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The numerical model developed previously for coastal structures is slightly modified and applied to 
predict the wave transformation in the surf and swash zones on gentle slopes as well as the wave 
reflection and swash oscillation on relatively steep beaches. The numerical model is one-dimensional in 
the cross-shore direction and is based on the finite amplitude, shallow water equations, including the 
effect of bottom friction, which are solved in the time domain for the incident wave train specified as 
input at the seaward boundary of the computation located outside the breakpoint. The slight modifi- 
cation is related to the effect of the time-averaged current on the seaward boundary condition and 
improves the agreement between the computed and measured mean water levels on gentle slopes. The 
modified numerical model is compared with available small-scale test data for monochromatic waves 
spilling on gentle slopes as well as for monochromatic waves plunging and surging on a relatively steep 
slope. Additional comparisons are made with small-scale tests conducted using transient monochromatic 
and grouped waves on a 1:8 smooth slope with and without an idealized nearshore bar at the toe of the 
1:8 slope. As a whole, the numerical model is shown to be capable of predicting both time-varying and 
time-averaged hydrodynamic quantities in the surf and swash zones on gentle as well as steep slopes. 

INTRODUCTION 

Analyses of the transformation of incident wind waves on a 
gently sloping beach generally assume that the incident wave 
energy is dissipated completely in a wide surf zone and that no 
wave reflection occurs from the beach face. The idealization of 

inviscid, initially irrotational, flow has been proved to be suf- 
ficiently successful for predicting when and how waves break 
[Peregrine, 1983]. At present there is no rigorous model avail- 
able for predicting the flow characteristics immediately after 
wave breaking. After the rapid transitions in the outer surf 
zone, breaking waves settle into the quasi steady state in 
which the wave form changes relatively slowly and has a 
strongly turbulent region on the face of the wave, called a 
surface roller [Svendsen et al., 1978]. The broken waves in the 
inner surf zone hence resemble bores. For normally incident 
waves on a long straight beach of gentle slope the one- 
dimensional time-averaged equations of energy and momen- 
tum were applied to predict the variations of Wave height and 
setup across the surf zone for monochromatic waves [e.g., 
Svendsen, 1984a] as well as for random waves [e.g., Battjes 
and Stive, 1985]. These quasi-steady models based on the as- 
sumption of borelike waves were shown to be sufficiently ac- 
curate except that the mean water level in the outer surf zone 
was predicted to rise too far seaward. Furthermore, the verti- 
cal variations of the time-averaged momentum and mass bal- 
ances were analyzed to predict the vertical distribution of the 
time-averaged current (undertow) flowing seaward below the 
wave trough in the surf zone [e.g., Svendsen et al., 1987]. In 
addition to the time-averaged quantities such as the undertow 
and setup, knowledge of the time-varying quantities such as 
the oscillatory velocities and swash oscillation is required for 
predicting the cross-shore sediment transport using a sediment 
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transport model such as the relatively simple model of Bailard 
[1981] which expresses the instantaneous rate of total load 
(bed load plus suspended load) as a function of the instanta- 
neous near-bottom water velocity and the local bed slope. The 
analyses of Guza and Thornton [1985a] and Stive [1986] 
based on the Bailard's model indicated that asymmetries in 
the oscillatory wave field and the interaction of the undertow 
with the wave field would produce the net onshore and off- 
shore sediment transport in the surf zone, respectively. How- 
ever, the velocity asymmetry associated with the wave profile 
asymmetry about the vertical axis cannot be predicted by ex- 
isting wave theories such as Stokes and cnoidal wave theories 
[Flick et al., 1981]. In order to predict the time-varying be- 
havior of bores across the surf and swash zones on a beach, 
Hibberd and Peregrine [1979] and Packwood [1980] solved 
the finite amplitude, shallow water equations numerically in 
the time domain. $vendsen and Madsen [1984] included the 
effects of turbulence generated by wave breaking to describe a 
turbulent bore in the surf zone only. 

In terms of the measured swash oscillations [e.g., Guza ana 
Thornton, 1982] as well as the measured cross-shore velocity 
variances [e.g., Guza and Thornton, 1985a] field observations 
on gently sloping beaches have indicated that low-frequency 
(surf beat) motions in the period range that is greater than 
that associated with the incident wind waves may become 
dominant near the shoreline. A recent review of coastal pro- 
cesses and shoreline erosion by Komar and Holman [1986] 
emphasized the importance of the low-frequency motions. 
These low-frequency motions may be in the form of edge 
waves [e.g., Oltman-$hay and Guza, 1987] and standing waves 
in the cross-shore direction [e.g., Guza and Thornton, 1985b]. 
At present the low-frequency motions are not predictable for 
given incident wind waves and beach geometry. Symonds et al. 
[1982] proposed a one-dimensional model for long wave gen- 
eration by the temporal variation of the wave setup which was 
assumed to respond instantaneously to the time-varying 
breakpoint of normally incident wave groups. This model was 
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extended by Symonds and Bowen [1984] to include a linear 
shore-parallel bar. The modeling of the wave setup in these 
models may not be very accurate in light of the data and 
analysis presented by Stive and Wind [1982] as well as the 
transient shoreline response computed in this paper. 

For steep beaches the incident wind waves may break on 
the foreshore as plunging or collapsing breakers or surge up 
on the foreshore with little wave breaking [e.g., Battjes, 1974; 
Peregrine, 1983]. The inner surf zone characterized by the 
quasi steady state does not exist on a steep beach. Reflection 
of the incident wave energy from the steep foreshore may not 
be negligible even for plunging breakers. Standing wave solu- 
tions based on the shallow water equations may be used for 
surging waves [e.g., Suhayda, 1974; Guza and Bowen, 1976], 
but no theoretical model except for those based on the as- 
sumption of potential flow [e.g., New et al., 1985] is available 
for predicting the turbulent unsteady flow characteristics re- 
sulting from plunging and collapsing breakers. Moreover, sub- 
harmonic edge waves may be generated and grow for the case 
of surging waves [e.g., Guza and Bowen, 1976]. 

A specific beach with given geometry, which tends to be 
concave upward, may be dissipative or reflective depending on 
the incident wave characteristics and the tide and storm surge 
levels, as implied from the extensive field measurements of 
wave setup and swash on a moderately steep beach made by 
Holman and Sallenger [1985]. Consequently, it is desirable to 
develop a single model which can predict both time-varying 
and time-averaged hydrodynamic quantities in the surf and 
swash zones on a beach of arbitrary geometry and reflectance, 
although such a model may require significant computational 
efforts. Numerical models based on the Boussinesq equations 
for a sloping bottom [Peregrine, 1967] were already developed 
and applied for predicting the wave transformation outside 
the surf zone. Abbott et al. [1978, 1984] solved the two- 
dimensional Boussinesq equations in the time domain. Their 
numerical model was verified against analytical and experi- 
mental results for shoaling, refraction, diffraction, and partial 
reflection processes [Madsen and Warren, 1984]. On the other 
hand, Freilich and Guza [-1984] developed a frequency domain 
model based on the one-dimensional Boussinesq equations to 
predict the nonlinear evolution of the wave field's Fourier 
amplitudes and phases. Elgar and Guza [-1985a, 1985b, 1986] 
showed utility of the frequency domain model coupled with 
bispectral techniques for predicting and analyzing the ob- 
served nonlinear evolution of shoaling random waves. 

