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ABSTRACT

It is shown that an exact analog of Kolmogoroff’s spectrum in a random field of weakly nonlinear surface
gravity waves gives a spectral form for frequency spectra S(w) ~ ™ in close agreement with the results of
recent observational studies. The proposed theory also indicates the existence of a “transitional” range of
wavenumbers (frequencies) where the deviation from Kolmogoroff’s equilibrium is due to gravitational
instability (wave breaking). Because of this it is suggested that the equilibrium form for the spectrum of wind-
generated waves has two asymptotic regimes: Kolmogoroff ’s and Phillips’ type of equilibrium with a relatively
rapid transition from the first to the second. The experimental data favor such an interpretation.

1. Introduction

Since Phillips’ fundamental contribution to the
concept of the equilibrium range in the spectrum of
wind-generated waves (Phillips, 1958), numerous ex-
perimental studies have demonstrated quite clearly
that a substantial portion of the wind-wave spectrum
above the frequency of the spectral peak is saturated
and in an equilibrium with the local wind. However,
questions concerning the dynamical processes in the
wind-wave field that are responsible for such equi-
librium and what is the precise form of a spectrum
in equilibrium conditions, are still the subject of se-
rious controversies. The three latest observational
studies (Forristall, 1981; Kahma, 1981a, Donelan et
al., 1982) have demonstrated very convincingly sys-
tematic deviations from Phillips’ —5 power law in the
range of frequencies just above the peak frequency
of the spectrum S(w). The frequency spectrum there
has a wind-dependent form S(w) oc U3 "w™ (U, is
the wind speed) with values of n close to 4.0. The
latter value leads to an equilibrium wind-dependent
frequency spectrum S(w) oc gUw™* (Where g is grav-
ity). This form of equilibrium in wind-wave spectra
was first suggested by Kitaigorodskii (1962) as a pos-
sible consequence of Kolmogoroff’s type of energy
cascade from low to high frequencies, and was derived
later on the basis of the calculation of the dynamical
resonant interactions between weakly nonlinear sur-
face gravity deep-water waves by Zaharoff and Filo-
nenko (1966). The very fact that there can exist an
exact analog of Kolmogoroff’s spectra in a random
wave field which gives a spectral form in qualitative
agreement with observations indicates the impor-
tance of nonlinear interaction between wave com-
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ponents in the formation of the equilibrium interval
of the steady-state wave spectra in it. Therefore, the
concept of an equilibrium range based solely on a
consideration of the process of wave breaking due to
gravitational instability (Phillips, 1958) can be gen-
eralized by taking into account the fact that the
growth of shorter waves on the rear face of the spec-
trum (limited by breaking) may not be due to direct
energy input from wind, but rather is due to energy
flux from the lower wavenumbers.

In the present paper, I attempt to incorporate this
factor in determining the form of frequency spectra
in equilibrium range by using an approach similar to
the theory of locally-isotropic three-dimensional tur-
bulence: namely by postulating the existence of Kol-
mogoroff’s type of equilibrium in the spatial statis-
tical characteristics of a random wave field and then
determining the “internal” scale for surface gravity
waves, at which deviations from the energy cascade
mechanism can occur due to gravitational instability
(wave breaking).

2. The concept of a Kolmogoroff’s equilibrium range
in wind-wave spectra

If the turbulent wind continues to blow for a suf-
ficiently long time and if the fetch is also sufficiently
large, the wave amplitudes continue to increase, so
that ultimately nonlinear interactions among the
Fourier components of the wave field become in-
creasingly important. The pioneering calculations by
Hasselmann et al. (1973) have demonstrated that the
shape of the wind-wave spectrum is determined pri-
marily by the nonlinear energy transfer (due to res-
onant wave-wave interactions) from the central re-
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gion of the spectrum to both shorter and longer wave
components. We will here be mostly interested in the
evolution of spectral components at frequencies
higher than those of the peak, on the rear face of the
spectrum of wind waves. To find an analogy with
Kolmogoroff’s spectrum for a field of wind-generated
surface gravity waves we must assume that the regions
(in Fourier space) of wave “generation” by wind and
“dissipation” are separated. Since in such situations
we have equations for the evaluation of the spectral
energy density of weakly nonlinear dispersive waves,
derived from first principles, it is important to find
out if it is possible for nonlinear interactions between
different wave modes to generate an energy cascade
through the spectrum as in Kolmogoroff’s view of
turbulence. In other words, the question is, can wave
spectra in certain wavenumber intervals be deter-
mined by energy flux from low to high wavenumbers
(frequencies) and if it can, then what form must wave
spectra have in such a region? To obtain an answer
we must consider the so-called wave kinetic equation
(Hasselmann, 1968) and in particular its stationary
solutions. It is convenient to write this equation in
terms of spectral density of wave action per unit mass
N(k) defined as (Phillips, 1977)
N(K) = &Fk) .

Ox

ey

In (1) oy is frequency of free surface gravity waves
[in deep water o, = o(k) = (gk)'*} and F(k) nonsym-
metrical wavenumber spectrum, normalized as

[ axrao = Foo, @

where {(x, ?) is surface displacement. The equation
for N(k) for weakly nonlinear surface gravity waves
was originally derived by Hasselmann (1962), and
without “generation” and “dissipation” terms, it can
be written for a statistically homogeneous wave field
as

ON(k)

ot

where so-called collision integral I for four resonantly
interacting gravity waves has the form (Phillips, 1977)

I'= Ik)

1, 3

= fff |O% k1 s s { IN(K) + N(k)IN (k)N (k3)
— [N(ky) + N(ka)]N(kN(K)}
X B(k + kl - kz - k})é(ﬂ'k + Ok, — Ok, — Uk;)

X dk, dk, dk;, (4)

where the coupling coefficient Qy x, x,x, is @ compli-
cated homogeneous function of the wavenumbers k,,
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ks, k3 and k, respectively, of order |k|? [for details see
the derivation of (4) and the expressions for Q in
Hasselmann (1968) and West (1981)].

