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ABSTRACT

Phillips’ hypothesis concerning the equilibrium range in the spectrum of wind-generated surface waves in
deep water can be expressed either in the frequency form S(w) = w5 or the wavenumber form ¥ (&) < k74,
If one adopts the wavenumber form as universal, it can then be shown that for shallow water S(w) xw™,

a relation supported by observations.

It is noted that deviations from the S(w) x«™ relation can be introduced not only by finite depth but
also by permanent currents, as well as by the presence of long-wave components in the sea wave spectrum.
In the latter case determination of S(w) has to include both the Doppler effect, due to orbital displacements
of liquid particles in long waves, as well as the effect of additional vertical acceleration in short waves
propagating along the surface of the long-wave field. The article also gives calculations that illustrate the
significance of the foregoing effects on deviations from the Phillips —5 power law in the frequency spectrum

S{w).

1. Phillips’ hypotheses on the equilibrium range
in the spectra of wind-generated waves

According to Phillips (1958, 1966) space and time
scale ranges can exist in the spectra of wave-generated
gravity waves within which the energy distribution
must depend only on physical parameters characteriz-
ing the formation of sharp crests in breaking waves.
If we consider that region of space and time scales,
in which the viscosity of the water and surface tension
have no influence on wave motion, then the only
significant parameter, according to Phillips (1958,
1966), is the acceleration of gravity g. Then on dimen-
sional grounds one obtains the following expressions,
first suggested by Phillips in 1958:

¥ (K)=Bk ¢ (»), (L.1)
S (w)= B>, (1.2)

where ¥ (k) and S{w) are, respectively, the wavenumber
and frequency spectra, % is the modulus of the wave-
number vector k= (% cosy, ksinv), w the frequency,
v the angle characterizing the direction of wave propaga-
tion, B and B are universal non-dimensional constants,
and ¢(») is a certain universal function describing the
angular distribution of wave component energy within

the equilibrium range at any value of » and satisfying
the standard normalization condition

/7 o()dv=1.

It immediately follows from both Eq. (1.1) and this
normalization condition that

Y(k)dk= | W(kp)kdv=BE3, (1.3)

|k[=k -7

X(k)=

where X(k) is the spectrum of wavenumber moduli
characterizing energy distribution over % regardless of
the direction of wave component propagation [in
Phillips’ (1966) monograph X (k) simply designates the
integral

/ " ¥ (b )i,

—_—

which obviously is not the spectrum of wavenumber
moduli].

At present Egs. (1.1)-(1.3) are used as basic and,
actually, as the only constructive inferences about the
shape of wind-generated gravity wave spectra at suffi-
ciently large £ and w. It is exactly these formulas that
are being intensively checked experimentally. In this
connection it appears worthwhile to mention certain
points which are usually left out of consideration when
Phillips’ laws (1.1) and (1.2) are deduced.

First of all, in the rigorous statement of the law
[Eq. (1.1)] for the spatial spectrum ¥(k), we must
speak about the existence of an equilibrium range not
only with respect to &, but also to », i.e., about a certain
region (k,v), in which spectral components are saturated
and the spectrum W¥(k) is determined only by the
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parameter g (and also by % and »). As the boundaries
of such a region are not known ¢ priori, no unambiguous
conclusions about the shape of the X () spectrum can
be drawn even if the function ¢(v) in (1.1) is known,
unless one makes some additional assumptions not fol-
lowing from the similarity theory itself.! Thus, strictly
speaking, the expression (1.3) does not necessarily
follow from (1.1). On the other hand, in analogy to
the theory of small-scale axisymmetric turbulence, we
may set down certain expressions stemming from
Phillips’ hypotheses and directly describing spatial
statistical wave motion characteristics already averaged
over all directions of the vector k, i.e., directly for the
X (k) spectrum. However, Eq. (1.1) will not then neces-
sarily follow from (1.3). As (1.1) requires some specific
form of angular energy distribution of the spectrum
¥ (k), which is not a function? of %, then the latter of
the foregoing approaches to deriving X (k) seems to be
preferable. _ .

In addition, Phillips (1958, 1966) has derived the
laws (1.1) and (1.2) independently and from identical
assumptions, although it is obvious in advance that
similarity hypotheses for spatial and temporal spectra
are far from being of equivalent validity. One example
of this is supplied by the theory of small-scale locally
isotropic turbulence in which it is known that the —5/3
power law can be obtained on dimensional grounds only
for a spatial spectrum, and that an expression for the
corresponding frequency spectrum is found only via
additional information of the type of a “frozen turbu-
lence” hypothesis (see, for example, Monin and Yaglom,
1967).

