0 we let the wind speed increase to U10 = 20
m/s with the wind direction as ever.

Figure 8 shows the evolution of the frequency spectrum, where time integration was carried
out with ∆t = 10 min (∆t* = 6.42 × 103) till t = 100 hours (t* = 3.85 × 106), when the spectrum
seemed to have achieved an almost saturated state. The spectrum grows in different manners with
different methods for calculating nonlinear energy transfer functions. The RIAM method
predicts faster growth of the spectral density than the WAM method. Also the spectral forms
differ from each other. It is to be noted, however, that self-similar growth of spectra is realized
in both methods (Fig. 8).

Figure 9 shows the evolution of spectral density at several frequencies, where the frequency
spectrum F1(ω) is normalized by its saturated value F1,∞(ω), or more correctly, F1(ω) at t = 100
hours (t* = 3.85 × 106). We find that both the RIAM and WAM methods reproduce not only the
overshoot but also undershoot around the saturated spectral density (Barnett and Sutherland,
1968, Mitsuyasu, 1969), though the undershoot is less conspicuous in the latter method. This
result is in contrast with the conclusion of Young et al. (1987), who reported that the WAM
method failed in reproducing the undershoot by comparing the EXACT-NL model with the
WAM model. This discrepancy about the reproducibility of undershoot by the WAM method
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Fig. 10.  The evolution of the nondimensional significant wave height H*, dominant period P*, and B ≡
H*P*–3/2, where t* = tu*/g is the nondimensional duration time. The results of the RIAM method is
denoted by solid lines and those of the WAM method by dashed lines.

might be ascribed to difference in schemes for time integration.
As representative macroscopic quantities of wind-wave spectra, Fig. 10 shows the growth

of the nondimensional significant wave height H* and dominant period P* which are defined by

  

H ∗ = 4g
u∗

2 × E    and   P∗ = 2.2πu∗

g
×

∫Ωp
ω−1F1 ω( )dω

∫Ωp
F1 ω( )dω

, 29( )

respectively, in terms of frequency spectra, where the latter integration is made over Ωp, five
frequency bins around the spectral peak frequency. That integration is a simplest kind of filter
for more appropriate selection of the peak frequency than the nominal central frequency of the
bin that has the maximum spectral density. We see that both H* and P* grow faster and approach
higher values by the RIAM method than by the WAM method. Note that their asymptotic values
obtained here are a little smaller than familiar ones. For example, the present WAM method gives
H∞* = 90.1 and P∞* = 130 which is to be compared with H∞* ≥ 120 and P∞* ≥ 122 predicted by
the WAM model used by Tolman (1992). Also the final values obtained with the RIAM method
are H∞* = 101 and P∞* = 142, which are less than H∞* = 132 and P∞* = 188 expected from Wilson’s
formula (Wilson, 1965). It appears that the discrepancy does not imply the worse performance
of the present method, but suggests some deficiency in the wave model itself used here. The
detailed argument, however, will be provided in the next paper in preparation.

Another interesting aspect is found in the evolution of the so-called Toba’s constant B ≡
H*P*–3/2. At the initial moment it takes 0.029, which is rather lower than its standard value
BT = 0.062 (Toba, 1972). It soon increases to a value close to the standard value BT, adjusting to
the new wind condition. We note that both the RIAM method and the WAM method yield almost
the same asymptotic values of B = H*P*–3/2, though the two methods give rather different
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saturated values for H* and P* themselves. Judging from the way B approaches the saturation
value, we observe that local equilibrium is attained within t* � 4 × 104 (t � 1.04 hours) for the
WAM method, while t* � 8 × 104 (t � 2.08 hours) for the RIAM method. Another noteworthy
phenomenon is that B overshoots, then undershoots, and finally approaches the final value from
below to B∞ = 0.06 � BT in both methods.

3.2  Saturated spectra
Long time integration over t = 100 hours (t* = 3.85 × 106) yielded nearly saturated spectra

as is observed in the preceding logarithmic plot in Fig. 8. On the low-frequency side, the saturated
spectra obtained by the two methods have slightly different slopes. Also we note that the
spectrum through the RIAM method has a narrower transition zone from low to high frequencies.
Toward higher frequencies, the frequency spectrum decreases as, but slightly more slowly than,
ω–4 irrespective of the method for nonlinear energy transfer T.

The saturated spectra obtained with the RIAM and WAM methods are distinguished from
each other better in the linear normalized plot of Fig. 11, where the spectral peak frequency and
the peak density are unity. We observe that the saturated frequency spectra are far from the PM
spectrum, which has long been envisaged as the saturated spectrum. On both sides of the peak
frequency, either method yields a similar form that is broader than the JONSWAP spectrum but
narrower than the PM spectrum. A closer examination shows that the spectrum around the peak
frequency obtained with the RIAM method is steeper than that of the WAM method.