The intriguing question in the analysis of (4) is
whether the stationary distribution corresponding to
Kolmogoroff’s inertial subrange, i.e., the conditions
for a predominantly /ocal (in wavenumber space) en-
ergy transfer, exists for dispersive nonlinear surface
gravity waves. The necessary (but not sufficient) con-
dition for this is localness of I[N(k)], such that the
coupling coefficient Qyy, i, x, rapidly diminishes for
k> ki, ky, ks or k < ky, ky, k. If this is so, we can,
following Kolmogoroff’s idea, introduce the energy

- transfer rate through the energy spectrum gF(k) and

assume that there exists a certain range of wavenum-
bers k in the wind—wave spectrum where this energy
flux is in essence constant (inertial subrange). It is
convenient for further discussion to deal with average
(over all directions of wave component propagation
v) of F(k) and N(k), defined as

Fo= [ Fuoay = [ Roav, )

m=fN®M=fthww. 6)

For the isotropic dispersion relationship oy = o(k)

F
£k 7
Ok

Nk=

Now F, and N, characterize the energy distribution
as a function of wavenumber modulus [k| = k. The
condition of constant energy flux «(k) through the
spectra F; can be written as

e(k) = gFik*7,™' = Nyork?r,”' = constant = ¢, (8)

where 7, is a characteristic time of the nonlinear in-
teractions in a narrow interval of wavenumbers
around [k| = k. From Eq. (4) we can easily find an
estimate of this quantity

f Iay

-1 . Yy _ 2k

Tk A N ()

For o, = (gk)'”? the contribution from §-functions in

I, can be estimated and the scaling of I, as |Q?
~ k® will give us

N 3 kl9/2
I ~ QhiN kg™ = _kgﬁz_ > (10)
which will lead to the following estimate of 7, !
k19/2 N, 2
TR —gl—ﬂL = Flg"k' 1, (1)

Substituting (11)in (8) we finally receive the analog
of Kolmogoroff’s energy spectra for deep-water sur-
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face waves, 1.e.,

gFy =~ ¢'Pg' 7k (12)
or
Fk ~ 601/3g_1/2k_3'5.

(13)

The corresponding frequency spectra.S(w) can be im-
mediately found from F, if the dispersive relationship
is isotropic (Kitaigorodskii et al., 1975):

_ kFy
S = 5o (19
ak k=w?/g
It follows from (13), (14) that .
S(w) ~ &'"Pgw™. (15)

It was shown by Zaharoff and Filonenko (1966) that
frequency spectra S(w) ~ »™* for an isotropic field
of weakly nonlinear waves really is an exact stationary
solution of the kinetic equation (4) and the collision
integral for S(w) ~ w™ converges both for w — o
and « — 0. The equations [(12), (13), (15)] corre-
spond to the idealized situation when the energy input
from the wind is concentrated at w = k = 0 and the
energy flux ¢ resulting from nonlinear interactions
is toward the dissipation region at w = k = oo0. Con-
sequently, Egs. (12) and (15) can be considered as an
exact analog of Kolmogoroff’s spectra for so-called
“weak turbulence” in a random field of weakly non-
linear surface gravity waves. However, an open ques-
tion remains: what are the properties of the angular
energy distribution; i.e., the anisotropy in the wave-

number spectrum F(k) in the above formulation,

when only directionally averaged values F,and N, are
used.

The applicability of Kolmogoroff’s energy spectra
(12), (15) to the description of the statistical charac-
teristics of a wind-generated wave field is not at all
obvious. First of all, even if the energy cascade struc-
ture in two-dimensional wavenumber space of sur-
face waves is similar to those of three-dimensional
turbulence, the wave spectrum F(k) is not only an-
isotropic, but the observed angular distribution is not
quite k-independent [it broadens noticeably toward
higher wavenumbers (frequencies)].

However, it is possible that because a k-indepen-
dent form of the angular distribution may still be a
good approximation for the energy-containing, rear
face of wave spectra, the deviations from Kolmogo-
roff’s equilibrium spectra (12), (15) of averaged (over
all angles v) values of N(k) and F(k), i.e., N, and F;,
will be insignificant.

Another problem of applying (12), (15) to observed
spectra is related to the legitimacy of the assumption
about the separation of the energy input and dissi-
pation regions in the wavenumber or frequency do-
main. In other words, the unresolved question, at
least theoretically, is: what are realistic values for the
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low and high boundaries (in wavenumber and fre-
quency) of Kolmogoroff’s subrange (12), (15) in
wind-wave spectra? From the observational view
point we can only say that the low-frequency bound-
ary of Kolmogoroff’s equilibrium subrange must lie
above the peak frequency w,,. This, however, does
not mean that the direct atmospheric forcing is im-
portant only in the region Aw with Aw ~ w,,. There-
fore a more realistic assumption about the dominance
of the energy transfer rate ¢, in a certain frequency
range w > w,, over the direct wind input must be
based on an inequality of the type

k> Kwp), (16)

where S, characterizes the spectral energy input from

Ik > Sk for

- the wind (again averaging over all angles v). If we

assume that

Sk = (TN, (17)
then using (9), we can rewrite (16) in the form
T > Tk, (18)

where 7} characterise the growth rate due only to at-
mospheric forcing. According to (18) the formation
of an energy cascade due to the nonlinear interactions
between Fourier-components of wave field take place
only after their initial growth due to energy input
from wind. Therefore, it seems to me that (16), or
(18), is a reasonable condition for the dominance of
the energy cascade over a certain range of wavenum-
bers k > k(w,). If we use the formulas (11), (13), the
conditions (16), (18) can also be written in the form

