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Abstract 

A general formulation of small and large-angle parabolic approximations in conformally mapped 
coordinate systems is introduced. The technique is applied to the study of two particular cases 
involving a polar coordinate system. Comparisons to data and full solutions of the governing Helm- 
holtz equation are given. For the case of waves between diverging breakwaters, we find that distinct 
differences exist between the lowest order parabolic approximation and an analytic solution in the 
Kirchoff approximation in polar coordinates. The errors are only partially alleviated in the next higher 
order approximation. For the case of waves in a circular channel bend, we find a similar level of 
disagreement between lowest-order parabolic approximations and full solutions. The higher order 
approximation produces results which are reasonably accurate in this case. In both cases, we also 
investigate the effects of wave nonlinearity, and investigate the growth of Mach stems at the outer 
wall of circular channel bends. 

1. Introduction 

The parabolic equation method for surface water wave propagation has undergone rapid 
development recently as a method for computing the forward scattering and combined 
refraction-diffraction of  waves in the coastal environment. Both Cartesian coordinate meth- 
ods and methods based on curvilinear coordinates tied to a background refraction problem 
have been extensively developed. A review of  existing Cartesian methods may be found in 
Liu (1990).  

Coastal areas often contain structures such as jetties and breakwaters that intersect a pre- 
chosen Cartesian computational grid at large angles to coordinate lines. The resulting 
internal boundaries are then difficult to accommodate in the finite-difference coding. Pri- 
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marily for this reason, interest in the application of boundary-fitted grid systems has recently 
developed. These systems have the effect of reducing internal structures to lateral boundaries 
in the forward-marching solution technique. Results to date have concentrated on idealized 
situations involving simple boundary configurations (for example, Liu and Boissevain, 
1988 and Kirby, 1988), but application of generalized boundary-fitting techniques is sure 
to follow (see, for example, Thompson et al., 1985). Liu and Boissevain (1988) reported 
a non-conformal transformation for waves between two breakwaters, which proceeds by 
transforming the Cartesian parabolic approximation into the boundary-conforming grid 
system. Kirby (1988) re-examined Liu and Boissevain's model and has shown that the 
more consistent procedure of mapping the full governing equations by the coordinate 
transformation, followed by the construction of the parabolic approximation in the trans- 
formed space, provides a more logical and accurate means of predicting the wave field. 

Here, we concentrate on conformal coordinate transformations. In Section 2, we take the 
mild slope equation for strictly monochromatic wave propagation (Berkhoff, 1972) through 
a generalized coordinate transformation, and then restrict the resulting model to the case 
where the transformation is conformal. Parabolic equations corresponding to the usual 
lowest-order approximation are then constructed for the conformal and general case. We 
further construct the next higher-order approximation for the conformal case, following 
Booij ( 1981) and Kirby (1986). We note that lowest-order approximations have been 
previously presented for several geometries by Tsay et al. (1989); however, their results 
were not consistent with earlier (successful) calculations on regular grids for the geometries 
considered, and hence there is still ample room for the development of the modeling 
schemes. 

In Sections 3 and 4, we consider the application of the models in two instances where the 
domain boundaries are easily specified in a polar coordinate system. In Section 3, we 
consider waves propagating between a pair of diverging breakwaters, where the boundaries 
lie along lines of constant angle 0. Nonlinear effects appropriate to monochromatic Stokes 
waves are included following Kirby and Dalrymple (1984). Computational examples and 
comparisons with experimental results are given. 

In Section 4, we consider the propagation of initially plane waves around a channel bend 
contained between two curved sidewalls of fixed radius. The small and large-angle parabolic 
models are compared to an analytic solution, which shows that the large-angle model 
provides an accurate prediction of the wave field in the bend. We then examine the effect 
of wave nonlinearity and study the evolution ofa  Mach stem reflection along the outer wall. 
Qualitative comparisons are made to previous experimental results of Nielsen (1962), 
which were obtained with a slightly different geometry. 