In this paper the numerical model of Kobayashi et al. 
[1987] that was developed for coastal structures whose slopes 
are steeper than steela beaches is slightly modified and applied 
to predict the time-varying and time-averaged hydrodynamic 
quantities in the surf and swash zones on beaches of gentle 
and steep slopes. Kobayashi et al. ['1987] modified the numeri- 
cal model based on the one-dimensional finite amplitude, shal- 
low water equations developed for beaches by Hibberd and 
Peregrine [-1979] and Packwood [1980] in order to predict the 
uprush and downrush of normally incident monochromatic 
waves on the rough impermeable slope of a coastal structure. 
The modified numerical model was shown to yield good 
agreement with available large-scale and small-scale test data 
on the maximum runup and reflection of monochromatic 
waves plunging, collapsing, and surging on uniform and com- 
posite riprap slopes. Kobayashi and Greenwald [-1986, 1988] 
conducted small-scale tests using a 1:3 gravel slope with an 
impermeable base to further calibrate and evaluate the nu- 
merical model. The calibrated numerical model was shown to 

be capable of predicting the measured temporal variations of 
the hydrodynamic quantities on the rough impermeable slope. 
Moreover, Kobayashi and Watson [1987] showed that the 
numerical model could also be applied to coastal structures 
with smooth slopes by adjusting the friction factor associated 
with the slope roughness. These comparisons were limited to 
monochromatic waves on slopes of 1:5 or steeper. It is hence 
not obvious whether this numerical model can be applied to 
beaches of gentler slopes, although the original model of Hib- 
berd and Peregrine [1979] and Packwood [-1980] produced the 
results which appeared realistic and promising. The numerical 
model used in this paper is one-dimensional in the cross-shore 
direction and cannot deal with edge waves. The normally inci- 
dent wave train, specified as input at the seaward boundary of 
the numerical computation performed in the time domain, can 
be irregular as well as monochromatic, but the time domain 
computation is not efficient for the incident irregular wave 
train of long duration, which needs to be specified as input for 
the simulation of low-frequency motions in the cross-shore 
direction. As a result, the present computations are limited to 
incident monochromatic and transient grouped wave trains. 
Furthermore, this numerical model predicts the instantaneous 
depth-averaged horizontal velocity only and cannot predict 
the vertical velocity variations. In spite of this limitation the 
numerical model is shown to predict the time-averaged hori- 
zontal velocity directed in the seaward direction, although the 
predicted time-averaged velocity is found to be smaller than 
the undertow velocity measured below the wave trough. 

In the following the numerical model of Kobayashi et al. 
[-1987] with a slight modification of the seaward boundary 
condition is presented concisely. The slight modification is 
related to the effect of the time-averaged current on the sea- 
ward boundary condition and improves the agreement be- 
tween the computed and measured mean water levels on 
gentle slopes. The modified numerical model is compared with 
small-scale test data for monochromatic waves spilling on 
gentle slopes. The comparison includes the comprehensive test 
results for a 1:40 slope presented by Stive [-1980] and Stive 
and Wind [-1982] as well as the undertow measurement for a 
1:34.25 slope performed by Hansen and Svendsen [-1984]. The 
numerical model is shown to be capable of predicting the 
development of the wave profile asymmetry about the vertical 
axis from the symmetric cnoidal wave profile outside the 
breakpoint to the sawtooth profile in the inner surf zone. The 
computed shoreline oscillation on the gentle slope shows the 
dominance of the setup over the swash in accordance with the 
saturation hypothesis proposed by Huntley et al. [-1977]. The 
numerical model is also compared with the wave reflection 
and swash excursion measurements for monochromatic waves 

plunging and surging on a 1:8.14 slope described by Guza and 
Bowen [1976] and Guza et al. [-1984]. In addition, small-scale 
tests were conducted to evaluate the capability of the numeri- 
cal model for predicting the measured temporal variations of 
the reflected wave train and the shoreline oscillation on a 
relatively steep beach. The tests included three runs for mono- 
chromatic waves on a 1:8 slope, three runs for transient 
grouped waves on a 1:8 slope, and three runs for monochro- 
matic waves on a 1:8 slope with an idealized bar at the toe of 
the 1:8 slope. As a whole, the numerical model is shown to be 
applicable to both gentle and steep beaches. 

ONE-DIMENSIoNAL UNSTEADY NUMERICAL MODEL 

Kobayashi et al. [1987] solved the finite amplitude, shallow 
water equations for arbitrary slope geometry numerically in 
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Fig. 1. Definition sketch for numerical model. 

the time domain. The two-dimensional coordinate system (x', 
z') used in this paper is defined in Figure 1 in which the prime 
indicates the physical variables. The x' coordinate is taken to 
be positive in the landward direction with x'= 0 at the sea- 
ward boundary where the incident wave train is specified as 
input. The z' coordinate is taken to be positive upward with 
z'= 0 at the still water level (SWL). The instantaneous free 
surface is located at z' - r/'; and the water depth is denoted by 
h'. The seabed is located at z' = (r/' - h'), and the local angle of 
the bed is given by 0'. The depth-averaged horizontal velocity 
is denoted by u'. The water depth below SWL at the seaward 
boundary is given by dr'. The value of d/and the variation of 
O' with respect to x' specify the slope configuration for the 
region x' > 0. The seabed may be assumed to be impermeable 
for saturated beaches. Furthermore, the vertical pressure dis- 
tribution is assumed to be hydrostatic neglecting vertical fluid 
accelerations. This assumption may be reasonable if (tan 
0') 2 << 1, except for the immediate vicinity of wave breaking. 
For the flow on the impermeable beach the governing equa- 
tions for mass and x' momentum integrated from the seabed 
to the free surface may be expressed as 

c!h' c1 

c•t' + •x' (h'u') = 0 (1) 

-- - (2) •t' (h'u') + •x' (h'u'2) = gh' •x' p 
where t' is time, g is the gravitational acceleration, %' is the 
bottom shear stress, and p is the fluid density which is as- 
sumed constant. The bottom shear stress may be expressed as 

•'- «f,f'lu'lu' (3) 

where f' is the bottom friction factor which is assumed to be 
constant. The limited calibration made by Kobayashi and 
Watson [1987] indicated f'-0.05 or less for small-scale 
smooth slopes without beach sediment, although the com- 
puted results were not very sensitive to the value off'. Conse- 
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Fig. 2. Specified r/i(t ) and computed r/,(t) at seaward boundary for 
test 1 of Stive and Wind [1982]. 

quently f'-0.05 is used without any further calibration for 
the subsequent computations. 

The following dimensionless variables are introduced for the 
computation: 

t = t'/r' x -- x'/T'(gH') t/2 u -- u'/(gH') •/2 (4) 

z = z'/H' h = h'/H' r I = rf/H' dt = d[/H' (5) 

0 = (2:n;)•/2• • = a tan O'/(2:n;) •/2 (6) 

f= «a f' a = r'(g/H') '/2 (7) 

where T' and H' are the characteristic wave period and height 
used for the normalization, respectively, 0 is the normalized 
gradient of the slope, • is the local surf similarity parameter, f 
is the normalized friction factor, and a is the dimensionless 
parameter related to wave steepness. In terms of the normal- 
ized coordinate system the seabed is located at 

z = 0 dx - d, x > 0 (8) 

which reduces to z- (Ox- dt) for uniform slopes. For a 
monochromatic incident wave train, T' and H' are taken to be 
the period and height of the monochromatic wave. For the 
monochromatic wave incident on a uniform slope, • defined in 
(6) reduces to the surf similarity parameter introduced by 
Battjes [1974]. Substitution of (3), (4), (5), (6), and (7) into (1) 
and (2) yields 

•h 

•-• + •xx (hu) = 0 (9) 

&• (hu) + •xx (hu2 + «h2) - - Oh -flulu (10) 
which are solved numerically to obtain the variations of h and 
u with respect to t and x for given 0, f, initial and boundary 
conditions. 

For the numerical computation, (9) and (10) are expressed 
in the conservation law form of the mass and momentum 

equations, except for the terms on the right-hand side of (10), 
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Fig. 3. Detailed variation of r/r(t ) at seaward boundary for test 1. 
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Computed oscillation of 1-cm water depth on 1'40 slope for 
test 1. 
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Computed horizontal velocity variations during one wave 
period for test 1. 

and solved using an explicit dissipative finite difference 
method of the type proposed by P. D. Lax and B. Wendroff 
(as cited by Hibberd and Peregrine [1979], Packwood [1980], 
and Kobayashi et al. [1987]). Use is made of a finite difference 
grid of constant space size Ax and constant time step At. 
Numerical methods developed for flows with shocks were re- 
cently reviewed by Moretti [1987]. The present numerical 
method is a shock-capturing method in which a wave front 
(shock) covers a small number of the space grid points. In- 
clusion of an additional dissipative term in the numerical 
method reduces high-frequency oscillations caused by dis- 
cretization, which tend to appear at the rear of the front. The 
amount of this damping is controlled by the values of two 
damping coefficients. The values of At, Ax, and the damping 
coefficients required for the computation are specified con- 
sidering the numerical stability criterion of the adopted ex- 
plicit method as well as the desirable spatial and temporal 
accuracies [Packwood, 1980; Kobayashi et al., 1987]. 

