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Abstract. Measurements of the specific attenuation factor 1/Q in homogeneous 
materials in the laboratory and in the field show overwhelmingly that 1/Q is sub- 
stantially independent of frequency, whereas 1/Q varies as the first power of frequency 
in liquids. This conclusion, the result of observations over a wide range of frequencies 
in metals and nonmetals, in rocks in the laboratory and in the field, suggests that the 
mechanism for attenuation in solids is substantially different from that of liquids; a 
proposed nonlinear mechanism for attenuation is reviewed. The available data on 
attenuation of body waves, surface waves, and free oscillations are reviewed. An 
inversion method is described whereby the intrinsic Q in shear of the earth's mantle 
is computed from the surface wave and free oscillation data. The restrictions and 
assumptions in the calculation are (1) Q must be positive, (2) Q is independent of 
frequency, and (3) the mechanism of energy dissipation is through a complex modulus. 
The results show that, in shear, the upper mantle has a much higher attenuation than 
the lower mantle. Q for the upper mantle is estimated to be 110 from the surface to 
a depth of 650 km; for the lower mantle, below 650 km, it is much higher than this, 
but the exact value cannot be estimated with precision. There are hints of a fine 
structure for Q in the upper mantle, but present accuracy of the data and the assump- 
tions used do not permit the literal use of this result. Partial melting in a low 
velocity layer at shallow depth is considered, and a small amount of partial melting 
is not inconsistent with the above result and the data. 

1. INTRODUCTION 

Were i• not for the intrinsic attenuation of sound in the earth's interior, 
the energy of earthquakes of the past would still reverberate through the interior 
of the earth today. The chaos resulting from this awesome prospect is a specula- 
tion which lies outside the scope of this paper. Rather, it is the task here to 
investigate where in the earth seismic energy is converted into heat; is this 
performed with equal efficiency everywhere in the interior, or are some parts of 
the interior more capable of performing this operation than others? If the 
answer to this question can be obtained, a new factor will have been found which 
can help to indicate the physical and chemical state of the earth's interior and 
may act as support for models of the state of the interior derived from other 
evidence. But our task is complicated because of the problems introduced by the 
familiar heterogeneity of the earth's elastic, nondissipative properties. 

Except for nonlinear behavior near earthquake foci, seismic strains are small 
and seismic oscillations take place in the linear domain of elasticity. Attenuation 
of harmonic signals is therefore exponential, and the magnitude of the attenua- 
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tion is describable by the exponential rates of decay. Experiments cited below 
show that nonlineartry is introduced for strains in excess of 10 -a or 10 -•. Seismic 
strains are generally well below this value. The linear region of excitation cor- 
responds to attenuation factors which are independent of the amplitude of 
the excitation. 

The plan of this investigation is as follows: In section 2 we summarize the 
experimental evidence obtained in laboratory measurements of attenuation in 
solids, both metals and nonmetals. We indicate that at low frequencies, with 
certain exceptions, it is reasonable to anticipate that Q for a homogeneous 
sample is substantially independent of frequency. In the third section some of 
the models will be explored that have been suggested to explain the frequency de- 
pendence of the attenuation factor. In section 4 a summary of the field measure- 
ments of attenuation within the earth will be given. In section 5 some of the 
theoretical problems associated with the interpretation of the experimental results 
will be presented. •n section 6 we present some preliminary results that have 
been obtained in an attempt. to interpret the experimental data in terms of a 
distribution of the attenuation factor as a function of depth. 

Before embarking upon this program, it is appropriate to give a working 
definition of Q, the specific attenuation factor. This is a reduction to a dimension- 
less form of the more usual measures of attenuation. Several measures of attenua- 

tion are available, all more or less in •ommon use. All these definitions are related 
to the familiar expression in electrical circuit theory 

2•-/Q = ,•E/E (1) 

In this definition AE is the amount of energy dissipated per cycle of a harmonic 
excitation in a certain volume, and E is the peak elastic energy in the system in 
the same volume. Some of the difficulties that will be encountered in later sections 

of this paper are concerned with the type of energy E to be used in the definition. 
In the cases of interest, it will be seen that the elastic energy stored locally is not 
equal to the kinetic energy of motion, and hence not equal to one half the total 
energy, again locally. 

Another measure of attenuation is obtained from the logarithmic decrement of 
a harmonic wave. The logarithmic decrement is equal to the quantity •-/Q. The 
spatial attenuation factor for a wave function observed throughout space at a 
fixed time will be of the form exp (-,x), where a = ,,/2cQ, and c is the phase 
velocity. For comparison, the observation of this wave function as a function of 
time at a fixed point in space yields the damping factor e-vt, where 7 -- •o/2Q. 
In homogeneous systems without dispersion, the various definitions are equivalent. 
It is in strongly dispersed systems such as the earth, in which the dispersion is 
produced by geometrical heterogeneity, that some difficulty is encountered in 
relating the several definitions. 

In this study we shall assume that the interior of the earth is locally 
homogeneous and isotropic. Imagine that we extract a sample of the material of 
the interior of the earth, take it to the laboratory, and make some measurements 
on it. In this case, all the definitions are equivalent. A slab of the material placed 
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Fig. 1. Attenuation of sound in water [after Pinl•erton, 1947]. The ratio 
of the attenuation factor to the square of frequency is plotted as a function 

of frequency and temperature. 

between parallel plates can be studied in a standing wave experiment; we ob- 
tain s Q corresponding to a decay rate of standing waves given by 7. If we take 
this same sample and measure the distance attenuation factor •, we obtain an 
identical value for Q. If we measure the ratio of the energy stored to the energy 
dissipated in this sample by either a standing wave or $ propagating wave tech- 
nique, the energy removed per unit volume will be related to the peak strain en- 
ergy stored through (1); since the maximum strain energy stored is also equal to 
the maximum kinetic energy, all four of the calculations yield identical results. A 
fifth definition relating to a measure of the sharpness of the resonance curve of s 
material undergoing forced vibrations is also equivalent in the case in which the 
material is homogeneous and isotropic; Q - •/a•, where • is the resonant fre- 
quency, and a• is the line width. 

In the technique used here for the determination of Q in the solid part of 
the interior of the earth, we will have to assume that Q is substantially indepen- 
dent of frequenty. It is not clear that this assumption can be made rigorously. 
Nevertheless, laboratory experiments on many solids have shown that, up to 
moderately high frequencies, the dimensionless quantity Q is indeed independent 
of frequency to a very good approximation. This result indicates that the mech- 
anism whereby energy is removed from elastic waves in solids is not the same 
as the mechanism for attenuaQon in liquids. In most liquids the attenuation 
factor is found to vary as the square of the frequency (Figure 1); in solids the 
attenuation factor • varies as the first power of the frequency. Hence in liquids 
Q-1 is proportional to the first power of the frequency. 
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Q for longitudinal waves in aluminum rod [after Zemanel• and 
Rudnicl:, 1961]. 

2. ATTENUATION OF SOUND IN SOLIDS IN THE LABORATORY 

One of the earliest suggestions in the literature that Q is substantially inde- 
pendent of frequency in solids is found in the work of Lindsay [1914]. Since that 
time there have been a significant number of investigations which have veri- 
fied that the specific dissipation function 1/Q is independent of frequency. 
A list of values of Q's observed for metals is given in Table 1. Values of Q for 
other metals are tabulated by Birch [1942], but the range of frequencies over 
which Q is found to be independent of frequency is not given. 

Of particular interest in Table I is the work of Zemanek and Rudnick 
[1961], who measured the attenuation in a long aluminum rod under longitudinal 
excitation (Figure 2). In these experiments the range of frequencies was much 
broader than in the other experiments reported in Table 1. Occasional anomalous 
low points were reported by Zemanek and Rudnick; these could be correlated 
closely to torsional modes at frequencies very close to the particular harmonic 
under investigation in the sequence of longitudinal modes. Of further interest 
is the notably high value of Q for aluminum reported by Zemanek and Rud- 
nick. These two observations, that of coupling to modes unintentionally ex- 
cited and the general increase in the value of Q reported, indicate the possibility 
that many of the observations made heretofore on attenuation in solids may 
have been misleading principally because losses in the supports or in adjacent 
modes may not have been carefully eliminated. If this interpretation is correct, 
however, it would appear that losses in the supports have the same frequency 
dependence as in the materials under study. 