In the present paper we attempt to incorporate the
above-mentioned factors in determining the form of
frequency spectra in the equilibrium range by using an
approach typical in turbulence theory; namely, by pos-
tulating the existence of an equilibrium range of spatial
statistical characteristics of waves. Initially, for the
X (k) spectrum, we determine corresponding frequency
spectra by means of some sort of dispersion relations
which are a wave analog to the concept of “frozen
turbulence.” Further on, it will be seen that more
information concerning the spectrum S(w) can be ob-
tained in this way than from dimensional analysis alone.

! Such as, for instance, the one utilized by Phillips (1966) who
assumed in (1.1) that

_f1/m, at |v|<vn=n/2
‘p(y)—{ 0, at |y|>wn

2 To some extent the general form of Eq. (1.1) contradicts the
data of the most detailed investigation of angular energy dis-
tribution in the wave spectrum, as obtained by Longuet-Higgins
et el. (1963) and Ewing (1969). It seems that k-independence of
the angular distribution (including isotropy at |»| Krm=m/2) can
be approximately satisfied only in the shortest-wave range of the
spectrum ¥ (k).
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2. Dispersion relations and the relationships be-
tween spatial and temporal spectra of wind-
generated waves

Usually, when wind-generated waves are investigated,
the scope is restricted to using the dispersion relation
of the linear theory of free surface waves. In the case
of gravity waves this relation takes the form

w(k)=[gk tanh (kk) %, (2.1)

where % designates the depth. The dispersion relation
(2.1) is based upon an assumption of free waves of
small amplitude and thus should be modified for actual
wind-generated waves. It appears that corrections to
(2.1), describing the effects of interactions between
surface waves and the atmospheric turbulent boundary
layer, as well as nonlinearity corrections, are small (for
details see Phillips, 1966). However, significant modifi-
cation of (2.1) is produced by including the effects of
large-scale movements caused by currents and long-
wave components of surface seawaves.

A permanent (mean) flow v is taken into account by
simply correcting (2.1) for the Doppler effect:

w(k)= gk tanh (k%) +k-v. (2.2)

The use of deterministic dispersion relations of the type
(2.1), (2.2) leads to a formulation of the relation be-
tween ¥(k) and S(w). However, such a relation is
simple only in the case when a solution k= k(w,v) of
the dispersion relation w=w(k)=w(k,») is a one-valued
function of w defined for positive w only. Dispersion
relation (2.1) is a one-valued function of «w defined for
w20, but (2.2) is a multiple function of w defined for
w20 and w< 0 when k- v<0. In any case one may write
by definition

/°° ‘I/(k)(lk=/7r /’” Y (k) kdky

-[ @i / T S@ie=(), (23)

where ({?) is the variance of the stochastic function
¢ (x,#) which is assumed uniform over horizontal posi-
tion x and time {, by means of which we simulate the
sea surface. For a one-valued function &(w,»), defined
for w20, the relation between ¥(k) and S(w) can
easily be found from (2.3) by a change of variables in
the integrals:

Sw)= /_ [‘P(k’y>6(z,u)]k=k(w,v)dy’ (2.4)

where G(k,v)=dw/0k. The quantity G corresponds to
group speed |Viw| only if w is independent of ». If
k(w,v) is multiple function of w defined for positive and
negative w, then the relation between ¥ (k) and S(w) is
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more complex and special analysis is required for every
particular dispersion relation. General analysis relevant
to this question and its practical application are given
in the Appendix.

If a dispersion relation is isotropic [w=w(k) ], which
corresponds to k-v=01n (2.2), then a simple algebraic
relation between the frequency spectrum and the wave-
number moduli spectrum X(&) follows from (2.4),

namely
X (k)
Se)= [@Lm{

Thus, for an isotropic dispersion relation it is sufficient
to know only the wavenumber moduli spectrum X (&)
[and, obviously, the dispersion relation itself w=w(k)]
to calculate the frequency spectrum S(w). But when
anisotropic dispersion relations of the type (2.2) are
considered, the integral relation between S(w) and
¥ (k) of the type (2.4) has to be used to transform
wavenumber spectra into frequency spectra. In this
case, to calculate S(w) it is not sufficient to specify the
equilibrium range only in terms of wavenumber moduli
spectra; in addition, it is necessary to include assump-
tions, both about the shape of the angular dependence
e(¥) in (1.1) and about the shape of the region (k,»)
of equilibrium amplitudes of spectral components.