Two-dimensional distributions F*(ωx*,ωy*) ≡ F*(ω*,θ)ω* of saturated spectra are exam-
ined in contours (Fig. 12) and angular distribution functions S(ω,θ) = F(ω,θ)/F1(ω) at several
frequencies (Fig. 13). In comparison with the RIAM method the WAM method gives a narrow
and concentrated directional distribution at high frequencies with almost no energy distributed
to |θ| ≥ 120°. The most curious aspect at high frequencies is that the directional distribution seems
to approach a certain bimodal one in both methods. Similar features were reported, however, by
Banner and Young (1994), who dealt with the fetch-limited evolution with the rigorous method
of Resio and Perrie (1991). On the low frequency side of the peak frequency (

  ̃

ω  = 0.8), a unimodal
directional distribution appears for the RIAM method, but a conspicuous bimodal feature is
observed for the WAM method. The bimodal distribution obtained with the WAM method is
presumably a spurious consequence of the insufficient approximation of the WAM method as
was pointed out before in Fig. 3.

Remarkable differences in directional distributions are found not only between the RIAM
and WAM models, but also between these model results and the empirical one either by
Mitsuyasu et al. (1975) and Hasselmann et al. (1980) or by Donelan et al. (1985) shown in Fig.
13(c) or (d), respectively; see 2.2 for the formulas for those empirical directional distributions.
Near the peak frequency, both models predict lower concentration of energy near the main
direction than the empirical ones. The directional concentration of the RIAM method, however,
is similar to the distribution of Mitsuyasu et al. (1975) or Hasselmann et al. (1980) rather than
that by Donelan et al. (1985), which predicts much more concentrated distribution near the peak
frequency. In general the empirical ones have notable energy in wide angles, whereas the
directional distribution of the models shows a rapid decay away from θ – 

  

θ  ~ ±90°. The most
interesting difference at high frequencies is that the models yield directional distributions with
two maxima at two oblique angles while empirical formulas assert unimodal distributions with
a peak along the wind direction. The former double-peaked structure at high frequencies is
presumably a consequence in the present wave models. A serious degree of uncertainty both in
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model formulation and in measurement at the sea, however, prevent us from determining which
directional distribution describes the real spectra best.

The different methods for calculating T thus yield different saturated spectra F(ω,θ), sug-
gesting different energy balance in different models. Here, however, we do note get into details
about why the saturated spectrum differs between the two models or between the models and the
empirical ones. Such arguments will be addressed in the next paper.

Fig. 12.  Contours of the two-dimensional saturated spectrum F*(ωx*,ωy*) ≡ F*(ω*,θ)ω* obtained by
(a) the RIAM method and (b) the WAM method, where the contours are (a) 4.09 × 103, 8.18 × 103,
2.04 × 104, 4.09 × 104, 1.02 × 105, 2.04 × 105, 3.07 × 105, and 3.68 × 105, and (b) 2.63 × 103, 5.26 ×
103, 1.31 × 104, 2.63 × 104, 6.57 × 104, 1.31 × 105, 1.97 × 105, and 2.37 × 105, respectively.

Fig. 11.  Normalized forms of saturated frequency spectra 
  

F̃1  obtained by the RIAM method and the WAM
method. The standard JONSWAP spectrum and the PM spectrum are shown for reference.
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3.3  Adjustment to the abrupt change of the wind direction
The utility of the third-generation model has often been said to lie in its ability to predict the

adjustment of wave spectra to sudden changes of wind directions. We therefore examine how
differently spectra respond to the change of wind directions when different schemes for T are
used. Consider an initial frequency spectrum of the standard JONSWAP type, where the peak
frequency and Phillips’ α correspond to those of the PM spectrum for U10 = 10 m/s. We assume
a frequency-independent directional distribution of cos2θ type with 

  

θ  = 
  

θi  = 0°, which is referred

Fig. 13.  The directional distributions S(ω,θ) = F(ω,θ)/F1(ω) at several frequencies for the saturated
spectra obtained by (a) the RIAM method and (b) the WAM method, together with those of (c) the
Mitsuyasu-Hasselmann type, and (d) the Donelan type.
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to as the initial direction of the wave spectrum. At t = 0 we let the wind change abruptly: the wind
speed is increased to U10 = 20 m/s and the wind direction is rotated anticlockwise by a right angle
toward the direction of 

  

θn  = 90°, which we refer to as the new direction. Figures 14 and 15 show
different stages of the evolution of the two-dimensional spectrum F*(ωx*,ωy*) ≡ F*(ω*,θ)ω* for
the RIAM method and the WAM method, respectively, at t = 1, 2, 5, and 30 hours (t* = 3.85 ×
104, 7.70 × 104, 1.92 × 105, and 1.15 × 106). The evolution of spectral density in the initial direction

  

θi  and the new direction 
  

θn  are shown in Figs. 16 and 17 for the RIAM and WAM methods,
respectively.