€ 2/3k3/2

i:gﬁ—> @)™ (19)
Any attempts to estimate 7}, lead us into a very spec-
ulative area of the theory of wind-wave generation.
Therefore, let us assume for the moment that for large
enough fetch and duration of wind, ¢, does not vary
with time (or fetch) significantly. That means that
Kolmogoroff’s type of equilibrium [(12), (15)] is time
(or fetch) independent. Then the values of 7§ can be
found from empirical growth rates of the spectral
density S(w) for given w. Such data are usually pre-
sented in the form

k'?U, Uw U,
g” g )

where s is the dimensionless growth rate of wave com-
ponents with different k, w or phase velocity ¢. Then
(19) can be rewritten, for example, as

ok (KU,
g > s( g'”? )

The compilation of the empirical data on the vari-
ability of s (see, for example, Kahma, 1981a) clearly
shows that at least in the range of

(thow) ' = S(

(20)
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kK'?u, U, )
g'l/z = —c‘ ~ 1.0+ 3.0

there are no notable variations in the values of s with
k and so we take s = constant. This suggests that
according to (20) with § =~ constant we can always
find a range of high enough wavenumbers or fre-
quencies on the rear face of the spectrum (w > wp,),
where the conditions (16), (18)—(20) are justified. In
such a case we can simply neglect the effect of direct
atmospheric forcing in our formation of the equilib-
rium form of the wave spectra at w > w,,,. Of course,
it is not true for all ranges of frequencies up to w
= oo, but we show later that it is not a probably
unreasonable hypothesis if applied to the description
of the spectral components of the wind-wave field
whose phase velocities ¢ = go™! < U,, where Uy is
the friction velocity in the atmospheric surface layer.
Evidently at frequencies wU,g™! = 1 the direct in-
teraction with atmospheric boundary layer is very
important. However, because U,/U, =~ 1/30 (where
U, is the mean wind speed), we still have broad
enough range of nondimensional frequencies

ﬁ% . (_~me“<%< 30),
4 4 g

where, it seems to me, the search for Kolmogoroff’s
type of saturation regime is well justified and the low
wavenumber and frequency boundaries of the equi-
librium forms of wave spectra (12), (15) can be de-
termined empirically. Unfortunately, there is one im-
portant circumstance which can make the task dif-
ficult. Since the nonlinear four wave—-wave interactions
described by the wave kinetic equation (3, 4) conserve
both energy and action [momentum conservation is
nontrivial only for an anisotropic wave spectrum
F(k)] one can apply Kolmogoroff’s argument (8) also
to the action flux. Such a situation then will have a
certain analogy with two-dimensional turbulence,
which conserves both energy and enstropy. If instead
of e(k) in (8), we introduce the action flux ey(k) de-
fined as

en(k) = Nik?r, ! = constant = ey, @n

then by using the scaling of the collision integral (10)
we find

Nk ~ eNl/:igl/6k~23/6, (22)

which leads to

Fk ~ eN'/3g_”3k“ 10/3. (23)
According to (14) this will give us the frequency spec-
trum S(w)

S(w) =~ ex'go™""?, (24)

in striking similarity in the power law for S(w) with
Kolmogoroff’s spectrum (15), based on an energy
cascade [the subrange based on constant action flux
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we will not call a Kolmogoroff’s type of equilibrium,
leaving the latter name only for the constant energy
flux spectrum (15)]. _

Egs. (22)-(24), however, correspond to an idealized
situation, completely different from one leading to
the ™ law (15), because the energy input from the
wind here must be concentrated at w = k = oo and
the action flux ey due to nonlinear interactions is
directed to w = k = 0, where supposedly some un-
known low-frequency dissipation mechanism can
occur. From our point of view it is much more dif-
ficult to identify a broad enough range of frequencies
for this type of statistical equilibrium on the rear face
of the spectra of wind-generated waves, than to find
a Koimogoroff subrange (15). First of all, it is worth-
while to mention that the conservation of wave action
is valid only in the case of weak nonlinear effects
involving sets of four wavenumbers and in surface
gravity waves the processes which include five wave—
wave interactions will not conserve wave action.
Therefore the Kolmogoroff type of equilibrium, based
on energy conservation is based on more general
physical arguments than (21). This is especially im-
portant for the general theory of the equilibrium
range in the spectrum of wind-generated waves,
which we propose in the next section, because it will
be demonstrated there that nonlinear effects for high
enough wavenumbers and frequencies are no longer
weak and the simple scaling (10) of the wave kinetic
equation in the form (3), (4) can be irrelevant for the
description of the high-frequency part of S(w).