Effects of large-scale components of surface waves
lead to random perturbations of the dispersion relation
for wind-generated short gravity waves. To determine
their effect on the relation between the spatial and
temporal spectra, it is necessary to state the problem
in more detail. In the analysis of this relation, we shall
assume a model of surface sea waves in which the long-
wave end of the spectrum is separated from the short-
wave end by the “transparency range” [k°k,] with
k°<<ko, where E° is the wavenumber of the spectral
maximum of large-scale disturbances, and ko is the
wavenumber of the spectral maximum of growing wind-
generated sea waves and differs only slightly from the
lower limit of the equilibrium range %y (%42 ko). Such
a model of wind-generated sea waves growing against
the background of the swell, although rather special,
makes it possible to reproduce in a most refined way
the picture of short steep waves propagating on the
surface of much longer waves. In reality, the existence
condition of a broad “transparency range” [£9%kq] may
be too stringent; instead, the weaker inequality 2°< ko
may be quite acceptable. As double-peak spectra of this
type are also characteristic for purely wind-generated
sea waves (see Krilov ef al., 1973), the results can be
applicable to this case.

If, for the sake of simplicity, the effect of finite sea
depth and that of the current are neglected (k= o,
v=0), then the short-wave component dispersion rela-
tion (k> k) in the linear approximation takes the form

w=w(k)=[(¢t+a)k]+k ¥, (2.6)

(2.5)
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where a= 3%/ is the vertical acceleration of large-
scale components { of surface waves with k~#°; ¥ is the
horizontal drift velocity of the long waves, and ¢ and ¥
(as well as {) are slowly varying random functions with
scales Ao~ (ko)™, 7o~ (we)™*, and without the approxi-
mation under discussion they depend on x and ¢ only
parametrically, in their various realizations.

It is evident that if we utilize dispersion relations
of the type (2.6), then the general transformation for-
mula (2.4) will give the frequency spectrum correspond-
ing to a fixed spatial spectrum S(w)=S8(w,d,7) at fixed
values of the random parameters @ and ¥ which enter
the integrand in (2.4) via G and k. Thus, when spatial
spectra of short waves, propagating on the surface of
swell or long wind-generated waves, are transformed
into corresponding frequency spectra, we face the neces-
sity of considering conditional spectra S(w). The un-
conditional frequency spectrum, which is our ultimate
goal, is found in. this specific case by averaging S(w)
over all possible values of ¢ and ¥:

S(@)=(8(w)).

The foregoing formulas relating S(w) to (k) will
be applied below to determine the frequency spectrum
of wind-generated sea waves in the equilibrium range
when finite sea depth (Section 3), permanent currents
(Section 4) and large-scale components of surface sea
waves (Section 5) are taken into account.

2.7

3. Equilibrium range in frequency spectra of wind-
generated waves in a finite-depth sea

In deriving (1.1) and (1.2), Phillips (1958, 1966) has
not stipulated whether they are only valid for deep-sea
wind-generated waves (k%>>1) or whether they can be
used as well in the case when an equilibrium range exists
in the gravity wave spectrum of a sea with finite depth
h (i.e., at arbitrary values of kk). On the other hand,
Phillips (1958) himself has noted that (1.1) and (1.2)
for spatial spectra agree with the appearance of sharp
crests because the average square of a Fourier trans-
form of a function, which has slope discontinuities, must
be proportional to &%

This latter consideration provides a reason to believe
that shapes of equilibrium spatial spectra of sea waves
at large & will be identical for both deep and shallow
seas. If ¥ (k)~£%~* [and, consequently, X (k) ~k~%], then
the proportionality coefficient B in (1.1) and (1.3) may,
in the general case of a finite-depth sea, depend both on
¢ and £, and on wind speed v, and fetch X. Thus, we
cannot neglect a possible dependence of B on such
non-dimensional parameters as gh/v,? and gX/v.2 If,
however, we assume in accordance with the initial con-
cepts of the Phillips hypothesis (1958) that the upper
limit of spectral density in the equilibrium range must
not depend on wind-supplied energy inflow, then the
coefficient B is found to depend only on g and 4. As it is
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Fic. 1. The universal dimensionless function ® from (3.1) (solid curve)
and the function wz?/2 (dashed curve).

impossible to form a dimensionless combination of g
and 4, then for a finite-depth sea we can assume that
the spatial spectrum of sea waves in the equilibrium
range is determined as before by (1.1) and (1.3) with
the universal constant B.