The initial time t = 0 for the computation marching for- 
ward in time is taken to be the time when the specified inci- 
dent wave train arrives at the seaward boundary located at 
x = 0 as shown in Figure 1. The initial conditions for h and u 
are thus given by 

t=0 

=o u=O 

x•_O 

where the condition of r/= 0 at t = 0 implies that the normal- 
ized depth h at t = 0 is equal to the normalized depth below 
SWL which is known for given d t and 0 and is given by 
(dr - Ox) for a uniform slope. 

The landward boundary on the slope is located at the 
moving shoreline where the water depth is zero. In reality, it is 

difficult to pinpoint the exact location of the moving shoreline 
because of the effects of surface tension and permeability ne- 
glected in this analysis. For the computation the shoreline is 
defined as the location where the normalized water depth h 
equals an infinitesimal value rS. Use is made of t5--10 -3, 
which has been used successfully for smooth slopes [Kobay- 
ashi and Watson, 1987]. The shoreline oscillation is computed 
using the predictor-corrector-smoothing procedure developed 
by Hibberd and Peregrine [1979] and Packwood [1980], as 
explained in detail by Kobayashi et al. [1987]. 

The seaward boundary is located at x = 0 where the nor- 
malized water depth below SWL is dr In order to derive an 
approriate seaward boundary condition, (9) and (10) are ex- 
pressed in the following characteristic forms 

Along dx/dt = u + c 

a• a• flulu 
+ (" + = - 0 

Along dx/dt = u - c 

al• al• flulu (13) aW + (" - c) = o + 
with 

c = (h) 1/2 (z = u + 2c /? = --u + 2c (14) 

where • and /• are the characteristic variables. It is assumed 
that in the vicinity of the seaward boundary u < c, that is, 
u' < (gh') •/2 in terms of the physical variables. This assump- 
tion may be satisfied if the seaward boundary is taken to be 
outside the breakpoint. Then • and/• represent the character- 
istics advancing landward and seaward, respectively, in the 
vicinity of the seaward boundary. Since the seaward advanc- 
ing characteristics /• originate from the computation domain 
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Fig. 5. Computed free sudace variations during one wave period for 
test 1. 
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Fig. 7. Computed cross-shore variations of maximum, 
averaged, and minimum volume fluxes for test 1. 
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Fig. 8. Measured and computed cross-shore variations of wave 
crest elevation for test 1. 
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Fig. 10. Measured and computed cross-shore variations of wave 
height for test 1. 

x > 0, (13) is discretized using a simple first-order finite differ- 
ence to obtain the value of/• at x = 0, which gives a relation- 
ship between the values of u and h at x = 0 [Kobayashi et al., 
1987]. An additional relationship is required to find u and h at 
x = O. Hibberd and Peregrine [1979] prescribed the value of • 
associated with an incident uniform bore. This is not possible 
for arbitrary incident wave train since both u and h are re- 
quired to specify the value of • at the seaward boundary. 
Packwood [1980] used the temporal variation of h measured 
inside the surf zone as input at the seaward boundary of his 
computation to compare the measured and computed bore 
transformation and shoreline oscillation on smooth gentle 
slopes. Packwood noticed long-period oscillations in his com- 
puted results and suggested that the seaward boundary con- 
dition based on the specification of h became partially reflec- 
ting and caused the excitation of spurious seiching motions in 
the computation domain. 

Alternatively, the total water depth at the seaward bound- 
ary may be expressed in the form 

h = d, + rl,(t) + r/,(t) x = 0 (15) 

where r/i and r/, are the free surface variations at x = 0 nor- 
malized by the characteristic wave height H'. The incident 
wave train outside the breakpoint is specified by prescribing 
the variation of r/i with respect to t _> 0. The term r/r(t ) in (15) 
accounts for the difference between the actual value r/- (r/i 
+ r/r ) at x- 0 and the prescribed value r h. For reflective 

slopes, r/r(t ) may be regarded as the normalized free surface 
variation associated with the reflected wave train, neglecting 
the nonlinear interaction of the incident and reflected waves at 

the seaward boundary. For dissipative slopes, wave reflection 
may be negligible, but r/r(t ) accounts for the difference between 
the actual and prescribed free surface variations which may 
arise from the transient long-period waves generated in this 

time domain computation starting from the initial conditions 
given by (11) as well as the other secondary effects excluded 
from the prescribed variation of r/l•t ). Considering all the pos- 
sibilities for arbitrary slope geometry, it is difficult to specify 
the unknown temporal variation of r/r(t)in a rigorous manner. 

It may be reasonable to express r/r(t ) at x = 0 in terms of the 
value of the seaward advancing characteristics, fi, at x = 0, 
computed using (13). Using (14) and (15) with the assumption 
that d t is sufficiently large relative to the value of (r h + r O, the 
value of/• at x = 0 may be approximated by 

,6 •_ u + 2(dr) •/e + rh + - • x =0 (16) 
(d,) 

Using the approximations based on linear long-wave theory, u 
in (16) may bc expressed as 

r/•- r/, 

U •' (dt)•/2 + a t x = 0 (17) 
where/•t is the time-averaged horizontal velocity at x = 0 and 
may be regarded as a nonlinear correction term in (17). Substi- 
tution of (17) into (16) yields the following approximate ex- 
pression of r/r in terms of the value of//at x = O: 

rl,(t) •- «(dt)'/213(t) - d t - C t x = 0 (18) 

C, = -«(d,)'/ea, (19) 

where the nonlinear correction term C t in (18) was not includ- 
ed in the numerical model of Kobayashi et al. [1987]. Substi- 
tution of (18) into (15) yields the value of h at x = 0 for given 
r/i(t), and the value of u at x = 0 is obtained from u = (2h ale 
- fi) at x = 0. It should be noted that the approximate equa- 

tions (16) and (17) are used only for deriving (18). Appropri- 
ateness of (18) used for the computation may be evaluated by 
comparing the computed and measured temporal variations of 
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Fig. 9. Measured and computed cross-shore variations of wave 
trough elevation for test 1. 
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Fig. 11. Measured and computed cross-shore variations of mean 
water level for test 1. 
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Fig. 12. Measured and computed cross-shore variations of parame- 
ter B o for test 1. 
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1. 

r/,(t) as well as by comparing the computed reflection coef- 
ficients with empirical formulas such as those proposed by 
Batties [1974] and Seelig [1983]. Use of (18) with C t - 0 was 
shown to yield satisfactory agreement for the comparisons 
made for steep slopes in the range of • • 1 and d t • 3 by 
Kobayashi et al. [1987], Kobayashi and Greenwald [1986, 
1988], and Kobayashi and Watson [1987]. Furthermore, the 
temporal variations of h and u on steep slopes computed for 
the periodic variations of r/i(t ) specified by cnoidal or Stokes 
second-order wave theory [e.g., Svendsen and Brink-Kjaer, 
1972; Dean and Dalrymple, 1984] became periodic after several 
wave periods without the spurious long-period oscillations no- 
ticed by Packwood [1980]. The use of cnoidal or Stokes wave 
theory for specifying •/i(t) at the toe of a steep slope was theo- 
retically inconsistent but necessary since the finite amplitude, 
shallow water equations used in the computation domain do 
not have a periodic solution for the wave of constant form 
[e.g., Peregrine, 1967]. 

In the following the nonlinear correction term C t included 
in (18) is shown to improve the prediction of wave setup on a 
gentle slope. This term is also shown to be negligible for the 
previous comparisons made for steep slopes. The time- 
averaged mass and momentum equations corresponding to (9) 
and (10) may be expressed as 

hu = 0 (20) 

d lhu:• + «(r• - q)•'] = - hdq - Jlulu (21) dx dx 

where the overbar denotes time averaging and r• is the vertical 
difference between the mean and still water levels with r/and h 
being defined in Figure 1. Use is made of the condition of no 
flux into the impermeable slope to derive (20). The left-hand 
side of (21) is the 'normalized gradient of the cross-shore radi- 
ation stress [e.g., $vendsen et al., 1987] under the assumption 
of vertical uniformity and hydrostatic pressure. In this paper 

the computed temporal variations of h and u at given location 
are used to calculate the cross-shore variations of the time- 

averaged quantities such as q and a without using (20) and 
(21). The no flux condition given by (20) is used to check the 
accuracy of the computation. 