In all the results listed in Table 1, the values of Q are substantially inde- 
pendent of frequency. In œerromagnetic materials [Bozorth, 1951; Wegel and 
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Walther, 1935; Roderick and Truell, 1952] a considerable part of the loss is as- 
sociated with hysteresis effects, and 1/Q as a function of frequency has a sub- 
stantial component which is not independent of frequency. 

Further reference should be made bo the work of Mason and McSkimin 

[1947], who carried the investigations on polycrystalline aluminum out of the 
low frequency range and into the range of frequencies where the attenuation 
factor is no longer proportional to the first power of frequency. Here a significant 
fourth power component is •ound which strongly suggests the possibility that 
Rayleigh scattering is present. 

Similar observations can be made for nonmetals. In the low frequency 
range, for moss polycrystalline materials and for glasses, Q is substantially inde- 
pendent of frequency. Pertinent summaries are offered in Table 2. In amorphous 
materials, such as fused quartz, Q is also substantially independent of fre- 
quency. Again it can be remarked that Birch [1942] gives values of Q for a 
number of other nonmetals, but the range of frequencies over which Q is inde- 
pendent of frequency is not given. 

For earth materials observed in the laboratory, the conclusion is the same. 
Laboratory observations for rocks are summarized in Table 3. Again reference 
can be made to Birch's [1942] summary for values of Q at selected frequencies 
for a number of earth materials. Krishnamurthi and Balakrishna [1957] ob- 
tained a similar frequency dependence for the attenuation factors for four rocks, 
but they did not report the velocities, and so values of Q cannot be calculated. 

The results of Knopo• and Porter [1963] show that in granite the attenuation 
of Rayleigh waves over a wide •rcqucncy range has a behavior similar to that 
in polycrystalline aluminum as reported by Mason and McSkimin. In the fre- 
quency range 50-400 kc/s, .Westerly granite appears to have a Q substantially 
independent of frequency; at higher frequencies, a fourth power law of attenua- 
tion becomes predominant (Figure 3). As in the case of aluminum, this suggests 
that Rayleigh scattering is an important process. Knopo• and Hudson [1964] 
have shown that the scattering of elastic waves in random heterogeneous media 
indeed has a fourth power dependence of the type predicted from single Ray- 
leigh scattering. 

Peselnick and Outerbridge [1961] have measured Q in limestone over a 
wide range of frequencies and find that Q diminishes by perhaps a factor of 5 
from 4 cps to 10 Mcfs. Thus over a wider range of frequencies than in any other 
specimens Q is substantially independent of frequency. It is not clear whether 
the diminution in Q at high frequencies is due to compositional differences 
among specimens or due to Rayleigh scattering. 

Born [1941] has studied sandstone in the laboratory which has had varying 
amounts of interstitial water injected into the sample. The dry rock has a Q 
that is independent of frequency; as varying amounts of water are injected, the 
quantity 1/Q has increasing linear dependence on frequency (Figure 4). The 
linear behavior is, of course, what is expected for the attenuation in a fluid. At 
the laboratory frequencies used, the attenuation due to the interstitial fluid 
soon becomes dominant over the attenuation in the dry specimen even for small 
amounts of fluid. 
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Fig. 3. Attenuation factor for Rayleigh waves in fine-grained (Westerly, 
R. I.) granite [after Knopoff and Porter, 1963]. 

Of importance is the fact that Q's for rocks are an order of magnitude 
and more lower than in other materials. Peselnick and Zietz [1959] indicate 
that Q for calcite is about 1900, a factor of about 10 greater than in limestone 
(polycrystalline calcite). This suggests that grain boundary effects are likely 
to be important and that grain boundary effects show the same frequency de- 
pendence for Q as do the terms for single crystals and amorphous materials. 

A number of anomalous observations of Q can be cited. The observations 
on ferromagnetic materials and the observations of Rayleigh scattering at high 
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Fig. 4. Logarithmic decrement in sandstone with varying amounts of 
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frequencies have already been no•ed. We cite •he work of Auberger and Rinehart 
[1961], who have obtained some irregular variation of Q wi•h frequency. Fitz- 
gerald [1958a, b] has reported anomalous dispersion a• very low frequencies cor- 
responding •o wavelengths •ha• are very much larger •han his samples; cor- 
responding •o such dispersion, significan• absorption is often observed. In addition, 
in single crystals a• ukra high frequencies, •he a•enua•ion due •o dislocations 
and impurkies has a behavior completely differen• from •ha• described here for 
low frequencies. Krishnamurthi and Balakrishna [1957] have reported a•enua- 
fion œac•ors for limestones •ha• are substantially independen• of frequency; 
•hese results are in confiic• wi•h •hose Peselnick and Zie•z obtained on similar 

materials. Finally, we no•e •ha• all •he observations described here are for very 
small s•rains; for finite s•rains, •he a•enuafion is considerably grea•er and does 
no• have •his simple linear behavior. For s•rains less •han 10 -•, Mason [1956] 
has found •ha• •he a•enuafion is substantially independen• of •he amplitude of 
•he s•rain. Peselnick and Outerbridge [1961] place •his limi• a• 10 -•. This sug- 
gests •ha• linear •heories, in which the dissipafive •erms are proportional •o •he 
amplitude, are appropriate •o describe •he mechanism which produces •he 
a•enuafion. 

3. MODELS OF LOSS FOR CONSTANT Q 

A number of attempts have been made •o find modifications of Hooke's 
law •ha• would accoun• for •he deviations from perfec• elasticity which have 
been observed. In •he following discussion, we restric• the description •o one- 
dimensional models; •he extension t•o three-dimensional models is no• difficuk. 

The a•temp•s to accoun• for the observed law of variation of Q wi•h fre- 
quency can be divided into two groups, those invoking linear models and •hose 
invoking nonlinear models. Since the observed a•tenuation is substantially inde- 
penden• of •he magnitude of the strain, for small s•rains, the processes must be 
linear in amplitude; any •ases of nonlineartry involve nonlineartries in o•her 
properties. 

The mos• significan• generalization among •he early attempts •o explain 
•he nature oœ acoustic loss is •ha• of Boltzmann [1876]. In Bokzmann's •heory 
•he s•rain due to an applied stress is delayed by some sor• of 'memory' be- 
havior in the material. For a stress excitation, which is a complicated function of 
time, •his can be expressed as a convolution with an elementary memory œuncfion 
which expresses •he nature of the delay. Thus 

P(t) _• E(v)M(t -- v) dv ' (2) 
where E(r) and P(t) are the s•rain and s•ress, respectively; the equation is 
considered •o be schematic, and the ac6ual •ensor nature of •he functions is no• 
wri6ten explicifiy. The memory function is M(t). If we •ake •he Fourier •rans- 
form of (2), we see iha• the transform of M(t), m(•o) •akes 6he nature of a 
6ransfer function which describes •he loss mechanism: 

p(co) = e(co)m(co) (3) 
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Thus, if the nature of the loss is given in real space-time as an operator describing 
a real mechanism such as viscosity, internal friction, etc., presumably the 
Fourier transform of this function can be found and comparison can be made with 
the experimental results of harmonic excitation of the material under study. In a 
similar way, the reverse procedure can be followed. If the transfer œunction m(•) 
is known, its inverse can be taken, and thus the mechanism for the nature of the 
attenuation can be described in real space-time. 

Maxwell [1866] suggested a model in which viscosity was introduced to 
describe creep under large deœormations. Under small amplitudes of excitation, 
viscosity becomes the causative mechanism œor loss. The Maxwellian relation, 
in one dimension as before, is 

(dE/dt) = (1/u)(dP/dt) q- (P/•) 

where t• is an elastic constant and • is a viscosity. In terms of lumped circuit 
parameters, we construct a series combination of mass, spring, and dashpot. The 
transfer function is 

The complex wave number is k = •o(m/p) •/2, where p is the density. We write 

Q = Re k/2 Im k. (6) 

For the Maxwell value of m (•), 

Q • •,•/u (7) 

Meyer [1874a, b], Kelvin [1878], and later Voigt [1892] suggested a model, 
often called a viscoelastic model, in which the stress and strain are related 
by 

P = •E q- •(dE/dt) (8) 

again in one dimension. The lumped circuit for this model consists of spring 
and dashpot in parallel. This model has a transfer function 

m(w) = •(1 q-iwv/•) (9) 

Hence the acoustic loss for this solid is, by (6), 

= (10) 

In fact, the Kelvin-Voigt model shows a frequency dependence that corresponds 
exactly to the attenuation of sound in liquids. This suggests that viscous damp- 
ing is very likely the predominant mechanism for attenuation of sound in liquids. 