Thus we see that the spatial spectra (1.1) and (1.3)
can describe extreme configurations of wave surface in
the general case of wind-generated gravity waves in a
finite-depth sea (i.e., at any value of k%). However, this
is by no means true in the case of (1.2) for the S(w)
spectrum, because according to the transformation for-
mula (2.5) and the simplest dispersion relation (2.1) the
frequency spectrum may depend not only on g but also
on k. In this case, instead of (1.2) we can, on dimensional
grounds, put down for S(w) a more general expression

S (w) =gl (wn), 3.1

where w,=wh?/g* and ®(ws) is some universal nondi-
mensional function. The function ®(ws) can be found
from Eq. (1.3) for x(k), from Eq. (2.5), and from the
dispersion equation (2.1). The solution of (2.1) for %
is of the form

k) =—3e(wr),

3.2)
4
where a universal function 3C(ws) is found from
3¢ tanh (ws23¢) = 1. (3.3)

Calculating then the frequency spectrum S(w) from
(2.5) and comparing the result to (3.1), we find

2323C(wn)
Sh[Zw;ﬁSC (wh)]

It is easily verified that ®(ws;) — 1 when w;— 0.
This asymptotic behavior gives the following relation
between constants 8 in (1.2) and B in (1.3):

B=p/2,

Cb(wh)=5C—2(wh) 1+ }— . (34)

(3.5)

which, in the first approximation, agrees with inde-
pendent experimental data on 8 and B (Phillips, 1966).

In another extreme case at w,— 0, the function
®(w) — wi/2 and (3.1) leads to a new universal power
law

S(w)=Bghw™2. (3.6)
Eq. (3.6) assumes that the equilibrium range is deter-
mined by spectral components for which the long-wave
approximation is valid [w= (gk)* ). However, in reality,
the numerical calculation of the function ®{ws), plotted
in Fig. 1, shows that the range of applicability of (3.6)
can be much wider. As follows from Fig. 1, this range
goes up to wr=1, i.e., up to such values of w; as can be
quite typically realized in the case of shallow-sea wind-
generated waves.

The difficulty in comparing (3.6) to empirical data
is caused by the fact that the latter must corres-
pond to a wind-generated sea growing on a water area
with horizontal bottom. Otherwise, wave spectrum
transformations will be produced by refraction which
may obscure deviations from the —5 power law de-
scribed by ®(wy). The data, kindly placed at our dis-
posal by Dreyer (1973) and shown in Fig. 2, are free
from this shortcoming because they have been collected
on a specially selected area of shallow sea where the
depth % was 4 m and did not change over the whole
expanse of wave initiation and growth.

Fig. 2 shows that the high-frequency parts of the
S(w) spectra are not described by the —35 power law
but do fit fairly satisfactorily a S(w) «w™ law. Devia-
tions from the —5 power law in wind-generated wave
spectra within the littoral zone were also observed in
other experiments (Druet ef al., 1969; Kakinuma,
1967) but is is unlikely that the condition of horizontal
bottom relief was satisfied in any one of these.

It seems worthwhile to attempt by means of the
S(w) spectra (given in Fig. 2} and via Eq. (3.6) to calcu-
late the constant 8. Note that up to now 3 was deter-
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mined only from spectra with clearly pronounced —3
power law segments. Thus it is of considerable interest
to compare the empirical values of 8 obtained by ap-
proximating observed frequency spectra by two differ-
ent asymptotic formulas [namely (1.2) for a deep sea
and (3.6) for a shallow sea’.

According to the data plotted in Fig. 2, we can
roughly estimate 3 from

(21) 2 2%S ()~ (22:1) X 1075 8%, (3.7)

which, according to (3.6), results in = (4£2)X 1073,
not too different from 38 estimates obtained up to now
from the data on the Phillips spectrum (1.2). Thus the
transformation of the universal spatial spectrum (1.3)
into frequency spectra S{w) via (2.5) leads to results
which agree with observations not only in the deep
sea case (k£>>1) but also in the other extreme case
(kh<<1) that corresponds to a shallow sea and to Eq.
(3.6).

4. Equilibrium range in frequency spectra of wind-
generated waves in the case of permanent
currents

Perturbation of the relation S{w)*w=5 in the high-
frequency end of the wind-generated wave spectra may
be caused not only by the finite-sea depth effect but also
by an effect of sea currents. Indeed, if we assume that
in the case of permanent currents the spatial spectrum
of wind-generated sea still has in the equilibrium range
the universal shape (1.1). then the frequency spectrum
must depend, aside from g, also on the modulus of the
current velocity vector v. This dependence can be
established if, in the transformation of the equilibrium
spatial spectrum into a frequency spectrum by means
of the formulas given in Section 2, we utilize the dis-
persion relation (2.2) which includes the Doppler fre-
quency shift caused by the action of permanent sea
currents.