Rearranging (20), the time-averaged horizontal velocity a 
can be expressed as 

a = -01 - q)(u - a)(h) -x (22) 

For gentle slopes with little wave reflection, (r/- q) and (u - a) 
are expected to be in phase, resulting in a < 0 from (22). The 
computed seaward velocity a is expected to be smaller than 
the undertow flowing seaward below the wave trough since 
the present model does not account for the vertical variation 
of the time-averaged horizontal velocity. The value of a at 
x - 0 (i.e., at) is required to find C t using (19). This will require 
an iteration since fit is unknown. An approximate value of fit 
may be found using (22) with the assumption of incident 
monochromatic linear long wave at the seaward boundary 
whose height and period are taken to be H' and T' used in (4), 
(5), and (7). Under this assumption, (r/- q)_• cos (2m)/2, (u 
-- a) • (v] -- •)/(dt) 1/2 and h -• d t at x = 0. For gentle slopes 
with little wave reflection the approximate values of a t and C t 
may hence be estimated as 

a t •'• --(8dt3/2) -1 C t --• (16dr) -1 (23) 

Since (23) yields C t > 0, the value of rlr(t ) computed using (18) 
will be reduced. For steep slopes with significant wave reflec- 
tion for which r b is on the order of unity, it might be more 
reasonable to assume that a t _• 0 and C t •-0, but the effect of 
C t on /•r in (18) is very small. For the previous comparisons 
made for steep slopes, d t •> 3 and hence C t •< 0.02. If the value 
of d t is reduced from three, the value of C t will affect the wave 
setup r•, which is an important consideration for gentle slopes. 
The wave setup or setdown at x = 0 is given by q = (q• + •b) 
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Fig. 13. Measured and computed wave profiles at x = 0 for test 1. 

0.2 -I X = 2.15 /%, ß 
/ Theory o/ • ß 

. / (,v o.o . 
I" ß 

-0.1] ß ß ß ß 
29 29.2 29.4 29.6 29.8 3•0 
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1. 



KOBAYASHI ET AL.' WAVE TRANSFORMATION AND SWASH OSCILLATION 957 

0.15 - 

0.10 - 

0.05 - 

0.00 

-0.05 - 

-0.10 

X = 3.01 o o.oo 
Theory ß -0.05 

ß Data 
-O.lO 

ß '• Urni n -0.15 f 

.•_•/'- -0.25 

-0.30 • • ; • • 0 1 2 4 5 
I I 

29 29.2 29.4 29•.6 29•.8 3•0 
t 

Fig. 16. Measured and computed wave profiles at x = 3.01 for test 
1. 
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Fig. 18. Measured and computed cross-shore variations of mini- 
mum horizontal velocity for test 1. 

at x = 0. Substituting (16) into (18), the following time- 
averaged equation is obtained' 

(24) 

The incident monochromatic wave train at the seaward 

boundary may be specified to satisfy the condition f/i = 0 so as 
to limit the computation to the region x z 0. For r• = 0, r•, _• 
(Sd,)-x if C, = 0 and f/, _• 0 if C, is given by (19). The wave 
setup data of Stive and Wind [1982-] indicated small wave 
setdown outside the breakpoint on a gentle slope. Without the 
term C t in (18) the model would predict too large a setup, 
(0i -[- Or) •'• (8 dr)-1, at the seaward boundary where dt = 1.38 
is used, as will be explained in the subsequent comparison. In 
other words, C, is related to the boundary condition required 
for solving (21) to obtain the cross-shore variation of r•. For 
simplicity, use is made of C, = (16d,)-• in (18) for all the com- 
puted results presented in this paper. To eliminate the uncer- 
tainties associated with the approximate equation (18), it may 
be required to match the solution on the basis of the finite 
amplitude, shallow water equations with that based on the 
Boussinesq equations outside the breakpoint. This is beyond 
the scope of this paper. 

WAVE TRANSFORMATION ON GENTLE SLOPES 

Comparison is made with the comprehensive measurements 
of test 1 presented by Stive [1980] and Stive and Wind [1982]. 
Some of these measurements were also reanalyzed and used in 
the paper of Svendsen [1984b]. In this test the incident mono- 
chromatic wave with the period T'= 1.79 s broke as spilling 
breakers on the plane concrete beach of the slope cot O' = 40. 
The seaward boundary for the computation is taken to be at 
the still water depth dr'= 0.2375 m, where the near-breaking 
wave profile was shown to be similar to the cnoidal wave 
profile. The measured wave height at the seaward boundary 

was given by H' = 0.172 m. The dimensionless parameters de- 
fined in (5), (6), and (7) are given by d t = 1.38, 0 = 0.338, 
•- 0.135, f= 0.338, and a = 13.5 for the test. The temporal 
variation of the incident wave profile r/i(t ) at x = 0 whose 
height and period are unity is specified using cnoidal wave 
theory as explained by Kobayashi and DeSilva [1987] except 
that the dispersion relationship used in their paper is modified 
slightly to make it identical to that given by Svendsen and 
Brink-Kjaer [1972]. For the incident cnoidal wave at x = 0, 
L = 13.1 and U, = 124 where L is the normalized wavelength 
defined as L = (L'/d/) with L' being the wavelength, and U• is 
the Ursell number given by U• = (L2/dt). Use of the finite 
amplitude, shallow water equations may be appropriate in the 
region x >_ 0. The computation for this test is performed suc- 
cessfully using Ax = 2.04 x 10 -2 , At = 3.33 x 10 -3 , and the 
damping coefficients of two. These values are typical for the 
computed results presented herein, except that for steep slopes 
smaller values of At are found to be required for the numerical 
statility. The computed results for test 1 are shown in Figures 
2-19 and explained in the following discussion. 

Figure 2 shows the periodic cnoidal wave profile r/i(t) with 
q• = 0 specified at x = 0 and the temporal variation of rb(t ) 
computed using (18) with C, -- (16d 0- •, where the normalized 
wave period is unity. The normalized free surface variation 
relative to SWL is given by r/-- (r/• + rb) at x = 0. The detailed 
variation of rb(t ) is shown in Figure 3. The depression of 
during the transient period 0 < t •< 15 appears to be related to 
the depression of the mean water level under large waves 
[Longuet-Higgins and Stewart, 1962], since the incident wave 
train initially propagates into the region of no wave action. 
The temporal variation of rb(t ) for t •> 20 consists of steady 
and oscillatory components. The steady component is the 
wave setdown r• at x- 0, while the oscillatory component is 
associated with the reflected wave. Since the normalized inci- 

dent wave height is unity, the height of this oscillatory compo- 
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Fig. 17. Measured and computed cross-shore variations of maxi- 
mum horizontal velocity for test 1. 
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Fig. 19. Cross-shore variations of computed time-averaged horizon- 
tal velocity and measured undertow for test 1. 
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TABLE 1. Summary of Seven Cases Compared With Empirical 
Formulas of Guza and Bowen [1976] and Guza et al. [1984] 

Case H', cm •: dt •r L Ur r 

1 1.0 4.24 38 86 14 4.8 0.57 
2 1.3 3.72 29 76 14 6.3 0.50 
3 2.0 3.00 19 61 14 9.7 0.36 
4 2.6 2.63 15 54 14 13 0.28 
5 5.5 1.81 6.9 37 14 27 0.08 
6 8.0 1.50 4.8 31 14 41 0.08 
7 10.0 1.34 3.8 27 14 52 0.09 

nent may be taken to be the wave reflection coefficient, which 
is approximately 0.01. 