Fig. 14.  Evolution of the two-dimensional spectrum F*(ωx*,ωy*) obtained by the RIAM method for the
initial JONSWAP spectrum with cos2θ directional distribution: (a) t = 1 hours, (b) t = 2 hours, (c) t =
5 hours, and (d) t = 30 hours. The contours are (a) 1.97 × 102, 3.95 × 102, 9.88 × 102, 1.98 × 103,
4.94 × 103, 9.88 × 103, 1.48 × 104, and 1.78 × 104, (b) 2.01 × 102, 4.03 × 102, 1.01 × 103, 2.01 × 103,
5.04 × 103, 1.01 × 104, 1.51 × 104, and 1.81 × 104, (c) 6.09 × 102, 1.22 × 103, 3.05 × 103, 6.09 × 103,
1.52 × 104, 3.05 × 104, 4.57 × 104, and 5.48 × 104, and (d) 4.00 × 103, 8.00 × 103, 2.00 × 104, 4.00 ×
104, 1.00 × 105, 2.00 × 105, 3.00 × 105, and 3.60 × 105.
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We see that the energy of the peak spectral frequency once decreases at the initial stage. This
is simply because energy-containing waves propagating in the initial direction suffer enhanced
dissipation but no energy is supplied from the wind blowing to the right angle. The decrease in
the spectral energy in the initial direction is observed in both methods, but it is larger in the WAM
model than in the RIAM model. The spectral density begins to increase at higher frequencies
adjusting to the new wind condition. The secondary peak thus appears at a high frequency in a
direction that is close to the new direction but slightly deviated toward the initial direction. A
noteworthy phenomenon is that the spectral density at the initial direction shows a clear

Fig. 15.  The same as Fig. 14 except that the results are obtained by the WAM method. The contours are
(a) 2.05 × 102, 4.10 × 102, 1.03 × 103, 2.05 × 103, 5.13 × 103, 1.03 × 104, 1.54 × 104, and 1.85 × 104,
(b) 1.61 × 102, 3.22 × 102, 8.04 × 102, 1.61 × 103, 4.02 × 103, 8.04 × 103, 1.21 × 104, and 1.45 × 104,
(c) 3.09 × 102, 6.18 × 102, 1.54 × 103, 3.09 × 103, 7.72 × 103, 1.54 × 104, 2.32 × 104, and 2.78 × 104,
and (d) 1.90 × 103, 3.80 × 103, 9.51 × 103, 1.90 × 104, 4.75 × 104, 9.51 × 104, 1.43 × 105, and 1.71 ×
105.
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Fig. 16.  Evolution of the spectral density F*(ω*,θ) obtained with the RIAM method for (a) the direction
of θ = θi = 0° and (b) the direction of θ = θn = 90°.

frequency downshift in the RIAM model, whereas no such tendency is observed in the WAM
model. The spectral density in the new direction grows in a way similar to that of F1 under the
steady wind (Fig. 8). In the case of the WAM method, however, a curious hump near ω* � 0.06
was observed for a while. After t = 30 hours (t* = 1.15 × 106), in both methods, frequency spectra
and directional distributions become almost the same as at the saturated state discussed in
Subsection 3.2, except for the scale, magnitude, and main direction.

Fig. 17.  The same as Fig. 16 except through the WAM method.
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3.4  Response to the perturbation to the locally equilibrated spectral form
Nonlinear energy transfer has often been referred to as the most important agent that

stabilizes the spectral form as it is observed actually. Masuda (1980) tested this problem by
adding a small spectrum to a standard form of spectrum. Although he did not carry out time
integration, he showed that T at the initial moment works to smooth out the spectral ruggedness.

Fig. 19.  The same as in Fig. 18 except that the initial frequency spectrum is perturbed by a small depression
F1(ω) = FJ(ω; 3.3) – 0.03 × FJ(ω/2; 9).