Calculating S(w) through (1.1), (2.2) and (2.4), we
shall restrict ourselves for the sake of simplicity to the
case of sufficiently small 2= |v| to be assured that the
relation (2.4), which is an approximation in this case,
is valid (see Appendix) and to the case of a deep sea
where the dispersion relation (2.2) reduces to the
equation

w=w(k,y)=(gk)*kv cos(r—~7v), (4.1)

where v is the angle between flow direction and mean
wind velocity; the angle » is measured in relation to
this latter vector (=0 coincides with the wind direc-
tion). The solution of (4.1) for k£ has the form

w?
k=Fk(wp)=—3C,(y),
4

¢ This appears natural because, as has been mentioned above,
arguments in favor of the k™ law can be associated only with
geometric properties of extremal configurations of the wind-
generated sea surface,
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where

y=w, cos(v—7), 4.2)

(1+4y)§—1]2.

w,=1ww/g, JCn(y)=[ 2

The function 3¢,(y) is defined for y2> —%. At y=—%
the “group velocity” G= 0w/dk of spectral components
is zero (energy does not propagate upstream), while the
phase velocity c=w/k is directed upstream and equal
to ~—v cos(v—7). To apply the transformation formula
(2.4) it is necessary to calculate from (4.1) the “group
velocity” which is then

lg

where f{(y)=3C,"}(y)+2y. The following expressions
are obtained for the frequency spectrum when (4.2)
and (4.3) are substituted into (2.4) and by expressing
W (k) by means of (1.1):

S(w) =Bg%w T (wn,7), (4.4)

where
](wu,"/) = 7’()’) ‘P(V)dui (45)
() =30 ). (4.6)

It is easily seen that J(w,,y) — 1 as w, — 0. Thus it
follows from (4.4) that if the main contribution in the
equilibrium range is made by those spectral components
for which the phase velocity modulus satisfy ¢= g/w>v,
then the Phillips law (1.2) still holds. Note that the
function J{w,y) has some definition domain deter-
mined by the condition y2> —% and using the approxi-
mate relation (2.4). As a result, the non-dimensional
frequency w, can vary from zero to some value, deter-
mined by y. We shall omit the relevant analysis but
note that as a rule the phase velocity of gravity waves
in the equilibrium range in practice satisties ¢>>v, and
thus w,=9/c<1. From this latter inequality it follows
that for 0<y< 7 [the function J{(w,,y) is even with
respect to v if ¢(v) is even with respect to »] and
0<w, &1 the variables w, and v do not leave the
definition domain of the function J(w,,y).

Figs. 3a and 3b show the results of numerical calcu-
lations of the correction function J(w,,y) for three
model angular distribution functions ¢(v):

pr(p)=08()
()_{w, at |v] <n/2
N Y at [r[>x/2b  (@7)
2/wcost, at |v|<%/2
sas(”):{
0, at |v|>m/2
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F16. 3a. Correction functions J, for characteristic values of the angle y. Solid
curves represent the function J, and dashed curves Js.
The condition w,<<1 allows expansion of the function of functions ¢.(v) in (4.7). Calculations give
r(y) in (4.5) into a Taylor series in the neighborhood 9 3
of y=0. As a result, we then obtain correction functions pr=cosy, pa=—cosy, py=——cosy, (412)
Jn(w,yy) in the form of simple algebraic expressions ™ 3
which correspond to angular distributions (4.7). Re- gi=cos¥y, ¢:=%, @=3cosdy+i  (4.13)

stricting the expressions to terms quadratic in y, we
have

r(y)=1+3y+»" (4.8)
Substituting (4.8) into (4.5) we obtain
]n(wvﬁ’) =1+ 3inv+ Ga?, (4.9)
where
p,.=/ cos(v—7) ¢ (v)dv, (4.10)
Qn‘—‘/ cos?(v —v) on(v)dv, (4.11)

and the subscript =1, 2, 3 corresponds to subscripts

Eq. (4.9) with coefficients (4.12) and (4.13) corresponds
well enough to the results of direct numerical calcula-
tions through formulas (4.5)-(4.7); these results are
illustrated in Fig. 3.

As follows from the curves of Fig. 3, the sea current
effect is enhanced when the angular distribution nar-
rows. When cosy>0, a trend is seen in the (4.4) spec-
trum toward an apparent increase of the exponent
(n>-5), and when cosy<O there is a decrease
(n< —5). Actually the equilibrium frequency spectrum
in the case of currents is not, according to (4.4), de-
scribed by the power law.

It should be noted that the role of onshore- oﬁ’shore
currents in a shallow sea can be quite important and
deviations from (1.2) will be associated with the com-
bined influence of finite depth and currents.