On the other hand, the computational shoreline is defined 
by h = 6 with 6-- 10-3 in this paper. The oscillation of the 
specified dimensional water depth on the slope denoted by 6,' 
can be computed using the computed variation of h with re- 
spect to x and t as long as 6,_> 6, where 6• = 6//H'. The 
present numerical model was shown to yield satisfactory 
agreement with the empirical formula of Ahrens and Martin 
[1985] for the maximum runup of monochromatic waves ob- 
served visually on smooth steep slopes in small-scale tests if 6•' 
is taken to be of the order of 0.1 cm or greater [Kobayashi and 
Watson, 1987]. Consequently, computation is made of the 
shoreline oscillations on the slope for 6/= 0.1, 0.5, and 1 cm, 
that is, 6, = 0.0058, 0.029, and 0.058, respectively. The com- 
puted oscillation for given 6/is plotted in the form of Z• as a 
function of t where Z• is the elevation above SWL normalized 
by the incident wave height H'. Figure 4 shows the computed 
variation of Z• for •/= 1 cm with respect to the normalized 
time t. The specified incident wave train arrives at the still 
water level shoreline at t -• 5. After the initial transient oscil- 

lation the temporal variation of Z• for t •> 25 is composed of 
steady and oscillatory components. The steady component is 
the normalized setup on the slope denoted by •, while the 
oscillatory component is the normalized swash about the 
setup level. The variation of Z• for 6/= 0.1 and 0.5 cm, which 
are not plotted in Figure 4 for simplicity, essentially follow 
that for 6/= 1 cm, except that the swash decreases as the 
value of 6/is reduced. The computed swash for 6/= 0.1 cm is 
almost indistinguishable. The setup Z• is essentially the same 
in the range of 6/= 0.1-1.0 cm. The normalized swash height, 
which is 0.02 even for 6/= 1 cm, is small relative to the 
normalized setup Z• = 0.13 for this test with • = 0.135. The 
computed results are hence consistent with the empirical re- 
sults discussed by Battjes [1974] and the hypothesis of satu- 
ration proposed by Huntley et al. [1977]. 
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Fig. 21. Cross-shore variations of computed time-averaged horizon- 
tal velocity and measured undertow by Hansen and Svendsen [1984]. 

Figure 3 and 4 suggest that the response time for the gentle 
slope is much greater than the incident wave period and ap- 
pears to be of the order of the time scale of the surf beat 
motion on a gentle slope. Stive and Wind [1982] stated that 
their measurements were made after at least 10 min of wave 

generation to allow for the decay of initial low-frequency ef- 
fects. Figures 3 and 4 indicate that the computed results 
during one wave period 29 < t < 30 should be periodic with- 
out initial low-frequency effects. Figures 5 and 6 show the 
computed cross-shore variations of the normalized free surface 
elevation r/above SWL and the normalized horizontal veloci- 
ty u at t = 29, 29.25, 29.5, 29.75, and 30, respectively. The 
slope shown in Figure 5 is located at z = (Ox - dr) in terms of 
the normalized coordinate system. In Figures 5 and 6 the 
computed cross-shore variations of r/ and u at t = 29 and 30 
are identical, indicating the establishment of the periodicity 
before t--29. Moreover, the transformation from the near- 
breaking wave specified at x - 0 to the sawtooth-shaped bore 
in the inner surf zone in Figure 5 appears to be realistic except 
for the details of wave breaking as compared with the typical 
wave shapes depicted by Svendsen et al. [1978] and Flick et al. 
[1981]. 

In the following the computed variations of h and u during 
one wave period 29 _< t _< 30 are used to make comparisons 
with the measurements of test 1. Expressing the volume flux as 
q = hu, the maximum, time-averaged and minimum values of 
q at given x during 29 _< t _< 30 are denoted by q .... c•, and 
qmin, respectively. The computed cross-shore variations of q .... 
•, and •m• are plotted in Figure 7 to show that the computed 
results satisfy the condition of 4- 0 given in (20) almost ex- 
actly. In Figure 7 the variation of c• starts from 5 x 10 -'• at 
x = 0, decreases to --3 x 10 -3 at, x = 0.5, and approaches 
zero rapidly with the increase of x from 0.5. This indicates the 
degree of the computational accuracy expected for the com- 
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Fig. 20. Measured and computed cross-shore variations of wave 
height for the test of Hansen and Svendsen [1984]. 
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Fig. 23. Computed oscillations of 1, 5, and 10 mm water depth on Fig. 25. Computed cross-shore variation of mean water level for 
1 '8.14 slope for case 4. case 4. 

puted time-averaged quantities presented in this paper. The 
time-averaged values are found to require better compu- 
tational accuracy than the maximum and minimum values. 
Denoting the maximum and minimum values of r/ at given x 
during 29 _< t _< 30 by r/ma x and •/min, respectively, the com- 
puted cross-shore variations of r/ma x and •'/min are compared 
with the measured crest and trough envelopes as shown in 
Figures 8 and 9, respectively. Figure 10 shows the comparison 
for the normalized local wave height H, defined as H = (r/ma x 
- r/mi, ). The data points shown in Figures 8, 9, and 10 are the 

values read from the wave envelope drawn in Figure 4 of Stive 
and Wind [1982]. The breakpoint in these figures is located at 
x-• 0.4. The effects of wave shoaling and breaking on the 
wave envelope are well predicted for this test. The apparent 
coincidence of the computed and measured breakpoint lo- 
cations may be related to the location of the seaward bound- 
ary chosen for the computation, as will be discussed in con- 
nection with the computed results for the test of Hansen and 
Svendsen [1984]. 

Figure 11 shows the measured and computed cross-shore 
variations of the time-averaged free surface elevation q above 
SWL. It should be noted that the computed mean water level 
shown in Figure 11 would move vertically upward with little 
change of its shape by the amount of approximately (8d,)- • = 
0.09 if C, = 0 were assumed in (18) instead of C, = (16d,)- • 
used for the present computation. The nonlinear correction 
term C, introduced in (18) definitely improves the agreement 
for the mean water level, although the other computed quan- 
tities are found to be affected little by this term. The computed 
mean water level shown in Figure 11 rises too rapidly land- 
ward of the breakpoint, as was the case with the previous 
comparisons made by Stive and Wind [1982] and Svendsen 
[1984a]. Figure 12 shows the measured and computed cross- 
shore variations of the parameter B o introduced by Svendsen 
[1984a, 1984b], which can be expressed as B o = It/2 
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Fig. 24. Computed free surface variations for case 4. 

--(r•)2]/H 2 in the present notation. The agreement shown in 
Figure 12 may not be good, but the measured values of B o 
presented by Svendsen [1984a] were scattered around 0.07- 
0.08 in the inner surf zone. 

On the other hand, Figures 13, 14, 15, and 16 show the 
comparison between the measured wave profile and the com- 
puted temporal variation of (r/- q) during 29 _< t _< 30 at 
x = 0, 1.29, 2.15, and 3.01, respectively. The data points shown 
in these figures are read from the wave profiles shown in 
Figure 6 of Stive [1980]. Each of the measured profiles was 
plotted about its crest, which was taken to be at t = 0. Conse- 
quently, the measured profiles shown in Figures 13, 14, 15, 
and 16 are plotted such that the computed and measured 
wave crests occur at the same time. This assumes that the 

numerical model can predict the velocity of wave crest propa- 
gation from x -0 to the specified location exactly. Figure 13 
indicates that the measured wave profile at x = 0 is well ap- 
proximated by the cnoidal wave profile r/i specified at x = 0, 
where (r/- q) '-' r/i at x = 0, since qi = 0 and •1, -• q, during 
29 _< t _< 30, as shown in Figure 3. Figures 14, 15, and 16 
show that the numerical model can predict the measured 
transformation from the symmetric profile at x = 0 outside 
the breakpoint to the sawtooth profiles in the inner surf zone, 
although some numerical oscillations are present at the rear of 
the wave front. 

As for the prediction of the velocity field, the numerical 
model is less satisfactory since it predicts only the depth- 
averaged horizontal velocity u. The maximum, time-averaged, 
and minimum values of the computed temporal variation of u 
at given x during 29 < t < 30 are denoted by u .... t•, and Umi,,, 
respectively. Figure 7 of Stive [1980] showed that the maxi- 
mum and minimum horizontal velocities measured at several 

elevations did not change much vertically. The average of the 
measured velocities may hence be regarded as the depth- 
averaged velocity. Figures 17 and 18 show the computed 
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cross-shore variations of t/ma x and Umin, respectively, together 
with the data points corresponding to the average of the mea- 
sured velocities at given x. The numerical model appears to 
overpredict the maximum horizontal velocity even at x = 0 
and predict the minimum horizontal velocity well. Flick et al. 
[1981] suggested, on the basis of previous studies, that most 
wave theories would considerably overestimate the horizontal 
velocity under the crest of near-breaking waves generated in 
laboratories which were likely to be contaminated with free 
second-harmonic waves [Madsen, 1971]. Stive [1980] and 
Stive and Wind [1982] stated that monochromatic waves with 
minimal free second-harmonic waves were generated for the 
test under consideration. Comparison of the velocity data with 
cnoidal and linear wave theories was made by Stive [1980]. 
For the near-breaking wave at x = 0, cnoidal wave theory 
overestimated Uma x and estimated Umi , well, whereas linear 
wave theory estimated Uma x well and overestimated Umi ,. For 
the breaking waves in the inner surf zone, linear wave theory 
estimated Um• x and Umi , reasonably well using the measured 
local wave height. However, existing wave theories cannot 
predict the asymmetry about the crest associated with the 
sawtooth profile in the inner surf zone [Flick et al., 1981]. 