2. Coordinate transformations and parabolic approximations 

We take the mild-slope equation of Berkhoff (1972), governing the instantaneous water 
surface displacement ~(x,y), as our starting point: 

( CCg nx)x -]- ( CCg T~y)y -~ k2CCg T~=O ( 1 ) 

Here, subscripts denote derivatives, the wavenumber k is related to the local water depth h 
by the dispersion relation 
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w 2 = gktanhkh (2) 

g is gravitational acceleration, and ro is the wave angular frequency. The water motion is 
assumed to be purely harmonic in time. The remaining coefficients are phase speed C = oJ/ 
k and group velocity Cg = Ow/Ok; both of which vary with the water depth. 

To justify parabolic approximations, which are based on assuming that the principal 
propagation direction is the x direction, we use the multiple scales method. Considering 
only the constant depth case for simplicity, we introduce the multiple scales according to 

X "-') 60X"{ - 6X"~ 62X"} - . . .  = X  0 "bX 1 q-X 2 "}- . . .  

y ~ a ° y + a y + 6 2 y + . . . = y o + y ,  +y2 + . . .  (3) 

where 6 << 1. We assume ~ to be of the form 

"q = Re{A(xl ,x2,Yl ,Y2 .... )e ikx} (4) 

where no fast-scale variation in y is permitted. Substituting Eqs. (3) and (4) into Eq. (1) 
and ordering by powers of 6 leads to: 

0 (6 ) :  Ax,=0  (5) 

0(62): 2iMx2 "}-Ay,y, = 0  (6) 

Eq. (6) is then the lowest order parabolic approximation, and implies that A has at most a 
dependence on x2 at O(62). This approximation implies scale relations between derivatives 
of the amplitude of the form 

Ax/Ay = O ( 6 )  

kAx/A~=O( 6 -z)  (7) 

when scales are not made apparent. Since A~x is small with respect to the first derivative 
terms, it may be dropped. 

2.1. Parabolic approximations in other coordinate systems 

We first reduce the mild-slope equation to a variable-coefficient Helmholtz equation, by 
introducing a transformation described by Radder (1979), which is 

~) = ~C-Cg "g~ (8 )  

into the mild-slope equation giving us 

t~bxx + (/~yy + K2 tP  = 0 (9) 

where 

K 2 = k  2 ( C ~ g  ) xx -t- ( V/-C-fg ) YY ( 1 0 )  

Consider mappings of the variable-coefficient Helmholtz equation from Cartesian {x,y } 
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space into an alternate { u,v } space, where the mapping may or may not be conformal. We 
take 

~] =(x(u,v) ] or (ul=Iu(x'Y) ] (11) 
I I,y(u,v)l' I,v] ~,v(x,y)l 

The mapping is presumed to be one-to-one in the domain of relevant fluid motion, and on 
boundaries of that domain. The first form of Eq. ( 11 ) will typically be used below. 

From the chain rule, we can write partial derivatives in the following way: 

qbx=qg,,ux + qg,,vx (12) 

C1)y = ~uUy "~ CI)vOy (13) 

Applying these operators again to obtain second derivatives and then applying these to the 
governing Eq. (9) yields 

(u~ +u2)@u. + 2(UxOx "~-UyUy)~uv ~- (V 2 "~-U2y)~vv ~- (14) 

V2UI51)u ~- V2u~v q-K2~=0 

While the derivatives of q~ above are taken with respect to the mapped coordinates, the 
coefficients of the derivatives still involve the derivatives of u and v with respect to x and 
y. To change this, we apply the chain rule derivative operator for x to the elemental lengths 
dx and dy, 

1 =X.Ux +x,,Vx (15) 

O=y.ux+y,,v~ (16) 

This set of linear equations is easily solved for ux and Vx: 

1 
u~ =fy~, (17) 

1 
Vx =-~y .  J=xuy,,-&,yu (18) 

where J is the Jacobian of the transformation. Using the y derivative operator applied to dx 
and dy results in 

1 
uy = - fix,, (19) 

1 
Vy =~x,, (20) 

Utilizing these definitions in the coefficients of Eq. (14) yields the transformed Helmholz 
equation: 

aqO,,. -2yq~.,, +/3qO,, L, +j2{ (V2u)q~ + (V2v)qb, +-K2~:~} = 0  (21) 

where 
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_ 2 + y ~  OI--X v 

__ 2 2 ~ - x , + y u  

y=xuxv  +yuyv (22) 