Thus, in the extreme case of a very shallow sea, if we
assume instead of (4.1) that w=w(k,p)= (gh)k+ kv
Xcos(v—'y), then for the case v< (gk)? instead of (4.4)
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we get
?
S(w)=thw‘3]h|: -, 'y], (4.14)
(gh)?
where

J;.l:(g:);_, 7]= /— (1+2)20)dy,  (4.15)

and x=1v(gh)~* cos(v—7). For the angular distribution
functions (4.7) we can calculate integrals (4.15) analyti-
cally. We omit the calculations associated with it and
only note that J, does not depend on frequency and
thus the spectrum (4.14) is a power function and is
proportional to w3 At »=0 the spectrum (4.14) trans-
forms into (3.6).

5. Equilibrium range in frequency spectra of wind-
generated sea waves in the case of random
dispersion relation parameters

In this section, the discussion centers on the effects
of large-scale components of surface waves on the form
of spectra in the equilibrium range. Considering the
shape of the equilibrium frequency spectrum S(w) and
taking into account the random nature of the parame-
ters @ and ¥ in the dispersion relation (2.6), we limit
the discussion here by assuming that the spatial spec-
trum of wind-generated sea in the equilibrium range is
still described by (1.1).

It is evident that the random parameters ¢ and ¥
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in (2.6) are not independent because they are related
to one another by a corresponding system of dynamic
equations for large-scale components of surface sea
waves. A simple approximation of the relations @()
and ¥({), acceptable within the present analysis, can
be obtained easily if we use the empirical fact that the
large-scale components’ spectrum is narrow. Indeed, due
to this feature we can assume an approximation
§=A4° cos(k’x—w'+¢"), where A°=A%x,t) and ¢=
Y(x,?) are slowly varying random functions with scales
N=2x/k and °=2n/u’. Neglecting then the depen-
dence of these slowly-varying variables on x and ¢ in the
set of linearized hydrodynamical equations for {, we
obtain
ko
a©)=—"%, ¢ )=w°k-0°, (5.1)
where in the selected approximation the direction of
the vector k° is constant.
Substituting ¥ from (5.1) into (2.6) we obtain
w=wky)=[(g+a)kP+EiW cos(v—v2), (5.2)
where v° is a fixed angle between the propagation direc-
tion of a long-wave component of surface waves and
that of the mean wind velocity, and W =w". Compari-
son of (5.2) and (4.1) demonstrates that the expression
for the conditional frequency spectrum S(w) in (2.7)
can be derived by substituting g+ a for g, W for v, and
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Fi16. 3b. Correction function J; for characteristic values of the angle .
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9° for v in (4.4). Thus

S(w)=Bgw] (@,7"), (5.3)
where
- a\?
J (@70 = (1+—> T@), (5.4)
4
W o 7
g 2T (5.5)
gta o®1-73

Here the right side of (5.5) is obtained by utilizing
(5.1), and 7= —a/g=k". Substituting (5.3) into (2.7)
we arrive at

S{(w) =B 5T (w,7%),

T (w,7°) = (J (@,7))- (6.7)

The function J°(w,y®) can be espressed through mo-
ments of the random function § if J (w,’yo) is expanded
into a power series in 4. An expression for J%(w,y") to
the accuracy of the second moment can be derived if in
(5.4) we use the approximate expression (4.9) for
J(@,7%). Substitution of (4.9) into (5.4) gives

jn (&,’,YO) = 1+P"*k0§:+ qn* (k()g'-)2’

(5.6)

where

(5.8)
where

1) © w\?2
P =3p——2, ¢.*= 1—3pn—~+qn<~> . (5.9
w® w? w?

As earlier, p, and ¢, are given by (4.10) and (4.11)

where v is replaced by 9° and the subscript # corre-

sponds to the subscripts of the angular distribution

functions ¢.(v) in (4.7). Averaging (5.8) we obtain
(@)

Twy")= 14" —, (5.10)
g

where <_2> (A% 0)2
= (7%= (k°)2<s“ = .