The attenuation must be an even function of frequency (Figure 5) so that 
energy will be dissipated for both positive and negative frequencies. Over a rather 
broad range of frequencies, the experimental evidence requires that the curves 
in the two quadrants be mainly linear. 

From the two solutions above, however, the attenuation factor as a function 
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of frequency varies as the square of the frequency for the Kelvin-Voig• model or 
is independent of frequency for the Maxwell model. 

I[ is necessary to demand that a relatively complex combination of masses, 
springs, and dashpots in intricate series-parallel combinations be used to approxi- 
mate linear relations. That this combination of physical parameters occurs in a 
large number of materials with exactly the same ratio of values for all com- 
ponents would be highly fortuitous indeed. KnopoJJ and MacDonald [1958] 
have shown that any linear combination of constant parameters consisting of 
purely elastic elements and purely viscous elements can only lead to attenuations 
which are even functions of frequency in each quadrant; odd powers of • such 
as the linear relations described in Figure 5, in each quadrant, can be obtained 
only as an approximation. Before rejecting a complex system of linear parameters 
as representing the mechanism required to explain the observed first power 
frequency dependence of the attenuation factor, we investigate the possibility 
that this is in fact an approximation over the entire frequency band. 

We start by noting that the dynamic ratio of stress to strain will be an elastic 
modulus, and, again ignoring the tensor relations involved, we find that the 
function m(•) is indeed the complex modulus of elasticity. 

m(•)-= eg•M(t) dt (11) 
Following Derjaguine [1934], we •ake the real and imaginary parts of (11). 
These are evidenfiy the cosine and sine transforms of M(t). 

C(oo) = M(t) cos oot dt 

S(oo) = M(t) sin oot dt 

If we further assume that density remains unchanged and that all the attenuation 
is associated with the complex modulus, then a complex velocity can be written 

V -- (m/p) 1/v' = {C Mr- i•}l/V'p -1/v' (13) 
Since 6he wave function is e {•/•-•, •he phase veloei6y c and •he a6tenuafion 
fae[or a become 

1/e = Re 1Iv a = c0 Im 1Iv (14) 
Thus the specific attenuation factor Q-X can be written as 

-- O) -- {(-• + S2) 1/2 + (15) 
For very small loss, Q >> 1, C(•) >> S(•), we see that (15) can be approxi- 

mated by 

Q-1 • •/C (16) 
A function with a transform pair S(•) and C(•) can now be found which fits 
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the observations of the frequency dependence of Q. There is an infinite set of 
such functions. 

Lomnitz [1957] has indicated that the function log t has a transform pair 
which fits the linear behavior of Q quite well over a rather large frequency range. 
He cites evidence for a logarithmic memory function from experiments on creep 
in rocks [Lomnitz, 1956]. However, the creep evidence on rocks is obtained at 
strains five or six orders of magnitude larger than those used in the acoustic 
measurements. The acoustic strains are probably of the order of 10 -•ø in seismic 
waves in the earth, and are very likely of the same order of magnitude in the 
laboratory. As noted above, laboratory experiments [Mason, 1956; Peselnick and 
Outerbridge, 1961] have shown that, for strains in excess of 10 -•, nonlinearity 
is introduced and the samples may no longer be in a linear domain of response. 

A further difficulty encountered with the Lomnitz model is that the function 
log t is singular at time t ---- 0. To remove this singularity, a characteristic time to 
must be introduced so that the function M(t) will be log (t • to). An estimate 
of to can be obtained from causality conditions. 

Futterman [1962] has computed possible transform pairs S(•) and C(•) as 
consistent with the observations as possible, if the causality conditions, written 
as the Kramers-Kronig relations, are obeyed. Futterman's work shows that the 
condition C(•) ---- constant, S(•) -- constant is inconsistent with causality. If 
this condition did hold, the curves of Figure 5 could be extended to the origin 
(Figure 6); there would obtain a discontinuous slope at the origin and a phase 
velocity independent of frequency [Knopof], 1956, 1959]. 

In 'view of Futterman's result, some cutoff frequency must be used in the 
relations so that the condition Q • Q(•) holds only for frequencies higher than 
the cutoff frequency (Figures 6 and 7). Futterman has investigated a number 
of models, all involving a characteristic lower cutoff frequency. If we allow the 
phase velocity to be frequency dependent, a reasonable model is a logarithmic one 
in which the dispersion introduced by casuality is of the order of Q-•. The specific 
attenuation factor is then roughly constant over a rather broad frequency 
range, and it is possible to determine the nature of the transfer function m(•). 
In this case the transform pair is 

1 log •o c - Co I -- •rQ--• (17) 

[ i log (• •o)1 -• Q- Qo 1 -•Q• •o))•o • - 0.57721 .-- 
where Co, Qo, % are constants for the system. 

Lomnitz's work can be criticized on the basis of Futterman's observation 
that the cutoff must be placed at low frequencies rather than at high. This in- 
dicates that the characteristic time is long, longer than any characteristic time in 
the excitation. 

If we search for a mechanism which localizes the attenuation in some micro- 
structure, such aS imp erfect elasticity in the bonds between atoms and groups of 
atoms, the value of an approach to this study through a linear transform pro- 
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Fig. 5. Schematic diagram of attenuation 
factor as • function of frequency for most 

solids at low frequencies. 

Fig. 6. Attenuation factor as a function of 
frequency with a low frequency cutoff. 
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Fig. 7. Attenuation factor as a function of 
frequency with • low frequency cutoff. 
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Fig. 8. Lumped parameter model for the 
nonlinear frictional solid 
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Fig. 9. Top' oscillator position as a function of time for 
the model of (19). Each quarter cycle is • sinusoid with fre- 

quency •(1 ñ b) •/2. Bottom' Instantaneous frequency. 
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cedure seems questionable. Obviously no characteristic lengths are available 
which œar exceed dimensions oœ the specimens. On the other hand, characteristic 
times oœ creep are oœ the magnitudes required by Futterman's theory; however, no 
evidence of permanant deœormation under small acoustic strains is present at 
laboratory frequencies. No causal statement in terms of a differential equation in 
space-time is yet available. 

Another mechanism that has been suggested œor obtaining a Q independent 
of frequency is one associated with hysteresis [Krasilnikov, 1963]. Consider 
a material with a non-Hookian stress-strain relation. Cycling of the material 
yields a series oœ curves enclosing a net area. The area under any loop represents 
the energy removed through cycling. The claim is usually made that the energy 
removed per cycle is a constant, and hence a Q independent oœ œrequency will be 
obtained. What is ignored in this statement is that the area of the hysteresis 
curve is œrequency dependent. The Boltzmann memory relationship described 
above shows that for cyclic strains •he stress and strain are out of phase and 
hence can be described by an ellipse in the stress-strain plane. The phase factor 
is given by the ratio of imaginary to real parts of m(•), and thus it and •he 
width of the ellipse are frequency dependent in the models above. In fact the 
phase factor is precisely Q-x. The problem has merely been restated if hysteresis is 
used as an explanation for a Q independent of frequency. What stress-strain model 
leads to a hysteresis cycle whose width is independent of frequency? From the 
above, linear stress-strain models are insufficient to meet this condition. The 
hysteretic construction suggests that cusping upon strain reversal is a likely 
explanation for the observation of Q independent of frequency; this, in turn, sug- 
gests nonlinearity in the model. 

Knopof] and MacDonald [1958, 1960] have suggested that nonlinear mechan- 
isms may be the resolution of the difficulty of the frequency dependence. The 
nonlinear mechanisms are linear in the amplitudes but are nonlinear in the 
directionality of the damping forces. This suggests that the nonlinear damping 
mechanism is of the nature of a frictional force. Coulomb friction has been 

suggested [FSrtsch, 1956], but this can be shown to give an improper frequency 
dependence for the attenuation factor. In •erms of lumped parameters, Knopof] 
and MacDonald [1960] have suggested that the linear model be represented by a 
mass-spring system which is attenuated by some sort of 'sandpaper' in which the 
attenuation depends not only on the sign of the displacement but also on the 
sign of the velocity (Figure 8). In their model, the differential equation of 
motion, for the one-dimensional case, can be written as 

a•u a•u ,, ]a•u au • (18) o T/• • ax" at -- - so•']•-• sgn ; 
where u is •he displacemen• of a particle, and •o is a cons•ank This •ype of 
frictional •erm is reasonable for •he following reason' The energy per cycle is 
of •he order of • • • • •A e, where A is •he amplitude of •he motion; the 
work done against friction will be of the order of foU [a•u/a t•] = fo•A •, and 
hence the ratio of energy lost per cycle to the total energy is independent of 
frequency. 
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The differential equation of motion for the harmonic oscillator of Figure 8 is 

• + of(x + b Ix[ sgn 3) - 0 (19) 

• -4-af(1 q- b)x = 0 x<>O 

, x<>O 

In each of •he quart. er cycles x <> 0, • X 0,•he equation is harmonic; •he com- 
plete solution is piecewise continuous. If we impose •he conditions of continuity 
of displacement and velocity at the turning points among the four regions, the 
solution is a damped wave (Figure 9). The generalization of •he relationship (18) 
to three dimensions, in which the tensor nature of the stresses and strains can be 
taken into occount, can be made quite easily. 