Second, in the framework of a constant action flux
theory, it is really difficult to find a representative

" physical mechanism for the sink of wave action, if

we neglect the effects of nonstationarity and inho-
mogeneity. The numerical calculations (Hasselman
et al., 1973) have demonstrated convincingly enough
that the energy flux due to nonlinear interactions
from the region of the peak toward the high frequen-
cies plays a very important role in maintaining the
relatively narrow one-peak frequency spectrum S(w).
That means that at least for fetch-limited wave growth
the action flux can be basically also directed from the
peak toward higher frequencies. Even though one can
imagine a very idealized situation, when the direct
energy input from the wind is concentrated some-
where in the middle of the rear face of the energy-
containing part of S(w), say at the region Aw® ~ o*
> w,y, it is very unlikely to find two asymptotic forms
of energy spectra [(24), (15)] to describe correspond-
ingly the regions w,, < w < w; and w > w; in the rather
narrow range of frequencies which covers the energy-
containing part of the rear face of S(w). Therefore,
we concentrate our attention in this paper on those
situations when the importance of the spectral energy
influx from wind is certainly weighted toward the
smaller values of k (or w), and the only realistic cas-
cade mechanism in the main part of the rear face of
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the spectrum S(w) is associated with energy flux ¢
toward higher frequencies. Then an interesting and
a very important question is what are the typical cut-
off wavenumbers and frequencies for Kolmogoroft’s
subrange (12), (15) in the spectra of wind waves. If
we disregard viscous effects then the primary mech-
anism for “dissipation” of wave energy is gravita-
tional instability, which ultimately leads to wave
breaking. A characteristic property of such breaking
is the occurrence of fairly sharp wave crests with in-
termittent patches of foaming, which seem to develop
when the crests no longer maintain their attachment
to the remainder of the water (Phillips, 1958). There-
fore, instead of kinematic viscosity in Kolmogoroff’s
three-dimensional turbulence, the governing param-
eter describing the “dissipation” of wave energy in
“weak turbulence” due to nonlinear resonant wave-
interactions in two-dimensional wavenumber space
must be gravity g. The process of breaking takes place
according to Phillips (1958) when downward accel-
eration of particles can reach (or exceed) g. The typ-
ical acceleration a, = [{, kdk]‘/ 2 dssociated with an en-
ergy transfer rate ¢, for a given range of wavenumbers
Ak = k can be estimated as

a; = adkie) ~ e’k (25)

and the condition of “breaking” can be written as
a &’k
" ~

It follows from (25), (26) that cut-off wavenumber &,
for Kolmogoroff’s subrange in wave field is

~ constant ~ 1.

ke ~ 5=
PRTEN

27

Thus the analog of Kolmogoroff’s internal scale in
three-dimensional turbulence for weakly nonlinear
surface gravity waves will be

&

A P (28)
The correspondmg cutoff frequency w, for deep-water
gravity waves is

g
&3’

= (gkp)'”* ~ (29)

and we can expect (12), (15) to be valid for wave-
numbers and frequencies below &, and wg, respec-
tively, and above k,, and w,, [where K = @2/, Om
being the main peak frequency of the spectra S(w)].
The exact form of the inequalities k,, < k < k, as
well as the proportionality constant in (25)-(29) can
be found only empirically. If we assume that gravi-
tational instability (wave breaking) is the only process
modifying Kolmogoroff’s cascade of energy in a field
of nonlinear surface gravity waves we can now for-

JOURNAL OF PHYSICAL OCEANOGRAPHY

(26) .

VOLUME 13

mulate a general similarity theory for equilibrium
range in the spatial statistical characteristics of wind-
generated gravity waves.

3. The general similarity hypotheses for equilibrium
range in the spatial statistical characteristics of
a wind-wave field

It is important to notice that among three statistical
characteristics of a wave field, i.e., energy, momen-
tum and action density, only the latter is not neces-
sarily conserved in the process of nonlinear wave-
wave interactions in dispersive wave motion. To un-
derline this fact, and to emphasize that all statistical
characteristics of a wave field (not just energy spec-
trum) are determined by energy flux ¢ (but not by
ex), we will apply the similarity arguments first of all
to action density N,. According to the discussion in
the previous section we can now formulate the first
similarity hypothesis as follows: if, in wavenumber
space, we restrict our attention to wavenumbers well
below those associated with capillary ripples and
those directly influenced by viscosity so that

k<kr= (08T k<k =g "2 (30)

where T-surface tension, p,-density and v-kinematic
viscosity are well above those associated with strong
direct energy input from wind (k ~ k, > k,,) so that

k> kn=w,g™, (31

then for sufficiently large fetch and duration of the
wind the values of N, are determined only by the
values of parameters ¢, ¢ and k.

It follows from this hypothesis that

Ni = k™ UkA,), (32)

where ¢ is a nondimensional function of nondimen-
sional wavenumber k = kA, = kep’g ™!

The second similarity hypothesis can be formu-
lated for range of wavenumbers satisfying the in-
equality kA, < 1. In this range of scales, if it exists
and is broad enough, gravitational instability is not
important because wave components do not reach
critical amplitudes to produce breaking, and N; de-
pends only on ¢ and k, so that

{gl/(k)\g) = constant = 4
NK) = Aeg K

— 23,1
)\g—folg

(33)
(34)

where A is an absolute constant. By analogy with
Kolmogoroff’s theory of locally isotropic turbulence
we can expect here that constant A must be close to
unity. It is easy to see that according to (7), (14) this
corresponds to the following expressions for wave
spectra: ' ’

, for kA, <1,

Fk =A€ 173 —1/2k—-3.5’

(3%)

S(w) = ae'Pgw; a=24. (36)
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Finally, the third similarity hypothesis can be for-
mulated following Phillips (1958) theory, according
to which we can assume that for the range of wave-
numbers kX, > 1 the governing parameters are those
that determine the continuity of the wave surface,
and therefore asymptotically N, becomes indepen-
dent of ¢ and will depend only on g and k, so that

W(k\,) = B(k\)™'?  for

(4

ke >kn>1, (37)
k) &-

N, = Bg'?k™*", (38)

where B is an absolute constant. It follows from (7),
(14) that this corresponds to the expressions for wave
spectrum, first suggested by Phillips (1958):

Fi = Bk_4,
S(w) = Bg’w™%, B =2B,

where f is called Phillips’ constant.