(5.11)

The function ¢.*=¢,*(w/o’y%) in (5.10) becomes
equal to unity in the particular case in which short
waves are two-dimensional (#=1) and the propagation
direction of long-wave perturbations is normal to that
of short waves (y9=m/2). In this case it indeed follows
from (4.12) and (4.13) that p;=¢1=0; hence, ¢g*=1.
Then the frequency spectrum in the equilibrium range
is described by*

(@
S(w)=ﬁg2w_5(1+—-2—>. (5.12)
g
Eq. (5.12) may also be considered as a consequence of
dispersion relations (2.6) or (5.2) when the Doppler
effect is omitted from calculations. It is evident that
in the case under discussion large-scale components of

4+ Eq. (5.12) has been derived earlier by Zaslavskii and Kitai-
gorodskii (1971) by directly stating a more precise definition of
Phillips’ statement for the frequency spectrum S(w), by incorpo-
rating fluctuations of the basic parameter §=g-+4.
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surface sea waves do not change the functional relation
of the frequency spectrum to frequency in the equilib-
rium range [S(w) «w™5] but cancel universality of the
proportionality coefficient in the Phillips law (1.2).
However, since the ratio (a?)/g?, according to (5.11),
is proportional to the square of the slope of large-
scale perturbation, this correction is practically always
very small.

In other cases this correction may be more signifi-
cant. For example, according to (5.9), (4.12) and (4.13),
variation of the ratio w/w® within the range ~ (1-10)
results in variation of ¢,* within the range ~ (—1-150);
with (4%%)~0.1, it leads to variation of J°(w,y’) within
the range ~ (1-1.75).

6. Conclusions

In the last two Sections the presence of the basic cur-
rent and large-scale components of surface waves have
been accounted for only in terms of the dispersion rela-
tion for short gravity waves, whose spatial spectrum
was described by a universal law [Eq. (1.1)]. Actually,
as was shown recently by Banner and Phillips (1974)
and Phillips and Banner (1974), when long waves move
across the surface there is a nonlinear augmentation of
the surface drift (with shear) near the long-wave crests
so that short waves, superimposed on the longer ones,
can attain a reduced value of maximum amplitude at
the point of incipient breaking. It is obvious that this
dynamical effect is in clear contradiction with the initial
statement of Phillips’ hypothesis on spatial equilibrium
spectra of the type (1.1), because it assumes indepen-
dence of ¥(k) from large-scale components of surface
sea waves and wind drift. This fact, together with the
effect of the strongly intermittent nature of short-wave
components (see Zaslavskii and Kitaigorodskii, 1972),
must be taken into account if one wishes to obtain a
more complete and detailed description of the high-
frequency parts of the wind-generated gravity wave
spectrum. We hope to discuss some of the above-
mentioned questions in the another paper.

APPENDIX
The Relationships between ¥ (k) and S(w)

The general structure of the relationships between
¥(k) and the frequency-directional spectrum F(w,v)
defined for positive and negative frequencies w can be
derived as follows:

F(w,v)‘: /w (k) kS w—cw(k,v) ]dk

_ fo (LD I:ai;‘z—y ) k=ki(w,,)]—l

X 8[k—ki(w,y) 1dk

_5 I:\I!(k,v)‘ (A1)

=1

G(k,V):Ilc=ki(m,v)’
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¥ic. 4. Sketch of the dispersion curve (4.1), a, and domains of integrations in the case of 0 y<#/2, b-d.

where k=k;(w,v) are roots of equation w=w(k,y) and
d Is the Dirac delta function. Note that the number of
roots N, and hence the number of terms of the sums
in (A1), depends on a given fixed combination of w and
v. As a consequence, each term in (A1) has some do-
main of definition A; in the (w,») plane and must be
considered as zero for (w,»)&A;. The domains A; de-
pend upon the particular type of dispersion relation.

The frequency spectrum defined for positive and
negative frequencies w can be defined then by the
relation

8(u)= / Plop)iv=S)+5-(=a),  (A2)

with the normalization condition

/w | So=@)

where St (w) =0 for w<0 and S~ (w)=0 for w>0. Then
the frequency spectrum defined only for positive fre-
quencies (0Sw< @) is

S(w) =5+ (w)+5"(v), (A3)

with normalization conditions as in (2.3). In the case of
one-valued k(w,») defined for 0Lw<®, we have
N=1, 5~ (w)=0, and relations (A1)-(A3) give (2.4).
The procedure of finding S{w) depends on the par-
ticular type of dispersion relation under consideration.
As an important example we shall consider the disper-

sion relation (4.1). It is easy to see from (4.1) that the
cos(v—v) <0 the function %(w,») is a multiple function
of w and has two branches &% (w,v) and £k~ (w,»):

w? (1+4y)iF17?
Bon) =250, 0= |, (a4

g 2y
where y and w, have the same meanings as in (4.2). The
dispersion curve (4.1) is illustrated qualitatively in Fig.
4a, If cos(v—~v)<0 then the function w(k,») has a
maximum w, ()= —g/[4vcos(v—y)] for k=k,(v)=
g/[4+* cos?(v—v)]. The left-hand part (relative to the
maximum of the curve corresponds to At (0K k<%,
0Lwlwn) and right-hand part to A (kaShk<eo,
wn,Sw<—w). Transition to negative frequencies
occurs at k.(v)=g/[+* cos*(v—v)]. Both functions &+
and %~ are defined for y> —%.