The discontinuities in the wave form associated with the nonlinear nature of 

the internal friction mechanism, as suggested above, indicate that there should 
be some experimental evidence concerning this point. It is known that for wave 
propagation through a nonlinear filter [Wiener, 1958] there is continual degrada- 
tion of the energy from the low frequencies into the high. Therefore, differential 
power spectra measured at several points should show relative regeneration of 
energy in the high frequencies. This is best done by bispectral analysis [Hassel- 
mann et al., 1963; MacDonald, 1964]. To date, bispectra of elastic pulses have 
not been calculated because of the high resolution required of the observations 
for the numerical calculations in bispectral analysis. The ultimate computation 
of bispectra should resolve the question between the use of linear and non- 
linear models for the attenuation. 

Mason [1958, p. 279] claims •hat a microscopic model for a •requency- 
independent Q can be obtained if the breakaway of pinning points of dislocations 
under acoustic excitation at normal temperatures is investigated. His result 
depends on the length of the Burgers vector, •he density of dislocations, and a 
•hermal activation •erm exp (--E/kT). However, after a serious algebraic error 
is corrected, he obtains. Q-• proportional to o -•, rather than the o, ø that is required. 

4. ATTENUATION OF SEISMIC WAVES 

We first consider the measurement of attenuation by •he methods of ex- 
plosion seisinology and seismic prospecting. The measurements of interest for the 
purposes of this part of the discussion are •hose which have been made in seismic 
media that are relatively homogeneous. At least two critical seismic measure- 
ments have been performed. The data of Collins and Lee [1956], who have 
made measurements in the Pottsville, Maryland, sandstone formation, are of 
interest. The seismic pulses have been observed at a small number of stations 
ranging from 10 to 27.5 feet in a range sufficiently short that the material can be 
considered homogeneous. There appears to be no interaction with heterogeneous 
matter outside the boundaries of the formation in question. The seismic pulses 
at the various seismometers were Fourier analyzed, and the attenuation factor 
was found to be linear with frequency in the frequency range 100-1000 cps 
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(Figure 10). This frequency range is comparable to that of the laboratory ob- 
servations in the resonance experiments of Born (Figure 4). 

An experiment performed over a somewhat larger range but in a more 
extensive body is the set of observations of McDonal et al. [1958] on the Pierre, 
Colorado, shale. By a technique similar to that of Collins and Lee, a Fourier 
analysis was made of the pulses recorded at seismometers placed at several 
positions in holes drilled into the formation. The attenuation factor as a 
function of frequency appears to be linear over the frequency range 50 to 550 cps 
(Figure 11). The Pierre shale formation had been studied earlier, in experiments 
analyzed by Ricker [1941], but the interpretation was based on a method in 
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TABLE 4 

Formation Frequency Range Type of Excitation 

Pottsville sandstone* 

Pierre shalei 
Pierre shalel 
Loose Martire ore• 
Jaspilite J: 
Magnetite-hematite J: 
Aegirite hornstone J: 

7 

23 

10 

12 

13 

53 

22 

100 to 900 cps 
50 to 450 cps 
20 to 125 cps 
300 to 500 cps 
400 to 1000 cps 
600 to 1500 cps 
450 to 900 cps 

Compressional pulses 
Compression waves 
Shear waves 

Compression waves 
Compression waves 
Compression waves 
Compression waves 

* Collins and Lee [1956]. 
i McDonal et al. [1958]. 
• Karus [1958]. 

which the broadening of seismic pulses with time and distance are correlated. 
Unfortunately, the correlation was strongly gaged by a prediction of the broad- 
ening of a pulse in a viscoelastic medium of the Kelvin-Voigt type, computed 
earlier [Je•reys, 1931]. The amount of broadening observed is quite small, and 
hence the correlation is not discriminatory with regard to the model if the 
analysis is done in space-time as in the case of the analysis by Ricker. The 
analysis by McDonal et al. in space-frequency is considerably more reliable. 

Karus [1958] has measured the attenuation factor in a number of soils at 
low frequencies using seismic pulses in more or less homogeneous formations. His 
results, too, yield values of Q independent of frequency. The results of these 
three sets of observations in the field are summarized in Table 4. 

It is perhaps not surprising that these analyses of pulses in relatively 
homogeneous formations in situ should give results which are comparable in 
magnitude, frequency dependence, etc., to the results obtained in the laboratory 
on homogeneous rocks. However, the strains from explosion sources are, in many 
cases, somewhat larger than those obtained in the laboratory. 

The results of all the laboratory measurements on nonmetals, metals, and 
rocks, and the few field measurements on rocks, are that the observation that Q 
is substantially independent of frequency is valid for most solids. Thus, if data 
were available from observations made at the surface that gave the attenuation 
of seismic waves in the earth as a function of frequency, an interpretation could 
be made using model that Q is assumed to be a function of depth in the earth 
but independent of frequency. The fact that the earth is inhomogeneous will 
make an interpretation of the distribution of Q as a function of depth relatively 
complicated; this interpretation will be reserved for the last section. The rest 
of this section will be devoted to a report of the observations made of attenua- 
tion in the real and therefore inhomogeneous earth. 

Attenuation studies have been made on seismic body waves and surface waves 
propagated through and on an inhomogeneous earth. Several attempts have been 
made to measure the attenuation of seismic body waves [Gutenberg, 1958]. Guten- 
berg's work is unfortunately subject to the same criticism as Ricker's; he has 
studied the rate at which seismic pulses broaden from seismic observatory to 
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seismic observatory. The data show much scatter, mainly because of the variation 
in the frequency response characteristics of instruments, the variation in the kind 
of foundation on which the seismographs are placed, and finally because of the 
uncertainities in the procedure introduced by making space-time correlations. 
This latter criticism can of course be resolved through the use of Fourier analysis; 
Fourier analyses of large numbers of data have become possible only recently 
•hrough the application of large electronic computers to the problem. The in- 
fluence of scattering due to heterogeneity in the upper layers of the earth has not 
been removed. Despite the uncertainties in the procedure, and although a fre- 
quency dependence was obtained inconsistent with the above discussion, Guten- 
berg obtained a value for the attenuation factor for P waves at 12 seconds of the 
order of Q -- 400 and for S waves for the same period Q -- 700; these values 
are no5 unreasonable. Karnik [1956] has studied this problem by a similar pro- 
cedure, tha• is through measurements of space-time pulse broadening; his results 
are subjec• to the same criticism. 

Anderson and Kovach [1964] have recently observed multiple reflections 
from a deep focus earthquake in Brazil recorded at a nearby station in Peru. The 
seismic shear waves traveled along several almost radial paths of multiple re- 
fleckion between •he focus, •he core-mantle boundary, and •he surface of •he earth. 
From a combination of the amplitudes of these multiple reflections, an estimate 
of the reflection coefficien5 at the core-mantle boundary is possible. If a simplify- 
ing assumption is made about the directivity of the seismic source so that we 
can estimate the amount of shear wave energy radiated upward as well as down- 
ward from the earthquake focus, then a comparison of the amplitudes of these 
two types of seismic evenbs at the observatory yields an esSimate of Q for the 
two regions. The mean value of Q obtained in this way for the mantle in shear 
is of the order of 500, a value in agreement with that obtained earlier by Press 
[1956] by similar methods. Anderson and Kovach's results indicate that for the 
upper mantle Q is abou5 160 and for the lower mantle about 1450. These values 
are in good agreement with Q's for an inhomogeneous earth as computed from the 
interpretation of surface wave data (see below). Q is inferred to be roughly in- 
dependen• of frequency over the range 11 to 25 seconds for the entire mantle. This 
same even• has also been observed by Steinhart et al. [1963], and results com- 
parable to those reported by Anderson and Kovach have been obtained. 