Figure 19 shows the computed cross-shore variation of the 
time-averaged horizontal velocity • together with the data 
points for test 1 corresponding to the average of the measured 
undertow velocities below the wave trough at given x. The 
data points in Figure 19 are read from Figure 8 of Svendsen 
[1984b], which showed the vertical variation and scatter of 
the undertow velocities measured at different elevations. The 

more recent data of Hansen and Svendsen [1984] as well as the 
undertow analysis including the effect of the bottom boundary 
layer by Svendsen et al. [1987] indicated that the undertow 

TABLE 2. Summary of Nine Runs for 1' 8 Smooth Slope Tests 

Run T', s H', cm • d, tr L Ur 

S1 1.2 8.80 0.63 4.5 13 4.8 5.1 
S2 2.0 6.60 1.2 6.1 24 9.2 14 
S3 3.2 5.43 2.1 7.4 43 15 32 
G1 2.15 14.50 0.88 2.8 18 11 40 
G2 3.0 9.91 1.5 4.0 30 14 51 
G3 3.2 8.38 1.7 4.8 35 15 50 
B1 1.2 9.48 0.61 4.2 12 4.8 5.6 
B2 2.0 7.55 1.1 5.3 23 9.2 16 
B3 3.2 5.45 2.1 7.3 43 15 32 

velocity below the wave trough should vary less vertically. 
Considering the limitation of the numerical model based on 
the assumption of vertical uniformity, Figure 19 should be 
interpreted to show that the numerical model predicts the 
order-of-the-magnitude of the undertow and the landward de- 
crease of the undertow inside the breakpoint at x -• 0.4. The 
dotted line denoted by Uto w in Figure 19 corresponds to the 
value of 5 multiplied by the ratio between the depth below the 
computed mean water level and the depth below the com- 
puted wave trough level. The difference between these two 
depths is not sufficient to explain the underprediction of the 
undertow as shown in Figure 19. 

Comparison is also made with the undertow measurements 
conducted by Hansen and Svendsen ['1984], who stated that 
the wave period T'= 2 s, the wave height H'= 0.12 m, and 
the water depth d/- 0.36 m in front of the sloping beach with 
cot 0'= 34.25. The seaward boundary for the computation is 
taken at the toe of this slope, since no information was given 
of the measured wave profiles immediately seaward of the 
breakpoint. The dimensionless parameters defined in (5), (6), 
and (7) are given by d t = 3.00, 0- 0.528, • -0.211, f= 0.452, 
and • - 18.1 for this test. The temporal variation of r/i(t ) at the 
seaward boundary located at x- 0 is specified using cnoidal 
wave theory. The wavelength normalized by d/and the Ursell 
number are given by L = 10.2 and U, = 34.4, respectively. The 
computed results are plotted in the same manner as those 
shown above, although comparisons with the data for this test 
are limited to r/ .... r/mi,, H, and fi [DeSilva, 1988]. Figure 20 
shows the measured and computed cross-shore variations of 
the normalized local wave height, H = (?•max- •min), for this 
test. The data points in Figure 20 are read from the curve 
drawn in Figure 8 of Hansen and Svendsen [1984]. The nu- 
merical model predicts the increase of H due to wave shoaling 
well, but the predicted location of the breakpoint is too far 
seaward. The selected location of the seaward boundary may 
be too far seaward for the finite amplitude, shallow water 
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Fig. 30. Measured and computed free surface oscillation for run S2. 

T] i 

equations used for the model, which do not include the effect 
of the vertical fluid acceleration on the pressure, unlike the 
Boussinesq equations [Peregrine, 1967-1, and appear to be in- 
capable of predicting the wave shoaling without wave break- 
ing over a long distance on the gentle slope. It should be 
noted that the previous comparisons made for steep slopes 
with d, >• 3 [e.g., Kobayashi et al., 1987] did not reveal this 
problem, since the distance between the toe of a steep slope 
and the breakpoint is relatively short. As a result, the agree- 
ments for r/max and r/rain for this test are not as good as those 
shown in Figures 8 and 9. Figure 21 shows the computed 
cross-shore variation of the time-averaged horizontal velocity 
fi together with the undertow data for this test in the same 
manner as Figure 19. The agreement in Figure 21 is similar to 
that in Figure 19, although the vertical variation of the mea- 
sured undertow velocities for this test is less than that for test 

1 of Stive and Wind [1982]. 

WAVE REFLECTION AND SWASH OSCILLATION ON 

STEEP SLOPES 

First, comparison is made with the semiempirical formulas 
for wave reflection and swash heights proposed by Guza et al. 
[1976, 1984], who performed a laboratory and theoretical 
study of the transition from strongly reflected surging to dissi- 
pative plunging breakers on a relatively steep plane beach 
with 0'= 7 ø, i.e., cot 0'= 8.14. Incident wave periods of 2.39, 
2.76, and 3.39 s were studied in detail. For simplicity the 
period T'= 2.76 s is assumed in the following comparison. 
Measurements of free surface oscillations were made along the 
section of the beach where the water depth ranged from 65 cm 
to approximately 10 cm. Higher harmonics were removed 
from the measurements to compare the free surface displace- 
ments at the primary frequency with linear solutions for fully 
and partly reflected waves. The wave runup and rundown 
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Fig. 32. Measured r/i(t ) and computed r/,(t) for run G2. 

measurements were done with a meter stick. A direct compari- 
son of the present numerical model with these measurements 
is not possible since the model is based on the finite ampli- 
tude, shallow water equations, including the effect of bottom 
friction, that are solved numerically in the time domain. In 
order to make an approximate comparison the water depth at 
the seaward boundary of the numerical model may be taken 
as d/= 38 cm, which is the average depth between 65 cm and 
10 cm. Varying the incident wave height H' in the range 1-10 
cm, seven cases are selected for the subsequent computation 
and comparison, as summarized in Table 1. The surf similarity 
parameter • is reduced from • - 4.24 for case 1 to • = 1.34 for 
case 7, corresponding to the transition from surging waves to 
plunging breakers [Battjes, 1974]. The parameters d, and a 
whose values are listed in Table 1 determine the values of the 

normalized wavelength L and the Ursell number U, as well as 
the normalized incident wave profile r/i(t ) at the seaward 
boundary, estimated using cnoidal wave theory for U, > 26 
and Stokes second-order wave theory for U, < 26 [Kobayashi 
et al., 1987]. The parameters 0 and f whose values are not 
listed in Table 1 can be calculated from 0 =(2•r)•/2• and 
f= (af'/2), where use is made off'= 0.05. The computed re- 
flection coefficient r given in Table ! depends on •, d,, a, and 
f', although the surf similarity parameter • is normally as- 
sumed to be the most important [e.g., Battjes, 1974; Seelig, 
1983]. It should be mentioned that the numerical model may 
be applied to these cases with L- 14, although the values of 
d• are relatively large. 