There are a few remarks that should be made at
this point. The first is that independence of Ny, Fi
and S(w) from ¢, means that the geometry of the lim-
iting wave configuration near the sharp crests is de-
termined by the condition (26). An increase in ¢
would have the effect of increasing the rate at which
wave crests are passing through the transient limiting
configuration, but should not influence the geometry
of the sharp crests itself (Phillips, 1958). According
to (27) it simply means that the increase in ¢ will
lead to growth of longer wave components up to this
limiting configuration, so that in wavenumber space
the boundary of Phillips’ equilibrium range will move
toward lower wavenumbers with increase of .

The other remark is that according to our third
similarity hypothesis, we consider the asymptotic sit-
uation, corresponding to indefinitely large values of
kX (indefinitely large values of k or indefinitely large
values of ¢;), where the statistical characteristics of
the wave field are determined solely by the process
of wave breaking. Therefore the magnitude of the
spectrum in Phillips’ subrange represents an upper
limit of F, dictated by the requirement of crest at-
tachment. Generally we cannot in principle disregard
the possibility (because of the very nature of asymp-
totic arguments) that for ¢ — oo (A, — 00, kA, —
oo) the values of N, continue to depend, no matter
how slightly, on ¢, so that instead of (37) we have

Ny = Ae' Pk~ (kA) 72, (41)

(39)
(40)

where 2 > p > 0 is some small power exponent.
However it seems that the assumption of indepen-
dence of N from ¢, which leads to Phillips’ spectra
(39), (40) is the most elegant and natural first-order
approximation to describe asymptotic form of wind-
wave spectra in the range of scales where breaking is
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primarily important in limiting the growth of wave
components. In connection with the derivation of
Phillips’ laws (39), (40) it is probably useful to men-
tion another possible interpretation for the transition
from Kolmogoroff’s to Phillips’ subrange. The con-
cept of weak turbulence when nonlinear wave-wave
interactions in a random wave field are so weak that
they do not influence the dispersive properties of
waves, is fundamental in the derivation of the wave
kinetic equation (4). However it is valid only when
the ratio of the characteristic time of nonlinear in-
teractions 7, to the wave period 7 ~ ¢! is much
larger than 1, or the quantity g = (ox7)™! < 1. We
can now estimate u in Kolmogoroff’s subrange using;
(11), (12); the result is

p=(or)™' = NGk ™ ~ &’kg™'.  (42)
It is now clear from (42) that there must exist wave-
number k ~ k, for which interactions are so fast, that
u > 1 and the Kolmogoroff concept, based on scaling
the collision integral (10), can no longer be valid.
Naturally, criteria for the applicability of weak tur-
bulence model (4), (10) for the description of Kol-
mogoroff subrange based on a critical value of u
< po ~ constant =~ 1 coincide with the definition of
the internal scale for Kolmogoroff’s subrange, given
earlier in terms of the critical acceleration (26). It is
interesting to notice that if we substitute (39) into
(11), Phillips’ equilibrium form of the spectra (39)
leads to

u =~ constant ~ B, 43)

and with the empirical value of Phillips’ constant B
~ 1072 gives value of u probably much smaller than
the values of u in the Kolmogoroff subrange (42).
This means that the first (in time history) to develop
due to nonlinear interactions must be Kolmogoroff’s
cascade mechanism, leading to formation of the in-
ertial subrange (34), (35) and (36). The transition
from this subrange to Phillips’ asymototic regime, as
well as structure of Phillips’ subrange by itself, cannot
be described theoretically on the basis of the wave
kinetic equation (4), based solely on resonance four-
wave interaction mechanisms. Therefore, to discover
the very existence of Kolmogoroff’s subrange as well
as the transition between Kolmogoroff’s and Phillips’
subranges, we must look into experimental data. For-
tunately, recent observational studies give enough
material to justify such a search.

4. Experimental evidence for the transition from Kol-
mogoroff ’s to Phillips’ equilibrium in the spectra
of wind-generated deep water surface gravity
waves

It was shown very recently (Forristall, 1981; Kahma,
1981a; Doneland et al., 1982) that in the energy-con-
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taining region of the frequency spectra S(w), i.e., where
spectral levels are greater than say 1% of the peak,
the rear face of the spectrum is well described by the
w~* power law. That, of course, can be considered as
an indication of the existence of Kolmogoroff’s sub-
range (15), (36) in the observed statistical character-
istics of a wind-wave field. However if we want to use
such data for determination of the universal form of
the spectra (32), or the universal constant A(«) in
(33)-(36), we must determine the energy flux ¢, or
relate it in some way or other to such measurable
external parameters as wind speed, fetch and dura-
tion. If the range of frequencies from which energy
is extracted from the wind is distinct from the range
over which energy is lost, and if the internal (viscous)
energy dissipation is negligible in the wave field, then
¢o represents the difference between the rate of gain
of energy from wind (W) and the rate of increase of
energy of those components of the wave system that
are still developing and have not yet attained a sta-
tistical equilibrium state [see (13), (26)]. In the ab-
sence of direct measurements of the atmospheric in-
put we can only use the general energy balance to
estimate ¢, i.e., we assume that

Pwéo = Was | (44)

where W, characterizes the energy flux per unit area
from wind to waves. Because W, is proportional to
p.U;> we can also write

P
€@ — m—a Ua3,

w

(45)

where m is an a priori unknown nondimensional
coefficient in which the ratio W,/p,U> has been in-
corporated, as well as a proportionality factor in (44).