Both Rayleigh and Love surface waves have been used by a number of seis- 
mologists to obtain daSa on attenuation. The greater reliability of these data, 
when compared with the body wave •echnique, is considerable; however, the 
interpretation is considerably more involved, as will be seen in the next section. 
The use of only one seismograph for recording da•a suitable for •he interpretation 
of •he a•tenuaSion eliminates the possible influence of variation in instrumental 
characteristics from observatory to observatory. This difficulty has been avoided 
by Anderson and Kovach for body waves through the use of multiple reflections 
and can also be avoided in seismic surface wave observations. The general tech- 
nique is to make observations at one observatory of •he seismic surface waves 
from a very large earShquake as recorded on a long period seismograph. The 
seismic surface waves will execute several circuits of the earth if the magnitude 
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of the energy released at the focus is sufficiently great. If Fourier analysis of the 
several passes of the same phase are made, the spectra of the passes can be com- 
pared. Before 1962, direct visual comparison of amplitudes at certain periods 
was made using the natural spectrograph that occurs in the earth due to the 
dispersion of surface waves at long range. In more recent years techniques of 
Fourier analysis have been applied to these observations as well. 

Ewing and Press [1954a, b] analyzed the attenuation of mantle Rayleigh 
waves generated by the Kamchatka earthquake of 1952 by this method, and found 
a Q in the period range 250-350 seconds of about 350. In the period range 140-215 
seconds, Q -- 170. 

Sat• [1958] has measured the value of Q by a rough Fourier analysis for 
the mantle wave LG from both the Kamchatka (1952) and the New Guinea 
(1938) earthquakes. The LG phase is a wave of pure shear; the Rayleigh wave 
involves, of course, a mixture of compressional and shear motions. Sat6's value of 
Q for Love waves ranged between 85 and 220 in the period range 360 to 450 
seconds. 

Bdth and L6pez-Arroyo [1962] have made attenuation measurements of 
Love waves from the Peruvian earthquake of January 13, 1960. The value of Q 
in the period range 75 [o 300 seconds is approximately 90. 

Additional evidence from measurements of the attenuation of Rayleigh waves 
from the Chilean earthquake of May 21, 1960, can be found in the work of Press 
et al. [1961]; values of Q comparable in magnitude to those summarized above 
were obtained. It is quite dear that there is significantly more attenuation in 
Love waves than in Rayleigh waves. 

Perhaps the most. extensive analysis of attenuation of both Love and Ray- 
leigh waves has been made by Ben-Menahem [1964], who measured the attenua- 
tion of Love and Rayleigh waves from four great earthquakes from observations 
of multiple circuits around the earth past one station. The great circle paths from 
the Assam (1950), Mongolia (1957), Kamchatka (1952), and Alaska (1958) 
earthquakes to Pasadena, the reporting observatory, are all more or less the 
same. By Fourier analysis he has obtained a curve of specific attenuation factor 
covering the period range roughly 75 to 300 seconds for Love waves and 100 [o 
340 seconds for Rayleigh waves. Figure 12 is a composite of the values for 
these earthquakes as well as those summarized above. The experimental accuracy 
is indicated by the scatter in the graphs of the attenuation factors y. The Love 
waves show a rather gentle increase in Q-• toward the longer periods; the Ray- 
leigh waves have a decrease in Q-X toward longer periods. As noted above, the 
Love waves show a greater attenuation than do the Rayleigh waves. It should be 
noted that all the values of Q as reported here are dimensionless values of at- 
tenuation as observed at. the surface of an inhomogeneous earth. The interpreta- 
tion as to an intrinsic Q as a function of depth remains to be made. 

At still longer periods in the earth, observations of attenuation can be made 
from the widths of the lines in the spectral analyses of the standing.waves in. the 
free modes of oscillation of the earth. To date, two major earthquakes, the 
Chilean earthquake of May 21, 1960, and the Alaskan earthquake of March 27, 
1964, have been strong enough to excite the free modes of oscillation of the 
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earth since sensitive seismographs capable of recording seismic wave motions 
at very long periods have been in operation. The attenuation of the standing 
waves set up in the free modes of oscillation of the earth have been studied for 
the Chilean earthquake by several authors, notably Alsop et al. [1961], Benio)• 
et al. [1961], Ness et al. [1961], Smith [1961], and Connes et al. [1962]. Values 
of attenuation factor reduced to dimensionless terms have been observed for a 

small number of lines of the spectrum. These results are summarized in Table 
5. The values of Q in torsional or shear oscillations and those in spheroidal oscil- 
lations are of the order of 300. It should be noted that as the discrete spectra of 
the free oscillations approach the continuous spectra at shorter periods, the 
torsional oscillations are observed as Love or shear waves; the discrete spectra of 
the spheroidal oscillations, where matter is both compressed and sheared, approach 
the continuous Rayleigh wave spectra. Interpretation of these results can now 
be attempted. 

5. ASSUMPTIONS USED IN INTERPRETATION 

The interpretation of the observations of the attenuation of seismic waves 
at the surface of the earth in terms of a distribution of intrinsic absorption in the 
interior of the earth will now be undertaken. In the analysis which follows, we are 
concerned with the large scale features of the distribution of attenuation prop- 
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erties in •he in•erior of •he earth. Accordingly we confine our a•en•ion, in •he 
case of surface waves, •o •he long period da•a only, such as •hose reported in •he 
preceding section. To focus on •he gross features, i• is assumed •ha• the earth has 
radial symmetry. Therefore, in •his coarse analysis, any differences between 
continents and oceans are ignored; •ha• is, •he physical properties of •he earth over 
all radii are assumed •o be •he same. Since continental and oceanic crustal •hick- 

nesses are known •o differ, •he approximation certainly fails when wavelengths of 
•he order of •he continental •hickness are considered for •he problem of •he •rans- 
mission of surface waves across continental margins. Therefore only wavelengths 
are considered •ha• are longer •han •hose for which •his difficulty is demonstrable. 

Kovach and Anderson have derived values of Q in •he in•erior of •he earth 
from •he observation of body waves. The interpretation of body wave da•a 
is simpler •han •ha• for surface wave da•a, because •he dispersion is no• nearly 
as pronounced as for surface waves. However, •he da•a are subjec• •o •he effects 
of sca•ering by inhomogeneity as a function of radius and of •he nature of •he 
focus in a much more pronounced way •han are •he da•a on surface waves. The 
res• of •his section is confined •o •he interpretation of surface wave a•enua•ion 
observations. The results of body wave and surface wave interpretations will be 
compared. 

For •he surface wave analysis, advantage is •aken of •he fac• •ha• •he surface 
waves are s•rongly dispersed. The same inhomogeneity which may cause sca•er- 
ing of body waves, under •he assumption of radial symmetry, allows surface 
waves •o be •ransmi•ed wi•hou• sca•ering, excep• for •he effects of curvature. 
Since •here is a variation of •he penetration of surface waves of differen• periods 
in•o •he in•erior of •he ear,h, •he a•enua•ion a• •he surface of •he ear•h, 
measured as a function of period, represents an integration of •he contributions 
of •he intrinsic a•enua•ions •hroughou• •he entire earth in varying degree, de- 
pending on •he period. For shor• periods •he wavelength and •he penetration 
are small, and hence •he major contribution •o •he a•enua•ion is from •he upper- 
mos• layers of •he ear•h; by •he same •oken, for very long period waves, •he 
a•enua•ion as observed a• •he surface mus• correspond •o •he removal of energy 
from seismic waves by •he material in •he entire cross section of •he ear•h, •he 
uppermos• layers as well as •he deeper layers. The curve of a•enua•ion as a 
function of frequency obtained from surface observations •herefore reflects bo•.h 
•he spatial variation and frequency dependence of •he intrinsic a•enua•ion in 
•he in•erior of •he earth. 

From •he discussion above i• seems reasonable •ha•, if •he in•erior of •he 
earth is everywhere solid, i• is qui•e appropriate •o assume •ha• •he intrinsic 
a•enua•.ion is everywhere independen5 of frequency. On •he o•her hand, if •here 
are par•s of •he earth •ha• are liquid, i• probably mus• be assumed •ha• •he 
a•enua•ion factor varies as •he square of •he frequency (or Q-• as •he firs• power 
of •he frequency), and •his feature mus• be •aken in•o accoun• appropriately. 