Because Eq. (4.1) has two roots £+ and &~ for the

case cos(v—v) <0, corresponding to V=2 in (A1), then

p(w)”>=p+(wyv)+p_(wav); (AS)
where

Fi(w,y) =[\I, (kyy)k/G(kyV>]k=k *(w.)e

As was pointed out, each term in (A1) has its domain of
definition in the (w,») plane. To find these domains it
must be remembered that

/ /‘I’(k,v)kdkdv=/ ]ﬁ(w,u)dwdv, (A6)
D a
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where D={—n<{v<m, 0<k<x}. The domain D is
divided by the curve £, (») into a number of domains
D; which, in the (w,») plane, correspond to domains of
definition A; of the functions &+ and %~. This division,
and hence the transformation, of D in A depends on
the value of the angle vy. It is convenient to consider
separately two cases: 1) 0<y<#/2 and 2) m/2<y< 7.

For 0<y< /2 the domain D can be divided into
domains D,, D, and D; (Fig. 4b) and each of those
domains in the (k,») plane corresponds to the domains
Ay, A; and A; in the (w,v) plane presented in Figs. 4c.
and 4d. Such transformation corresponds to F+in (AS)
defined in A, and zero for (w,v)& A,, and F- defined in
A; and A;, while zero for (w,r)& Ay, As.

For sake of simplicity of the analysis and to derive
a simple analytical formula for S(w), we suppose that
the velocity » in (4.1) is so small that w,~v! is larger
than upper limit o* of equilibrium range. Then k,~v2
is larger than upper limit #* in the spectrum ¥ (%,»).
But because /- is determined by the values 2> %, (see
Fig. 4) and taking into account that ¥~%~* we can
neglect the term F~ in the sum (AS5). Thus (w,v)
~F*(w,) for —r<r<rand w, S w< o*, where w, is the
lower limit of the equlhbnum range. T. his means that
relation (2.4) is approximately valid with k=k%(w,»).
The case m/2<v< 7 can be treated in a similar way.

REFERENCES

Banner, M. L., and O. M. Phillips, 1974: On the incipient
breaking of small scale waves. J. Fluid Mech., 65, 647-656.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 5

Druet, Cz., S. Massel and R. Zeidler, 1969: Investigations in
wind-wave structure in the surf zone, by method of spectral
characteristics. Ins. Bud. Wod. Pol. Akad. Nauk-Gdansk
Roz. Hydrotech.-Zeszyt, No. 23, 71-80.

Dreyer, A. A, 1973 : Study of wind-generated seawaves in shallow
sea. Thesis, USSR Academy of Sciences, Shirshov Institute
of Oceanology.

Ewing, I. A., 1969: Some measurements of the directional wave
spectrum. J. Marine Res., 27, 163-171.

Kakinuma, T., 1967: On wave observations off Hiezu coast and
Takahama coast. Disaster Pre. Res. Inst. Kyoto Univ., Bull.,
No. 10B, 251-272.

Krilov, Yu. M., V. V. Kuznetsov and S. S. Strekalov, 1973:
Systems of wind-generated wave fields. Dokl. Akad. Nauk
SSSR, 208, 958-961.

Longuet-Higgins, M. S., D. E. Cartwright and N. D. Smith,
1963 : Observations of the directional spectrum of sea waves
using the motions of a floating buoy. Ocean Wave Specira,
Englewood Cliffs, N. Y., Prentice-Hall, Inc., 111-136.

Monin, A. S., and A. M. Yaglom, 1966: Statistical Hydromechanics.
Moscow, Nauka, Part 2, Section 25.

Phillips, O. M., 1958: The equilibrium range in the spectrum of
wind-generated waves. J. Fluid Mech., 4, 426-434.

——, 1966: The Dynamics of Upper Ocean. Cambridge University
Press, 261 pp.

——, and M. L. Banner, 1974: Wave breaking in the presence of
wind drift and swell. J. Fluid Mech., 66, 625~640.

Zaslavskii, M. M., and S. A. Kitaigorodskii, 1971 : On equilibrium
range in the spectrum of wind-generated surface gravity
waves. Izv. Akad. Nauk, SSSR, Fiz. Atmos. Okeana, 7, No. 3.

—, and , 1972 : Intermittent pattern effects in the equilib-
rium range of growing wind-generated sea. Izv. Akad. Nauk
SSSR, Fiz. Atmos. Okeana, 5, No. 11.