It follows from (45) that the Kolmogoroff type of
equilibrium in the spectrum of wind-generated waves
according to (35), (36) corresponds to a wind-depen-
dent saturation of the form

. Fk = Aug_l/zUak_lss
S(w) = augan_“; a, = 24,,

(46)
(47)

where A4,, «, are nondimensional coeflicients into
which the absolute constant A4, the coeflicient m and
the constant ratio p,/p, are incorporated according

to’
0 1/3
a, = 2A(—£ m) .
Pw

(48)

If in accordance with the similarity hypothesis (Ki-
taigorodskii, 1962, 1981), the spectra of wind waves
in various stages of their development are assumed
to have a similar form, we can write the expression
for S(w) as

S(w) = F(@, X, 1), (49)
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where
ﬂ)=%gf,a=%?
- _ 8% ~_ gl ©0)
X = Uz’ 1= Ua

Within the framework of similarity theory [(49), (50)]
the existence of an equilibrium range in the frequency
spectrum of wind-generated waves means, for suffi-
ciently large fetch and duration, that there are ranges
of frequencies & > @,,(X, t) where the universal func-
tion F of nondimensional frequency & must satisfy
the conditions

F=$(&) = a,@™", (5D
F =)&) = o>, (52)

Here 8 is a universal constant and «,, according to
(48), can depend on X (or ¢) only because p,c/p. U>
= m can be variable.

It is important to underline the fact that according
to (52) the Phillips constant 8 can be accurately de-
termined only with the data in the range of frequencies
w 2 w,. If the transition in frequency spectra between
Kolmogoroff’s (51) and Phillips’ (52) equilibrium is
very sharp in the frequency domain, we can deter-
mine the transitional frequency &, using (51), (52),
i.e., assuming

O < @ < D,

& > @,

Vi(@g) =~ Ya(&), (53)
which leads to
s~t (54)

To illustrate the existence of two asymptotic regimes
[(51), (52)] and the sharp transition between them
[(53), (54)], we analyzed the data collected recently
by Kahma (1981b). These data were based on
waverider buoy measurements in Bothnian Bay and
include the values of S(w) in the narrow and fixed
low-frequency interval between 0.35 and 0.5 Hz. To
avoid the bias due to the over-shooting effect at the
peak frequency only spectra S(w) in which peak fre-
quency w,, was below 0.25 Hz were considered. The
range of variation of 10 min average wind speed U,
for those data, was from 3-18 m s~'. This new set of
data was combined with previously observed spectra
S(w) under exceptionally steady wind conditions
(Kahma, 1981a). Fig. 1 shows the experimentally
determined values of the universal function F(&, X,
{) [see (49)], presented in the form S(@)&°
= F(G>)<I>5~versus & and wind speed. The linear vari-
ation of S{w)®’ with & or with wind speed is evident
up to the values @ ~ 4.0, indicating that for & < 4.0
F(@) = ¢(® ~ «* When the average value of
"F(@®)®> was calculated the corresponding curve in
Fig. 2 very closely follows a straight line, predicted
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FIG. 1. The nondimensional function S(w)a’ [Egs. (49), (50)]_according to ob-
servations (Kahma, 1981a,b). The plus marks show the values of S(w)&* determined
from a fixed frequency interval 0.35-0.5 Hz as a function of wind speed U,. The
scale below (&) shows the dimensionless angular frequency & = wU,g™' which
corresponds to the frequency 0.425 Hz in the middle of this interval. The open
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5:ircles correspond to the data reported by Kahma (1981a).

by Eq. (51) up to a wind speed of 14 m s™! or in terms
of nondimensional frequency wU,g™! up to ~4.0.
The important feature of Figs. 1 and 2 is the notice-
able leveling of the function F(@)&’ at frequencies
& > 4.0. It demonstrates that the behavior of F(&)
here satisfies the relationship (52), when

F(&)&® = constant = 8. (55)

It is important to point out that it follows from Figs.
1 and 2 that the constant value of F(&)&> = 8 for
&> 4.01s close to 1.5 X 1072, Such a value of Phillips
constant is in agreement with the well known deter-
mination of 8, based on experiments of Burling

“where S(w) ~ @~

(1959) and Mitsuyasu (1977). One of the reasons for
the variability of 8 reported by many authors (see for
example, Hasselman et al., 1973) is certainly due to
the fact that the @ > law was applied to the region
4. i.e., for the range of frequencies
@ < &,. Therefore among all the reported values of
B only a few from our point of view can be trusted
as really adequate for the description of the asymp-
totic Phillips law (52) in the range of frequencies @
> @,. One of the consequences of approximating the
whole equilibrium range (51), (52) by a w™> law is the
necessity to describe high-frequency portions of the
spectra S(@) with a variable 3; this was first suggested

0.031
0.02
Swz® ~ -
Z, ~
~
0.0 |-
=
”~
i )] 1 -~
0.0 5.0 10.0 15.0 20.0
U/(m/s)