Firs• •he assumption •ha• Q can be considered independen• of frequency in •he 
in•erior of •he solid par•s of •he earth is considered. For mos• solid materials •ha• 
have been measured in •he laboratory, Q does appear •o be independen• of fre- 
quency. Excep• for •he measurements of Zemanek and Rudnick, •he da•a are 
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usually taken over a relatively small range of frequencies. In the case of shear 
motions in the ear, h, values of the attenuation as a function of period are 
given from about 50 to 300 seconds for Love waves (Ben-Menahem), and a 
fairly reliable value is known for the torsional oscillations (Alsop et al.) at a 
period of 1074 seconds. In the case of Rayleigh waves and the spheroidal modes, 
the data are again given from about 50 to 300 seconds by Ben Menahem for 
Rayleigh waves; from the free modes of oscillation the longest period available 
is approximately 3000 seconds. Thus, for Love waves the available evidence 
encompasses a frequency range of about ten to one, and for Rayleigh waves of 
abou• sixty to one. The data of Zemanek and Rudnick show that for aluminum 
Q is not constant over such a wide frequency range, but in fact Q drops by 
about 40% over a frequency range of sixty to one. Since rocks have not been 
tested in the laboratory over such a broad frequency range, we shall assume 
that these numbers, taken for aluminum, are at least indicators of the re- 
liability of the assumption that Q is a constant over such broad frequency ranges. 
If Q in the earth must vary by less than 20% over a frequency range of ten to 
one, it is not clear that this variation should be ascribed to structural features; 
it may in fact be associated with some intrinsic frequency variation of the 
attenuation. 

In this interpretation it is further assumed that the earth is completely 
solid. Obviously this is an invalid assumption, since the core of the earth is 
liquid. In the case of Love waves or the torsional modes of vibration of the 
earth, only the mantle of the earth is set into oscillation, since there is no 
coupling in shear to the fluid core. Thus we need not be concerned with the core 
of the earth, except for the possibility of viscous damping of the gravest shear 
modes at the core-mantle interface. In the case of Rayleigh waves, however, 
the influence of attenuation in the liquid core is undoubtedly an important 
feature; account must be taken of the different dependence of attenuation on fre- 
quency in a liquid region when compared with the corresponding dependence 
for the mantle of the earth. In the interpretation below, we only compute 
the distribution of Q in shear in the mantle. 

A_ further complication is associated with the low velocity layer. Several 
authors have suggested that the low velocity layer, a region falling roughly 
between 100 and 250 km and not found at uniform depth or with uniform thick- 
ness at all geographic locations, may be due to partial melting of the solid ma- 
terial composing the upper mantle. Since shear waves are transmitted through 
this region, it cannot be completely molten. The low velocity layer has a more 
pronounced minimum in the shear velocity than it does in the compression wave 
velocity. If the low velocity layer is the result of partial melting of the mineral 
constituents, due to some anomalous condition of temperature and pressure, we 
shall have to consider the influence of the attenuation of long period earth- 
quake surface wave motions in this region due to a composite of solid material 
and of small amounts of interstitial liquid. Here perhaps the best guide is to be 
found in the work of Born [1941] mentioned earlier (Figure 4). When small 
amounts of water were injected into the interstitial region in sandstone, Born 
found an additional component of the atienuation that appears to be correlated 
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with the viscous attenuation in fluids. Partial melting in the interior of the earth 
very likely will have the character of interstitial fluid in the presence of the 
host matrix, since shear waves can be transmitted through the solid parts. 

We can estimate •rom dimensional arguments, in a rough way, the periods 
at which the attenuation due to melting will become important. From Born's 
data it can be seen that there is a characteristic frequency at which the attenua- 
tion is essentially doubled over the zero frequency value. We construct a 
dimensionless number relating this •requency •o, the shear modulus of the host 
material •, and the shear viscosity of the fluid 7, and demand that this be the 
same both in the sandstone-water experiment and in the earth' 

((MO•/•)sandstone = ((M0•/•t)mantl o (20) 

For water, the shear viscosity is 10 -a cgs; the characteristic frequency in the 
laboratory experiment is of the order of 10 a cgs. For order of magnitude calcula- 
tions, the modulus of rocks a• great depths and of sandstone can be •aken •o be 
the same. The period a• which •he influence of interstitial fluid in the in•erior 
of •he earth becomes important depends crucially on an estimate of •he viscosity 
of molten rock; this value of viscosity depends s•rongly on the temperature and 
pressure of •he molten material. Birch [1942] gives the viscosity of molten 
basal• as being perhaps of •he order of 10 a •o 10 • cgs. Thus, from (17) th e 
period a• which the effect of the interstitial fluid should become equal to the 
effec• of the solid material is of the order of 100 •o 1000 seconds, a range 
crucial •o the surface wave measurements. Later we shall determine •he in- 

fluence on the attenuation of a region of the order of 100 to 150 km thick con- 
sisting of a small amount of molten material. 

Born's results should hold for bo•h compressional and shear waves. Even 
•hough there is no shear modulus in the interstitial fluid, shear waves in •he solid 
are converted to compression waves in the fluid •hrough the boundary conditions 
a• the surfaces of the fluid regions, and energy is dissipated through the com- 
pressional or bulk viscosity in •he fluid. Thus, although •he laboratory experimen• 
has been performed for compression waves in sandstone, the square law fre- 
quency dependence for attenuation is anticipated for shear waves in a solid with 
interstitial fluid, as long as the dimensions of the pockets of fluid are small 
compared with the wavelength. Because of •he coupling of compression and 
shear in Rayleigh wave motions, the same result mus• hold for Rayleigh waves. 

Can the a•tenuafion observed in experiments using propagating waves, such 
as •hose using multiple •ransits pas• a given seismic s•ation, be compared wi•h 
the s•anding wave da•a in which line widths are measured at very long periods? 
The answer is tha• this comparison canno• be made directly without some correc- 
tions. This was demonstrated by Brune [1962], who gave a heuristic proof tha• •he 
specific a•tenuation factors measured in the two kinds of experiments are related 
by the ratio of group and phase velocities in a heterogeneous medium. A rigorous 
proof of this statemen• was given by Knopoff et al. [1964]. I• has been shown 
tha•, if Qx is the dimensionless attenuation factor measured in:•propagating wave 
experiments and Q• is the dimensionless a•enuation factor measured in s•anding 
wave experiments in the same medium, these two quanti•ies are related by the 
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cQx = UQ• (21) 

where c is the phase velocity at the period i n• qUeStion and U is the group 
velocity at this period. The reader is reminded that 

u = d,o/d k - 

where • is the angular frequency, and k is the wave number. Thus the two kinds 
of data can be compared only when modified by the ratio c/U. Values of the 
group velocity are difficult •o obtain in the period ranges corresponding to the 
free modes of oscillation of the earth, since the group velocity depends on a 
derivative property of the dispersion relation, and observations of the phase 
velocities are made only a• discrete points corresponding •o •he periods of the 
free modes. Thus •he values of Qx obtained a• shorter periods are reduced •o 
values of Q• of •his period range by correcting by •he ratio of •he •wo velocities, 
since •he •wo velocities are known in •he continuum. La•er we shall have need of 

•he ratio U/c in •he discrete spectrum, and, where required, i• will be computed 
for specific models of •he interior structure of •he earth. The da•a plo•ed in 
Figure 12 are values of 1/Q•. 

One las• problem remains •o be solved before •he da•a can be interpreted. If 
•he Fourier transform of •he one-dimensional elastic wave equation is written as 

•hen i• is seen •ha• •he wave number k can be made complex by introducing 
either a complex shear modulus wit. h real density or a complex density wi•h 
real modulus or a mixture of bo•h. Evidenfiy a relationship exists connecting •he 
•wo end-member processes such •ha• the same values of complex wave number 
are obtained. Since •he moduli of elasticity appear explicifiy in •he equations 
expressing the boundary condition involving continuity of s•ress across adjacen• 
layers of a heterogeneous medium, i• is clear •ha• the •wo processes are no• 
equivalent; energy transferred across boundaries governed by a complex 
modulus will be dissipated a• •he boundaries, whereas energy •ransferred across 
these boundaries wi•h a real modulus will no• be dissipated a• •he boundaries. In 
•he la•er case, •he only dissipation can come from •he body of •he material. The 
influence of •his difference of mechanism can be mos• easily seen if we write •he 
phase velocity for Love waves as a function of frequency and •he physical 
parameters in •he interior of •he system' 

c = c(w, •(r), p(r)) (23) 

where we have ass•ed •ha• •he modulus and •he density yaw only wi•h •he 
radius. If we now assume •ha5 bo•h •he shear modulus and •he density are com- 
plex, expand •he above equation in a Taylor series abou• •he lossless condition, 
and •ake •he imaginary part of the result, we find tha• 

-•Imk= Ime •Im- &+ Im &+ ... (24) 
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Thus the imaginary part of the wave number for Q >> 1 has a different ratio con- 
necfing it with variations in shear modulus than it does with variations in density. 
From the wave equation 22 for a homogeneous medium it is easy to see that the 
quantities/z (OC/OlZ) and p (Oc/Op) are equal to the negative of each other. An- 
derson [1964] has shown that in the interior of the earth the quantities/z (OC/OlZ) 
and p (ac/Op) are not equal to the negative of each other but are roughly so 
(Figure 13). 