Figures 22-25 show the computed results for case 4. These 
figures and similar figures plotted for each of the other cases 
indicate that the periodicity of the wave field is established 
well before t = 9 for all the seven cases selected for the 1:8.14 

slope. Figure 22 shows the specified incident wave profile r/i(t) 
and the computed reflected wave profile r/,(t) at the seaward 
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Fig. 31. Measured and computed shoreline oscillation for run S2. Fig. 33. Measured and computed free surface oscillation for run G2 
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Fig. 34. Measured and computed shoreline oscillation for run G2. 

boundary for case 4. For these cases the oscillatory compo- 
nent of r/,(t) after the establishment of periodicity is dominant, 
unlike the computed variation of r/,(t) shown in Figures 2 and 
3 for the 1:40 slope. The reflection coefficient r listed in Table 
1 is taken as the height of the oscillatory component of r/,(t) 
for each case, where the normalized height of r/i(t ) is unity. 
Figure 23 shows the computed shoreline oscillations expressed 
in terms of the normalized elevation Z, above SWL corre- 
sponding to the water depth J,'= 1, 5, and 10 mm. In com- 
parison to the computed shoreline oscillation on the 1:40 
slope shown in Figure 4 the swash component after the estab- 
lishment of periodicity is much larger for the 1:8.14 slope. 
Moreover, the swash on the relatively steep slope is sensitive 
to the value of J,' especially during wave downrush. This is 
because a thin layer of water remains on the relatively steep 
slope during wave downrush as shown in Figure 24, which 
depicts the computed cross-shore variations of the normalized 
free surface variation r/ above SWL at t--9, 9.25, 9.5, 9.75, 
and 10. The straight solid line in Figure 24 is the 1:8.14 slope 
located at z = (Ox - d,), where 0 = 6.6 and d, = 14.6 for case 4. 
The computed variations of r/for the other cases are similar to 
those shown in Figure 24 except that the wave front landward 
of the wave crest becomes steeper as the value of • is reduced. 
It should be mentioned that the present numerical model is 
not capable of describing detailed behavior of plunging break- 
ers. Comparison between Figures 5 and 24 indicates that the 
number of waves in the surf zone decreases as the surf simi- 

larity parameter • is increased [Battjes, 1974]. Figure 25 
shows the computed cross-shore variation of the time- 
averaged free surface elevation • above SWL after the estab- 
lishment of periodicity. The setdown at the seaward boundary 
is extremely small for these cases with large values of d,. 
Figure 25 and similar figures for the other cases indicate that 
the normalized setup f/on the relatively steep slope is much 

_ 1 i;.: .... •__<•.:.'..!•'"r .......... ---/ 7) • t=10.0 -2 -• Run B2 • /71.1 ----- t=10.25 
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Fig. 35. Computed frcc surface variations over an idealized bar for 
run B2. 
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Fig. 36. Computed horizontal velocity variations over an idealized 
bar for run B2. 

greater than that on the gentle slope shown in Figure 11. This 
appears to be related to the thin layer of water remaining on 
the steep slope during wave downrush from the maximum 
wave runup elevation. Large values of the normalized setup • 
on a moderately steep beach were also measured by Holman 
and Sallenger [1985]. 

The computed reflection coefficients r for the seven cases 
listed in Table 1 are plotted in Figure 26 where the parameters 
s i and s, are defined as 

Ei -- •s tan 0',I •- 2 •,. = r• i (25) 
where K s is the shoaling coefficient and K s - 1.11 is assumed 
in Figure 26 on the basis of linear wave theory with T'- 2.76 
s and dr'= 38 cm. The solid lines given by e,- e i for ei < 1.6 
and s, - 1.6 for si -• 1.6 in Figure 26 were shown to follow the 
trend of scattered data points by Guza and Bowen [1976]. The 
numerical model underestimates the wave reflection coefficient 

considerably for these cases. The reflection coefficients for a 
1'3 smooth slope computed by Kobayashi and Watson [1987] 
were in better agreement with the empirical formulas pro- 
posed by Battjes [1974] and Seelig [1983]. The difference may 
be related to the friction factor f' which has been taken to be 
0.05 for small-scale smooth slopes on the basis of the limited 
calibration made for the 1'3 smooth slope by Kobayashi and 
Watson [1987]. In any case, the present numerical model is 
not really consistent with the experimental procedure adopted 
by Guza and Bowen [1976] for determining the reflection coef- 
ficient. 

On the other hand, the computed swash oscillations on the 
1 '8.14 slope for the seven cases are summarized in Figure 27. 
The maximum, time-averaged, and minimum values of Z•(t) 
after the establishment of periodicity are denoted by R, 
and R a, respectively. The values of R and R a for 5•' = 1 and 10 
mm as well as the value of Z• for 5/= 1 mm for each case are 
plotted as a function of • in Figure 27, where the value of • for 
each case is listed in Table 1. The computed values of Z• for 
1.34 _• • _• 4.24 are of the order of unity and much greater 
than Z•- 0.13 for • = 0.135, as shown in Figures 4 and 11. 
The maximum runup R is less sensitive to the water depth 
than the rundown R a. Figure 27 also shows the empirical 
formulas R = • for 0.1 < • < 2.3 and R• = (•--0.4• 2) for 
0.3 < • < 1.9, proposed by Batties [1974]. The numerical 
model with •'= 1 mm and f'= 0.05 was found to slightly 
underestimate the maximum runup R on a 1'3 smooth slope, 
as compared to the empirical formula of Ahrens and Martin 
[19851, which is applicable for larger values of • as well [Ko- 
bayashi and Watson, 1987]. The computed values of R d for 
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Fig. 37. Measured rli(t ) and computed r/,(t) for run B2. 

6/= 1 mm fall on the dotted line for R d shown in Figure 27. 
The normalized swash height may be defined as (R -- Rd). The 
computed swash heights for the seven cases are plotted in 
Figure 28 where e i is defined in (25) and e s is given by e s = 
[r•(R- R•)/•2]. The solid curves given by e s = e i for e i < 1, 
e s = (ei) •/2 for 1 < ei < 9, and e s = 3 for e i > 9 were shown to 
follow the trend of scattered data points by Guza et al. [1984]. 
The numerical model underestimates the value of e s for given 
e•, although the computed values of e s in Figure 28 are based 
on R for 6/= 1 mm and R a for 6/= 1 cm shown in Figure 27 
to increase the value of (R -- Ra) for each case. It is difficult to 
compare the numerical model to visually observed swash 
heights in light of the sensitivity of Ra and R to 6/, as shown 
in Figures 23, 24, and 27. 

In order to evaluate the numerical model in a more rigor- 
ous manner, small-scale tests were conducted in a wave tank 
which was 36 m long, 2.5 m wide, and 1.5 m deep. These tests 
were similar to the monochromatic wave tests conducted by 
Kobayashi and Greenwald [1986, 1988] for a 1:3 glued gravel 
slope and Kobayashi and Watson [1987] for a 1:3 plywood 
slope. The details of the present experiment were explained in 
the thesis of Watson [-1988]. A piston-type wave maker con- 
trolled by a computer was used to generate specified incident 
wave trains in a burst, which were measured using a resistance 
wire wave gage with a wave-absorber beach in the tank. The 
bursting method eliminates the problem of waves reflected 
from the wave maker and is suited for the present time 
domain model. The water depth in the tank was kept constant 
and dr'= 40 cm in these tests. The slope of given geometry 
installed in the tank was then exposed to the same incident 
wave trains. 

Nine test runs were conducted as summarized in Table 2. A 

1:8 plywood slope, which could be regarded as a smooth 
impermeable slope, was exposed to monochromatic waves 
with T' - 1.2, 2.0, and 3.2 s in runs S1, S2, and S3. In runs G1, 
G2, and G3 for the same 1:8 slope, transient-grouped waves 
were generated by superimposing two sinusoidal waves with 
equal heights and different periods. The wave period T' listed 
in Table 2 was the average of the two different periods, that is, 
2.0 and 2.3 s for run G1, 2.6 and 3.4 s for run G2, and 2.8 and 
3.6 s for run G3. In runs B1, B2, and B3 an idealized sub- 
merged bar installed at the toe of the 1:8 slope was subjected 
to monochromatic waves with T'= 1.2, 2.0, and 3.2 s, respec- 
tively. The crest of the bar was 45.5 cm wide and located at 8.5 
cm below SWL. The seaward and landward slopes of the bar 
were given by cot O' = 11.1 and -9.53, respectively, where the 
local angle of the slope has been defined in Figure 1. The 
landward edge of the bar and the 1:8 slope intersected at the 
depth of 29 cm below SWL. The representative wave height H' 

for each run was determined from the incident wave profile 
measured at the seaward boundary of the numerical model 
which was taken at the toe of the 1:8 slope for runs S1, S2, S3, 
G1, G2, and G3 and at the seaward edge of the bar for runs 
B1, B2, and B3. The height H' for each run listed in Table 2 
was taken to be the average of the one-third highest waves in 
the measured incident wave train, although the variation of 
individual wave heights was not large for the monochromatic 
waves generated in a burst. 