FIG. 2. The nondimensional function S(w)®® [Egs. (49), (50)). The irregular solid
line is the average of the observations in Fig. 1. The straight solid line is calculated
from Eq. (51) with @, = 4.5 X 1072, The dashed line represents the observations in
the exceptionally steady-state wind conditions reported by Kahma (1981a).
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in the JONSWAP experiment (Hasselmann et al,
1973) using the form 8 = B(X). However, it is possible
to see that if in Kolmogoroff’s subrange w,, < w
< w,, we determine the values of 8, they will not
necessarily show variation with fetch. To prove this
one can calculate the values S(w)&°® by using the data
on S(w) in the region w < w, (in the inertial subrange)
at fixed frequencies over a very narrow range of wind
speeds. Then if a relationship 8 = f(x) was correct
we would expect the ratio S(w;)/g%w,~> = 8; to be fetch
dependent (for constant wind). The experimentally
derived values S(w,)/g%w;”®> = B; for fixed frequency
in the range of frequencies @ < 4.0 for the data in
Fig. 1 is shown in Fig. 3 for a very narrow range of
wind speeds U, ~ 7-9 m s~'. There is no variation
of 8 with fetch x, even though the values of 8 ~ 1
X 1072 are different from those derived from the range
of frequencies & > &, (where § ~ 1.5 X 1072).
According to Figs. 1 and 2 the value of «, in Kol-
mogoroff’s spectra (51) is found to be 4.4 X 1073,
which is practically equal to the values of a, reported
by Kahma (1981a) in his previous experiments, and
also very close to the value of «, calculated by For-
ristall (1981), where «, was 4.5 X 1073, The results
reported in Kahma (1981a,b) and Forristall (1981),
as well as the data presented in Figs. 1-3 give, from
our point of view, strong support to the idea that
variability of high-frequency parts of the wave spec-
trum can be explained by equilibrium range theory,
which includes the existence of both an inertial sub-
range where S(w) = a,»~* and Phillips’ subrange,
where S(w) = B& 3. However, the existence of a rel-
atively sharp transition between the two at the tran-
sitional frequency &, is still not well documented
[according to Forristall (1981) and Kahma (1981a,b)]
@y = wU,87" = 4.0-5.0). Very recently Donelan ez
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al. (1982) also demonstrated that in the “energy-con-
taining” region of the spectrum S(w), i.e., for spectral
levels greater than 1% of the peak, the rear face of the
spectrum S(w) is well described by w™* power law. As
an illustration of this we present their results in Fig.
4, where the spectra S(w) have been multiplied by
™ and normalized by the average level of the spec-
tral estimates multiplied by «* in the frequency region
1.5w,, < w > 3.0w,,. It is clear that an w™* power law
is a good description of the rear face of the spectrum
in the energy-containing region (the comparison with
w™> and w3 power laws are also shown in Fig. 4).
These data cover wide ranges of the ratio U,/C,,
= U,w./g = @, based on both laboratory and field
experiments. It can be seen from Fig. 4 that for the
highest frequency w ~ 3w,, the field data correspond
to the range of nondimensional frequencies &
= wlU,/g == 3.0 + 15.0 and we still don’t observe the
transition to the w™> region. However it must not be
forgotten that the establishment of a power law ap-
propriate to the rear face of the wave spectrum is
often troubled by the possibility of Doppler shifting
of the spectral estimates by currents and longwave
components (Kitaigorodskii et al., 1975). According
to the theory presented in Section 3, there must be
a transition from k=33 to k™ region in wave-number
spectrum Fj.. If such a transition really exists at high
enough wavenumbers the behavior of Fy is k™ rather
than k=33, Without Doppler shifting by the wind drift
current (in the direction of the mean wind), we must
expect for high enough values of w, a frequency spec-
trum S(w) ~ w>. The spectra in Fig. 4 do not indicate
the existence of the w™> region, which possibly means
that due to Doppler shifting we will have a tendency
for smaller (than w™>) slope of the rear face of S(w),
even though we are already in the region in wave-

0.03
0.02f
Sw)@® +
b e *
+
ootk IT ., T o ¥ i +
% + + +
j - 1
0.0 100.0 200.0
X/km

FiG. 3. The dependence of nondimensional function S(w)@ on the fetch x for
fixed frequency &; < 4.0 in a narrow range of wind speeds U, (between 7 and

9ms).
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FIG. 4. Frequency spectra X «* and normalized by the rear face [w*S(w)],s which is the average of w*S(w) in the
region 1.5 w,, < w < 3w,,. The lines corresponding to ™ and & are also shown (from Donelan et al., 1982). At
the top of the figure the 95% confidence limits in each band of width (w/10w,,} are indicated. The position of the
vertical bar indicates the average value of (w/wn) in each band. The spectra have been grouped into classes by the

parameter U,/Cp, (Con = 8/wpm).

number space where the transition from k~3° to k™
had occurred. This is, of course, a very hypothetical
explanation of the data presented in Fig. 4.

To avoid the problems related to kinematic effects
due to Doppler shifting, it will be highly desirable to
observe the transitional regime from the Kolmogoroff
to the Phillips type of equilibrium in wavenumber
spectrum F;. The only data which I was able to find
to demonstrate such a transition in wavenumber
spectrum F, was from Stereo-Wave Observation
Project (reproduced in Phillips, 1977). The data are
repeated in Fig. 5 because of their unique illustration
of the very existence of the transition from the k—3°
to the k™ law in the high wavenumber part of the
spectra F;. The value of peak wavenumber k,, in this
case is ~0.07m ! and it follows from this picture that
transitions occur approximately at k/k,, =~ 4.0, which
roughly corresponds t0 w/w,, =~ 2.0. This is not un-
reasonable compared with the Kahma (1981a,b) and
Forristall (1981) results. Therefore, we can expect that
in the region w/w,, > 2.0 Donelan’s data (Fig. 4) were
influenced by Doppler shifting (at least for the field
data).