Further support for this conclusion comes from an investigation of the ener- 
gies involved in the dissipation process. For a homogeneous material, the logarith- 
mic decrement is the ratio of the energy lost per cycle to the energy stored per cy- 
cle. In a homogeneous material these energies can be potential energies, kinetic 
energies, or the sum of these, since the kinetic and potential energies are equal. 
However, in dispersive media, the kinetic and potential energies are not locally 
equal, since the phase velocity is not equal to the local intrinsic velocity. It can 
be shown that if/z is always real and all the attenuation is associated with complex 
•, then, for surface waves in an inhomogeneous fiat-lying medium, all of whose 
properties vary with only one Cartesian coordinate z, the apparent attenuation 
of propagating waves as measured on the surface is related to the intrinsic atten- 
uation in the interior of the medium through the expression 

Q • T(z)/Q(z) dz T(z) dz (25) 
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where T(z) is the kinetic energy density, and Q(z) is the specific dissipation 
factor for that layer. If, however, the attenuation is completely associated with 
complex v and not at all with complex p, the corresponding expression is 

1 f• /f• Q• V(z)/Q(z) dz V(z) dz (26) a a 

where V (z) is the potential energy density. It can be shown further that 

V(z) dz = T(z) dz (27) 
a 

namely that Rayleigh's principle applies for all the layers (but not for each one). 
Thus we see •ha• •he weighting factors operating on •he intrinsic Q's in each layer 
are differen• according to •he way •ha• the kinetic and potential energies are par- 
tifioned among the layers. The above statements are easily proved by se•ting up 
•he multiply reflected elementary wave functions in each layer and solving 
for •he kinetic and potential energies in each layer. The solution for large num- 
bers of layers follows quite easily if a matrix procedure such as •ha• of Haske• 
[1953] or K•opo• [1964] is used. I• is clear •ha• models in which losses are duc 
to mixtures of both complex g and p are also possible, and the interpretation 
therefore allows a complete spectrum of possible results. In •he work which ap- 
pears below, we assume tha• only g is complex and •ha• p is everywhere real; 
•his corresponds to a model with imperfec• elastic bonds as the principal mech- 
anism of dissipation. 

6. INTERPRETATION 

With this background we are in a position to evaluate the distribution of 
intrinsic Q in shear or torsional motions in the in•erior of the earth. We write 
the first term of (24) for the case in which only the shear modulus is complex: 

Im k 1 0g g Oc Im - dr (28) k - - •or• cO• •r 

At a fixed real frequency i• is easily seen •hat •he observed value of Q• is 

1 U(w) oo(w,r ) 1 - 2(r) ar (20) core 

where Q (r) is the value of the in[rinsic Q at any depth r. 
The procedure of expanding [he phase velocity as a perturbation in the 

various quantities was first oufiined by Knopoff [1961] and developed la[er in a 
second paper [1962]; Jeffreys [1961] has indica[ed a development along similar 
lines. Values of g (Oc/O•) for a number of models of [he interior of the earth 
are given by Anderson [1964]. 

Anderson's values have been used to eompu[e [he dimensionless factor 
1/Q• •o be expec[ed for Love waves in a homogeneous spherical earth. The da•a 
to be fit include an isola[ed point at a period of 1074 seconds as determined by 
Alsop et al. [1961] and the continuous curve for at[enua[ion as determined by 
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Ben-Menahem [1964]. Ben-Menahem's curve represents smoothing through the 
data points shown in Figure 12 which include •hose of his own calculations 
and those of B•th and LSpez-Arroyo, SatS, Press e• al., and Joberr [1962]. It 
will be seen below •ha• •he results of this interpretation depend strongly on the 
method of smoothing the scatter among •he da•a. 

The principal evidence •or •he value of a•enuation in •he •ree modes comes 
from •he da•a o• Alsop et al. re•erred to above. Alsop et al. have indicated that 
•heir result is open •o several criticisms. The line spli•ting due •o the earth's 
ro•a•ion [Backus and Gilbert, 1961; Pekeris et al., 1961] expected in the fiœ•h 
torsional mode may be sufficienfiy narrow so •ha• an incorrect breadth will be 
measured in one of •he components. In addition MacDonald and Ness [1961] 
have suggested •hat the measurement at the period o• the fiœ•h torsional mode 
may actually be •he result of a superposition of •he fundamental fifth torsional 
mode and •he firs• overtone of the third spheroidal mode. This could provide an 
in•erœerence between the •wo modes which could again lead •o an incorrect value 
of •he line width. If •he value o• Alsop et al. is adopted, it is qui•e clear •hat 
Q• a• very long periods is considerably higher •han Q• at propagating wave 
periods. This can only be •aken into account by a model of the earth which 
introduces a somewhat higher Q in •he lower mantle •han in •he upper mantle. 
The poin• at 1074 seconds has a large probable error for the reasons noted 
above. The determinations o• Q• •rom the •ree modes by other authors are sim- 
ilarly subject •o criticism in •he ma•ter of the length of the record analyzed, the 
line spli•ting, etc. 0nly the result of Alsop et al. will be used here. 

The inversion is carried out as follows. The integral of (29) is a Fredholm 
integral equation of •he firs• kind. I• is solved by a quantization so •ha• the 
vectors Q•-• (•), Q-•(r) are related through the matrix 2•Uc -• Oc/O• (•o, r): 

(Q•,-1), = ,i (Q- • (30) 

The problem is then simply one of inverting to solve for the vector (l/Q)•, the 
other two matrices being given. If this is performed for the smoothed data of 
Ben-Menahem and the isolated point of Alsop et al., negative values for the 
quantities (l/Q) in some of the layers are obtained. Thus the additional con- 
straint 1/Q (r) • 0 must be imposed on the experimental data 1/Qy as a condition 
on the smoothing. Thus the smoothed data as given here are inconsistent with 
any plausible earth model and the condition 1/Q(r) • 0, and hence the experi- 
mental results must be modified. Numerical experiments have shown that 
one way in which the smoothing of the data may be modified is to require 
a slight reduction of 1/Qy at the long period end of the continuum and a slight 
increase in 1/Qy at the discrete period. Ben-Menahem (private communication) 
indicates that the probable error in his data at 300 seconds may be as much as 

Although an exact inversion is not possible, it is nevertheless possible to 
approximate the data wi•h several models. Three such solutions are shown 
in Figure 14. In model I, an upper man•le with a Q of 110 extending to 650 km 
and a lossless (Q _-- •) lower mantle is •seen •o provide a reasonable fit to the 
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Fig. 14. Computed values of Q•-• for a number of models of the dis- 
tribution of Q in the interior of the earth. Curve D gives the continuum 

data of Ben-Menahem. 

data. However, the increase in 1/Q• in the continuum toward the longer periods 
cannot be approximated by such a model (Table 6). 

In model II, an intermediate layer of greater absorption is introduced at 
depth to account for the increase in 1/Q• in the continuum toward the long pe- 
riods. Models IIa and IIb provide two examples of such a fit. The solution fails 
at the longest periods of the continuum and at the period of the free mode for the 
reason given above. 

The details of the calculation mus[ not be taken as representing, a final 
solution to the problem. As noted above, the failure of the data to be realizable 
physically requires that a readjustment be made. However, the following general 
features seem to be required by the data now at hand. 