The dimensionless parameters d,, •, and a in Table 2 defined 
in (5), (6), and (7) were calculated using the values of T' and H' 
listed for each run together with d/= 40 cm and cot O' = 8. 
The corresponding values of L and U• were computed using 
cnoidal or Stokes second-order wave theory to indicate the 
representative values for each run. For the actual computation 
the measured incident wave profile normalized by H' for each 
run was used as input at the seaward boundary of the numeri- 
cal model. This was also necessary because the wave maker 
was operated without regard to free second-harmonic waves 
[Madsen, 1971] and spurious low-frequency waves [Kostense, 
1984]. The measurements made for each of the nine runs in- 
cluded the shoreline oscillation on the 1:8 slope and the free 
surface oscillation at the seaward boundary of the numerical 
model where the corresponding incident wave profile was 
measured with a wave-absorber beach in the tank. These 

measurements were synchronized and started at time t'= 0 
slightly before the arrival of the specified incident wave train 
at the seaward boundary of the numerical model. The shore- 
line oscillation was measured using a capacitance-type wire 
gage placed along the centerline of the 1:8 slope and suspend- 
ed between studs screwed into the plywood slope. The eleva- 
tion of the gage above the plywood surface was approximately 
1 cm, that is, 6/•_ 1 cm. This eliminated the uncertainty as- 
sociated with visually observed swash oscillations. 

Comparisons of the measured and computed results for the 
nine runs were presented in the thesis of Watson [1988], 
where Ct = 0 in (18) was assumed. The computed results pre- 
sented in the following have employed C t = (16 dr)- • to be 
consistent with the other computed results in this paper, al- 
though the differences between the computed results using 
C t -0 and (16 dr)- • have been found to be almost indis- 
tinguishable for these runs. Figure 29 shows the measured 
incident wave profile rh(t ) and the computed variation of r/r(t) 
at the toe of the 1:8 slope for run S2. The comparison be- 
tween the measured and computed free surface oscillation rh(t ) 
at the toe of the 1:8 slope is shown in Figure 30 where the 
computed oscillation rlt(t) is the sum of rk(t ) and r/•(t) given in 
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Fig. 38. Measured and computed free surface oscillation for run B2. 
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Figure 29. Figure 31 shows the comparison between the mea- 
sured and computed oscillation Zr(t ) of the shoreline on the 
1:8 slope where the instantaneous water depth is specified as 
•,.'= 1 cm. The degree of the agreement for runs S1 and S3 is 
very similar to that for run S2. The agreement for •It(t) appears 
to be good since the computed magnitude of rb(t ) is relatively 
small for these cases. The previous comparison for a 1:3 slope 
indicated that the agreement for •lt(t) would be poor if the 
numerical model could not predict the phase shift between the 
incident and large reflected wave profiles well [Kobayashi and 
Greenwald, 1988]. Figure 31 and similar figures for runs S1 
and S3 indicate that the computed elevation Z• tends to be 
somewhat lower than the measured elevation. 

Likewise, Figures 32, 33, and 34 show the measured and 
computed oscillations for run G2. Comparing the grouped 
shoreline oscillation Z•(t) shown in Figure 34 with the 
grouped free surface oscillations r/i(t ) and r]t(t ) shown in Fig- 
ures 32 and 33, the increase of the degree of grouping from the 
toe of the 1:8 slope to the shoreline is predicted fairly well by 
the numerical model. The compared results for runs G1 and 
G3 are similar to those for run G2, where the incident wave 
train for G1 is more grouped than that shown in Figure 32. 
These comparisons suggest that the numerical model may be 
applied to examine the interaction between incident wind 
waves and low-frequency motions on natural beaches. 

On the other hand, the effects of an idealized bar on the 
shoreline oscillations on the 1:8 slope are examined in runs 
B1, B2, and B3. The computed free surface variations at 
t = 10, 10.25, 10.50, and 10.75 for run B2 are shown in Figure 
35, which also depicts the idealized bar and the 1:8 slope. The 
seaward slope of the bar extends to x = 0, although it is not 
shown in Figure 35. The corresponding variations of the com- 
puted horizontal velocity u are shown in Figure 36. The effects 
of the bar on the wave transformation are apparent in these 
figures and similar figures for runs B1 and B3. The measured 
and computed oscillations for run B2 are shown in Figures 37, 
38, and 39. The incident wave profiles for runs B1, B2, and B3 
specified at the toe of the bar approximately correspond to 
those for runs S1, S2, and S3 specified at the toe of the 1:8 
slope, respectively, as indicated in Table 2. The computed os- 
cillation of r/r(t ) shown in Figure 37 is different from that 
shown in Figure 29 for run S2 probably because the presence 
of the bar modifies the wave reflection pattern. The agreement 
between the measured and computed free surface oscillation 
v]t(t ) shown in Figure 38 is not as good as that shown in 
Figure 30 for run S2. Comparing the measured and computed 
shoreline oscillation Z•(t) for run B2 shown in Figure 39 with 
that for run S2 shown in Figure 31, the numerical model is 
capable of predicting the reduction of the setup and swash 

oscillation caused by the presence of the bar. This conclusion 
also holds for runs B1 and B3 as compared to runs S1 and S3, 
respectively. These comparisons suggest that the numerical 
model may be applied not only to uniform slopes but also to 
beaches of arbitrary geometry, including a nearshore bar. 

CONCLUSIONS 

The numerical model developed previously for coastal 
structures has been modified to include the effect of the time- 

averaged current on the seaward boundary condition of the 
numerical model so as to improve the agreement between the 
measured and computed mean water levels on gentle slopes. 
The modified numerical model has been shown to yield fairly 
good agreement with small-scale test data on time-varying 
and time-averaged hydrodynamic quantities associated with 
monochromatic waves spilling on gentle slopes. The numerical 
model may be improved by matching its solution on the basis 
of the finite amplitude, shallow water equations with that 
based on the Boussinesq equations for a sloping bottom out- 
side the breakpoint, since the equations used herein appear to 
be incapable of predicting wave shoaling over a long distance 
on the gentle slope because of the assumption of hydrostatic 
pressure. Moreover, the prediction of the undertow current in 
the surf zone may be improved by performing an additional 
analysis of the vertical variations of the time-averaged mo- 
mentum and mass balances using the computed results of the 
present one-dimensional model as input to the analysis of the 
undertow. The analytical model for the undertow and bottom 
boundary layer flow proposed by Svendsen et al. [1987] re- 
quired the measurements on the mean volume flux below the 
wave trough and the local force difference driving the under- 
tow as input to their model. 

As for steep slopes and beaches, the modification of the 
numerical model has been shown to result in negligible differ- 
ences in the computed results as long as the seaward bound- 
ary of the numerical model is located in the water depth that 
is large relative to the incident wave height. The numerical 
model has also been shown to be in qualitative agreement 
with empirical formulas for the wave reflection coefficient and 
swash height for monochromatic waves plunging and surging 
on a relatively steep slope. In order to evaluate the capability 
of the numerical time domain model for predicting the reflect- 
ed wave train and the shoreline oscillation on a relatively 
steep beach in a more rigorous and consistent manner, small- 
scale laboratory tests were conducted and measurements were 
analyzed in the time domain rather than the frequency 
domain. The numerical model has been shown to be capable 
of predicting the time-varying hydrodynamic quantities rea- 
sonably well even for incident transient grouped waves and an 
idealized beach profile with a nearshore bar. However, the 
friction factor f', which has been assumed to be constant for 
all the computations made in this paper, needs to be better 
established to reduce the uncertainties of the numerical model. 

The comparisons made herein indicate that the numerical 
model may be applied to both gentle and steep beaches. As a 
result, the numerical model may be used to examine the inter- 
action between incident wind waves and low-frequency mo- 
tions in the cross-shore direction, since a specific beach with 
given geometry may be gentle and dissipative for wind waves 
but steep and reflective for low-frequency motions. Since the 
present time domain computation is not efficient for the inci- 
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dent irregular wave train of longer duration, it is desirable to 
develop a frequency domain model based on the finite ampli- 
tude, shallow water equations. This appears to be difficult 
since these equations are strongly nonlinear, unlike the Bouss- 
inesq equations for a sloping bottom which are weakly nonlin- 
ear I-Freilich and Guza, 1984]. In addition, it is desirable to 
extend the numerical model to account for the alongshore 
variations of incident waves and beach topography, although 
computational efforts will increase considerably. 
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