The parametrization of S{w) proposed in Donelan
et al. (1982) lead to the asymptotic form of high-fre-
quency part of S(w):

S(@) = im0 4w, (56)

where the nondimensional coefficient «,, was found
to be variable with non-dimensional fetch. The em-
pirical formula for «,, suggested in Donelan et al.
(1982) is roughly

12
Ay = 0.006(ﬂ) .

C. (57)

T T T 7117
(o]
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FiG. 5. The equilibrium range in the integrated wavenumber
spectrum F, X k*. Data from the Stereo-Wave Observation Project
(reproduced from Phillips, 1977). The asymptotic behaviour of F
for k <0.2 m™" and k > 0.2 m™! roughly corresponds to k™>° and
k~* power law (the value of k,, is approximately 0.07 m~! in this
case).
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Using the linear dispersion relationship C,, = g/wm,
Eq. (56) is equivalent to (47) with

~1/2
a,=6X 10—3(—%) .

C. (58)

For the field data in Fig. 4 with U,/C,, = 1-5 we
determine an average value of o, ~ 4.3 X 107> again
very close to the values of a, reported by Forristall

(1981) and Kahma (1981a,b). Therefore for very
crude estimates of universal constants in an equilib-

rium range theory (Section 3), we can consider the
coefficient «, to be fetch independent with charac-
teristic values (4.3-4.5) X 1073,

5. Preliminary estimates of the values of universal
nondimensional constants in the equilibrium
range theory

According to the data analysis presented in the
previous sections we now consider for simplicity the
nondimensional coefficient «, in Kolmogoroft’s
spectrum (47) as an empirical constant. This permits
us to make attempts to determine (very crudely) the
value of the universal constant A(«) in the inertial
(Kolmogoroff’s) subrange (35), (36). To do this we
write the expression for W, in (44) in the form

Wy = v,7aC = 7apacf Uazé, (59)
where ¢ = go ! is the mean phase speed of the waves
and ¢ is defined as

72 fo * Sw)dew = fo * WS(w)de. (60)

The product v,7, in (59) characterizes the fraction
of the momentum flux 7, in atmosphere which goes
to waves, and Cy in (59) is the drag coefficient. Com-
paring (59) with (44) and (45) we can find the expres-
sion for the nondimensional coefficient m ’in (45) as

m=+v,C < (61)

Ya f Ua .

In general we must take into account the fact that

both v, and Cy can vary with ¢U,”! (see, for example,
Benilov et al., 1978a,b) so that

c c\ ¢
m= ’a(’z?)cf(v) U

Takingy, = 0.1-1.0, C; ~ (1.0-1.3) X 10~ and ¢U, ™
=~ 0.7-0.9, we can reasonably we{l estimate the range
of variations of m in (61) for active wind-wave gen-
eration conditions. We have

m = (0.07-1.17) X 107>.

(62)

(63)
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From expression (48) with p,/p, =~ 1.2 X 1073, we
have

Sa
A=
m

(64)

Experimentally derived average value of a, ~ 4.5
X 107% (Kahma, 1981b; Forristall, 1981; Donelan et
al., 1982) and the above values of m yield

A =~ 0.55-0.22. (65)

Therefore, we expect the universal constant 4 in Kol-
mogoroff’s spectrum (35), (36) to be of order 1 under
any circumstance. This gives additional confirmation
that in our similarity theory in Section 3 the choice
of governing parameters was made correctly. It is
much more difficult to make a reliable estimate for
transitional wavenumber &, or frequency w,. The
expressions (27), (29) suggested by similarity theory
in Section 3 include an a priori unknown numerical
coefficient. We can try to find its approximate value
on the basis of the following very crude estimate. If
we consider the transitional regime in wavenumber
space Ak ~ k =~ dg, where wave-breaking processes
start to be important, the wave energy per unit area
in this region E. is equal to E = Y2p,gaa’, where
dar1s @ mean square amplitude of waves in the region
Ak. On the other hand, due to the continuous energy
transfer rate ¢ through the wave spectrum, E,; can
also be estimated as E.; ~ p.€oTx, Where 7, as before,
is the characteristic time of nonlinear interactions.
However, in transitional regions where breaking pro-
cesses are already very important, such interactions
are very fast and according to (32), (33) we can use
as an order of magnitude estimates for 7, the rela-
tionship 7, ~ g~ (in the region Ak ~ k). Therefore
we must have

agant ~ oy ' at Ak ~k ~k,  (66)

For o, = (gk)"?, Eq. (66) can be rewritten as
kg = Vankg)*geo, (67)

and with a,k, = constant ~ 107!, we obtain
kg ~ 2.3 X 107 Z(,%ﬁ : (68)

We now estimate the characteristic values of nondi-
mensional transitional frequency w, = w,U,g"" using
Eq. (45) for ¢ and the linear dispersion relationship
w, = (gkp)"%. Using (68) with p,/p, ~ 107 and
expression (64) then yields

. 1.5 03
D= AT e

(69)
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Using the values o, = 4.5 X 103 and 4 =~ 0.55-
0.22 [see (65)] then yields

B ~ 3.3-1.5. (70)

These values of &, differ from those observed by
Kahma (1981b) and Forristall (1981) only by a factor
of 2. This suggests that the characteristic value of
transitional wavenumber k, [(27)] probably must in-
clude, according to (68), a proportionality factor of
order 1072, However, we conclude that the accurate
quantitative description of the transition between
Kolmogoroff and Phillips type of equilibrium in the
statistical characteristics of wind waves needs careful
further investigation.
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