1. The lower mantle, below 650 km or so, must have a very much higher Q 
than the upper mantle. The numerical solutions cannot differentiate between an 
infinite Q for this region and a finite but high Q, say of the order required by 
the body wave results of Anderson and Kovach. The depth to the upper boundary 

, 

TABLE 6 

Model 

Depth below Surface I IIa IIb III 

0 to 110 km Q = 110 Q = 115 Q = 114 Q = 120 
110 to 250 km Q = 110 Q = 120 Q = 121 Q = 120 4-viscous layer 

with n = 25,000 
cgs at 1•% 
melting 

250 to 325 km Q = 110 Q = 120 Q- 121 Q = 120 
325to650km Q = 110 Q = 75 Q = 78 Q = 75 
650 to 2900km Q = • Q = • Q = • Q = • 
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of this region cannot be given with precision, but it seems to be roughly at the 
depths below which earthquake œoci cease to be observed. 

2. The increase in 1/Q• toward the long period end oœ the continuum re- 
quires that an intermediate layer be introduced in the upper mantle having more 
absorption than the regions immediately below or above. Solutions IIa and b 
have placed this region at 325 to 650 km. As above, the depth, or thickness, 
of this layer cannot be given with precision; further refinement oœ the data 
may raise this layer closer to the surœace and change its dimensions. 

3. The values oœ Q in the topmost parts oœ the upper mantle depend strongly 
on attenuation in the short period part oœ the continuum, at periods shorter than 
50 seconds. In models II, we have indicated that the region above 325 km has 
a higher Q than that below it; the region above 110 km may have a lower Q than 
the region immediately below. These values are highly speculative. The scattering 
of surœace waves by lateral inhomogeneities becomes quite important at periods 
shorter than 50 seconds or so; the data at these periods include scattering effects 
and cannot be used in this interpretation. 

4. The precise values of Q in shear are again unknown. Nevertheless, a 
mean Q in the upper mantle of 110 is not unreasonable, as is seen from model 
I. A mean Q for the entire mantle of 110 X 2900/650 _-- 490 is not inconsistent 
with the body wave measurements of Press and of Anderson and Kovach. 

Through the use of Anderson's curves, we can also investigate the effect of 
a partly molten layer in the region 110 to 250 km. Here all that need be done 
is to add the contribution of such a region to the value of Q already com- 
puted. Evidently this must have the appropriate frequency dependence for the 
partly molten region. We assume a model of Q(r) independent of frequency 
throughout the entire upper mantle and superimpose on it an additional viscous 
damping term for the region 110 to 250 km in which Q-X is taken to be propor- 
tional to the first power of the frequency. This evidently has the effect of in- 
creasing the apparent Q in the upper mantle due to the solid parts, since some of 
the attenuation at high frequencies can now be attributed to the partly molten 
region. Consistent with the observations of Love wave attenuations as before, 
we find that model III (see Table 6) yields a curve of 1/Q•(/) which is indis- 
tinguishable from that for model IIa in Figure 14. The principal features of 
this solution are an increase in the value of Q in the uppermost 110 km and the 
introduction of a material with an ,•/• value in the viscous layer 110 to 250 km 
of 1/s second. According to the data of Born and equation 20, this corresponds to 
•% molten basalt with a viscosity of 2.5 X 10 • cgs. The interpretation is not 
unique owing to the introduction of additional degrees of freedom' the viscosity, 
the degree of melting, and the dimensions of the low velocity region. 

The basic interpretation, even on the assumption of Q independent of fre- 
quency, is not unique because of the question of the mechanism as treated above 
and the experimental inaccuracy. These, coupled with the possibility of decrease 
of Q with increasing frequency according to the experimental results of Zemanek 
and Rudnick, show tha•t the details of the distribution of Q in the upper mantle 
canno• be given with precision. The presence of an intermediate layer of high 
attenuation is indicated by the data presently known and under the assumptions 
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made; verification will come with further refinements in taking the data and by 
comparing with the calculation of Q in the Rayleigh-spheroidal mode of excitation. 

The interpretation of the data for Rayleigh waves and the spheroidal modes 
will not be attempted here. This interpretation depends crucially on the viscosity 
of molten material in the core of the earth. Not enough is known about the nature 
of the core at this time to evaluate carefully the influence of this term. 

In summary, if the earth is solid it is highly likely that Q can be considered 
as independent of the frequency. If Q is independent of frequency, the apparent 
attenuation of surface waves and of the free modes of vibration can be inter- 

preted in terms of an intrinsic Q in the interior of the earth. With the evidence 
now available a high degree of resolution is not possible. It is sufficient to say 
that, to the best estimate at the present time, a constant Q in shear in the upper 
mantle of about 110 is present; deviation from this value depends on the amount 
of absorption due to partial melting in the low velocity layer. Further re.•s01uti•0n 
of this into a fine structure indicates the presence of an intermediate layer with 
high attenuation; this layer is discerned under a literal interpretation of the data 
and the assumptions. The value of Q in the lower mantle cannot be given with 
accuracy, but it is certain that, if the values of the spectral line widths in the 
free modes are accepted, the value of Q in this region is much higher than that in 
the upper mantle. 

7. Q IN COMPRESSION AND BULK 

Of interest in the listing in Table 5 is the high value of Q• in the radial 
mode oSo reported by Ness et al. [1961] and Smith [1961] for the Chilean earth- 
quake of 1960. G. J. F. MacDonald (personal communication) finds a Q• in 
excess of 104 for the same mode for the Alaskan earthquake of 1964. It now ap- 
pears that this high value is not spurious, and the value reported by Smith may 
even possibly be too low. This result suggests that some additional constraints 
may be placed on the values of Q obtained in the earth and laboratory. 

Let Q•, (•p, and Qs be the values of Q obtained in experiments in which the 
bulk, compression, and shear properties of matter are excited. For the mode oSo, 
Q• has been observed. For a Poisson solid, it is elementary to show that 

5/Q•: = (9/Q•) - (4/Q s) (31) 

Let us assume that all the attenuation takes place in the outermost 1/10 of 
the earth's radius. In the oSo mode, the amplitude distribution is substantially flat 
as a function of radius and hence the attenuation takes place in a volume 3/10 
that of the earth. Thus, if Q• for the oSo mode is observed to be 10,000, then in the 
upper 0.1Re, Q• z 3000. If we take Qs as 110 in this region, we obtain from (31) 
Qp -- 230. If Smith's value of Q• - 900 is taken, (•p -- 165. In other words, for 
such a large value of Q•, Qs • QP for the earth. In passing, we note that, if Q• _• 
•, then Qs - 4/9 Qp and Qs = 6/5 Qy, where Qy is the Q measured in long rods. 

From Tables 1, 2, and 3, it can be seen that the data of Wegel and Walther 
for copper, Mason and McSkimin for aluminum, Peselnick and Zietz for lime- 
stone, and Birch and Bancroft for granite are inconsistent with the conclusion 
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Qs • QP. The data of Wegel and Walther for lead and soda-lime glass show the 
predicted effect only marginally. 

One way this discrepancy can be accommodated is to say that (31) holds 
for solid materials; hence, if partial melting is present in the upper mantle, (31) 
will have to be modified. This presents us with the uncomfortable result that the 
unusually high Q in oSo is a fortuitous consequence of a certain amount of partial 
melting in the upper mantle. An alternative resolution suggests that the relation 
QP • Qs observed in the laboratory is a result valid at low pressures and that 
this condition may be reversed at higher pressures. 

Does an independent estimate exist for Q• in the upper mantle? If we assume 
the result of the interpretation obtained here for Qs from Love waves extends to 
QR from Rayleigh waves as well, i.e. that all the pertinent attenuation is observed 
in the outer 0.1R• for waves in the period range T • 300 seconds, t•hen an esti- 
mate of Q• is possible. The computed value of Qs z 110 for the upper mantle is 
consistent with the curve of Q• for Love waves (Figure 12). We can infer, by in- 
spection oœ Q• for Rayleigh waves (Figure 12), that a reasonable model for Q• 
is QR -- 150 in the upper mantle and Q• -- oo in the lower mantle. Knopol• 
[1959] has shown that, for a homogeneous half-space with Poisson's ratio 1/4, 

the relation 

1/Q• = (0.067/Q•) -• (0.433/Qs) (32) 

can be written. With Q• and Qs as quoted above, we compute for the upper 
mantle Q• • 25. Here we have a result which may be too far in t•he opposite 
direction. But if dispersion is taken into account, (32) will have to be modified. 
The influence of dispersion on (32) is now being computed. 

At the present time, it seems plausible that the laboratory result Q• • Qs 
is consistent with observations and that the result that QK is large is perhaps 
a fortuitous result obtained because of partial melting in the upper mantle. 
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