Fig. 18.  Evolution of the one-dimensional frequency spectrum F1*(ω*) for the initial spectrum perturbed
by a small hump F1(ω) = FJ(ω; 3.3) + 0.2 × FJ(ω/2; 3.3), where the angular distribution function is
cos2θ irrespective of the frequency and input I and dissipation D are discarded.
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Fig. 20.  The same as in Fig. 18 except that the initial spectrum has a narrow band width (γ = 9) F1(ω) =
FJ(ω; 9).

This problem was later investigated by Resio and Perrie (1991) for a bump or by Young and Van
Vledder (1993) for a depression. Using rigorous algorithms, they carried out time integration to
confirm that the perturbed spectrum recovers its original smooth form. Masson (1993) also
discussed the problem of a hump in relation to the nonlinear coupling between swell and wind
waves.

The similar problems are investigated here in order to compare the performance of the RIAM
method with that of the WAM method for three kinds of initial spectra: (1) spectrum perturbed
by a small hump

  

F ω,θ( ) = FJ ω;3.3( ) + 0.2 × FJ ω / 2;3.3( )( )Ŝ 2( )cos2 θ, 30( )

(2) spectrum perturbed by a small depression

  

F ω,θ( ) = FJ ω;3.3( ) − 0.03FJ ω / 2;9( )( )Ŝ 2( )cos2 θ, 31( )

and (3) spectrum with a very narrow frequency band (γ = 9)

  

F ω,θ( ) = FJ ω;9.0( )Ŝ 2( )cos2 θ, 32( )

where the peak frequency ωp and Phillips’ α correspond to those of the PM spectrum for U10 =
10 m/s. In this subsection, we discard I and D as in Resio and Perrie (1991), so that the spectral
evolution is governed by nonlinear energy transfer T only.

Figures 18 to 20 show the evolution of F1 for the three initial spectra above, respectively,
predicted with the RIAM method and the WAM method. We see that nonlinear energy transfer
removes the hump or the depression to recover the original smooth spectral form, as was pointed
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out by Masuda (1980), Resio and Perrie (1991), and Young and Van Vledder (1993). Also the
too narrow spectrum is changed into a broader moderate one. In these figures, we see that the
RIAM method represents the restoring roles of nonlinear energy transfer in a smooth regular way.
On the other hand the WAM method yields other unrealistic bumps or depressions during the
adjusting process.

4.  Summary and Discussions
A new scheme called the RIAM method was developed to calculate efficiently the nonlinear

energy transfer function among wind waves. In this scheme, the symmetric properties of wave
resonance are fully incorporated into the rigorous method of Masuda (1980). Thus, the RIAM
method inherits the accuracy from Masuda’s algorithm (1980) and the computational efficiency
from the discrete interaction approximation of Hasselmann et al. (1985).

The accuracy and computational efficiency of the RIAM method were examined in
comparison with other previous methods by applying them to some typical spectra. The RIAM
method turned out to have the same degree of accuracy as the other previous rigorous methods.
As processing singular points adequately, the RIAM method proved much better than the
Hasselmann and Hasselmann method (1981) in numerical stability or smoothness. In addition the
RIAM method is 300 times faster than the original Masuda method. As regards to the Resio and
Perrie method, it required 20 min = 1200 sec on an IBM-PC with an accelerator board to calculate
the nonlinear energy transfer for a given spectrum (Resio and Perrie, 1991), while the RIAM
method consumes 1 sec on an HP-735 Work Station for the same job. Unfortunately, however,
it is difficult to compare the efficiency of the two methods because of different machines,
different resolution, and others. In any case, the RIAM method belongs to the fastest schemes in
the (semi-)rigorous algorithms. The RIAM method is thus capable of computing nonlinear
energy transfer functions almost to the accuracy of rigorous methods in much less computational
time.

Then the performance of the RIAM method was compared with that of the WAM method,
a representative one in operational use. The RIAM method still requires about 2000 times more
computational time than the WAM method, simply because the former processes about 2000
configurations of resonance while the latter only one. It was shown, however, that the WAM
method gives quite unrealistic nonlinear energy transfer functions both in magnitude and in
pattern, when the spectrum is either directionally concentrated, frequency-concentrated, or
double-peaked; the WAM method is unreliable even for the standard JONSWAP spectrum. In
short, the RIAM method has a much wider range of validity and better accuracy than the WAM
method.

In addition, the parameter sensitivity of the performance of the RIAM method was
investigated to give desirable values of parameters for the method to operate in a practical level
of computational time without losing substantial accuracy. The proposed values are Rω = 1.1,
∆θ = 10°, and Cr = 3. Also it is recommended to process singular points (configurations) since
it improves accuracy without almost no additional time for computation.

The performance of the RIAM method was examined as well in the temporal evolution of
wave spectra. We assumed the same formulas of source terms as the WAM model except for the
nonlinear term. We first investigated the growth of wind waves under the steadily blowing wind.
It was shown that the peak period and the total energy of wind waves grow faster by the RIAM
method than by the WAM method. Nevertheless, Toba’s constant of his 3/2-power law
asymptotically approaches the standard value about 0.06 in both methods. The saturated wave



A New Scheme of Nonlinear Energy Transfer among Wind Waves: RIAM Method 535

energy and dominant peak frequency were a little smaller than those reported so far with previous
WAM models or those predicted by Wilson’s formula. Not only the RIAM method but also the
WAM method could reproduce well both overshoot and undershoot phenomena, which is in
contrast with the conclusion of Young et al. (1987), who reported that the WAM model could
not realize undershoot.

Even after a long-run, the spectrum does not approach the Pierson-Moskowitz spectrum, but
it seems to have achieved an almost saturated one, irrespective of the two methods. On the low-
frequency side of the peak frequency, the spectrum obtained by the RIAM method is steeper than
the JONSWAP spectrum, in agreement with a finding for the evolution of wind-wave spectra in
a wind flume (Kusaba and Masuda, 1988). On the other hand, the WAM method gives the
spectrum with a broader band width around the peak frequency. Furthermore, the WAM method
yields the angular distribution function with two oblique maxima in front of the peak frequency.
This double-peaked directional distribution is not found for the spectrum predicted by the RIAM
method. A closer examination suggests that this is due to the insufficient approximation of the
WAM method.

We found a curious feature of saturated spectra at high frequencies, commonly to either
method. The angular distribution function attains its maximum at the angles of ±40° or more from
the main propagation direction. Though for the fetch-limited growth, a similar structure was
pointed out by Banner and Young (1994), who ascribed this bimodal angular spreading to the
unsuitable assumptions about the ambiguous empirical formula for energy dissipation and about
the spectral tail in the frequency domain. On the other hand, the frequency spectrum decreases
approximately as but slightly slower than ω–4 at high frequencies in both the RIAM and the WAM
methods.

Then we examined the response of wave spectra to the abrupt turning of the wind direction
by a right angle. We see that the spectral energy decreases more in the WAM method than in the
RIAM method. At the later stage, both methods yield the secondary peak located at high
frequencies with its direction close to the new direction of the wind but slightly shifted to the
initial direction. In the initial main direction, the spectrum shows an evident transfer of energy
toward lower frequencies, while such a downshift is not produced by the WAM method.

To examine the stabilizing role of nonlinear energy transfer, we tested the spectral evolution
for three forms of initial spectra that are deviated from the moderate and smooth one in the
approximate local equilibrium: a spectrum with a small local hump, a spectrum with a small local
depression, and a spectrum with an extremely narrow band width. In these experiments, only T
was taken into account with the other terms of I and D discarded. The RIAM method effectively
smooths out the hump or depression of the spectrum or change the too steep spectrum into that
with a moderate band width. Reflecting the basic role of nonlinear energy transfer, the WAM
method shows the same tendency of spectral evolution, but produces spurious humps or
depressions at other frequencies during the adjusting process.

In this paper, we have restricted ourselves to the description of the computational aspects of
the RIAM method such as its algorithm and performance mainly in comparison with the WAM
method. The next paper will be devoted to the physics and dynamics of the wave evolution that
is realized when the RIAM method is applied together with the other source terms. We will
discuss there why bimodal angular spreading occurs in high frequencies, how energy balance is
maintained in saturated spectra, or how wave models are to be improved in view of the RIAM
method.

Finally, a few remarks should be made about the speed of the RIAM method. As was
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mentioned before, the RIAM method deals with a few thousands of configurations of resonant
four-waves, in contrast with only one configuration in the WAM method. The RIAM method
therefore must necessarily require a few thousands times larger computational time than the
WAM method, so that even the efficiency of the RIAM method is far from what is available to
operation models for wave forecast today. The advantage of the RIAM method is to give almost
the same degree of accuracy as the other exact algorithm such as the Masuda method even for
rather atypical wave spectra. Therefore, the RIAM method can still be used as an efficient means
for theoretical investigation, which is indispensable in order to improve wave models above the
empirical level.

In any case, the RIAM method cannot be used as an algorithm for operational wave
prediction for the present power of computers. We need to develop a scheme of practical
efficiency with a slightly lower level of accuracy for the algorithm to be in daily use. The method
required is called a simplified RIAM method (SRIAM method), which processes a diminished
number of resonance configurations. Another paper will be directed to the operational model for
wave forecasting that incorporates the SRIAM method for calculating nonlinear energy transfer
functions.
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