Expressions for V2u and V2v are given in Appendix A. The case of a general transformation 
may take the Helmholtz equation into an equation with first derivatives and a cross-derivative 

. term; however, Eq. (21) may be shown to be elliptic in all cases (Thompson et al., 1985). 
For the special case of a conformal transformation, we make use of the Cauchy-Riemann 

conditions: 

X u  ~ Y v  

xv = - Yu 

to obtain 

V2U = V2U = y = 0  

and 

(23) 

(24) 

~= ~ = J ( u , v )  (25) 

Eq. (21) then reduces to 

q 9  + @vv +K2J(u ,v )  ~ = 0  (26) 

which is our governing equation in the conformal domain. 
Turning to the construction of parabolic approximations, we may assume that the wave 

being considered consists of a progressive wave whose phase accumulates along lines of 
constant v, and which therefore has u as the preferred propagation direction. We may then 
write ~ ( u , v )  in the form 

q)( u,v ) = Re { a ( u,v ) e ilK~/zau } (27) 

where the factor KJ 1/z in the phase accounts for the proper accumulation of physical distance 
as the wave propagates. Since K(u,v)  and J(u,v)  still vary with v, it is convenient to define 
a reference phase function based on K(u,vo) = Ko(u) and J(u,vo) = Jo(u) ; i.e., the phase 
function for one particular line v = Vo. We then substitute KoJ~/2 in Eq. (27) in place of 
Kj1/2. For this case, substituting our assumed form for qb (Eq. 27) into Eq. (26) produces 
the parabolic approximation 

2iKoJ1/2a, + i (KoJ~/2) .a  + ( K 2 j  - K~Jo)A +Aw, = 0 (28) 

after neglecting the small term A,,. The scale relations between u and v derivatives in Eq. 
( 28 ) are essentially identical to the relations in Eq. (6), and we see that taking the Helmholtz 
equation through a conformal mapping poses no problems in interpreting parabolic approx- 
imations constructed in the mapped space. 

In contrast, substituting Eq. (27) into the general form of the Helmholz equation (Eq. 
21) leads to the complicated envelope equation 
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(c~_A,, - 27.4,,, + JAy,,) + ( 2 i o l K o J ~ / 2  +j2(•2u) )A,  + ( - 2 i T g o J ~ / 2  

+ J 2 ( V 2 v ) ) A , , + { K 2 J 2 - c J o K ~ + i a ( K o J ~ / 2 ) ~ + i J 2 ( V 2 u ) K o J ~ / 2 } A = O  (29) 

A quasi-parabolic equation may be simply constructed by dropping the A,, term again, and 
the resulting equation poses no problem as a computational system, using standard implicit 
techniques for parabolic equations (see Kirby, 1988 for a particular non-conformal case). 
However, the remaining terms may not be scaled in an entirely consistent manner, due to 
the loss of conformal correspondence with the original Cartesian physical space. 

The problem of correspondence between solutions of non-conformal parabolic systems 
of the form of Eq. (29) and solutions of the original Helmholtz equation will require a great 
deal of attention as the modelling systems evolve. We restrict our attention in the remainder 
of this study to the conformal case, which constitutes a necessary part of the groundwork 
for later studies. 

We note that an alternate form of Eq. (28) which more closely corresponds to the 
following section may be constructed by first using Eq. (27) retaining J(u,v) to reduce u- 
derivative terms, after which the shift to the Jo form is made in order to reduce v-derivative 
terms. The resulting model is given by 

2iKJ 1/2A u + i( KJ  1/2) .A  + 2KJI/2( KJ 1/2 - KoJ~/2)A + A,,,, = 0 (30) 

Eqs. (28) and (30) are equivalent for the polar transformation of Section 3. 

2.2. Large-angle parabolic approximations 

The parabolic model developed in the previous section represents the so-called lowest- 
order approximation to the general problem of waves propagating forward with respect to 
a specified coordinate u. Various methods exist for constructing higher-order approxima- 
tions which allow a greater deviation between the preferred coordinate and the local direction 
of propagation. Here, a method proposed by Booij ( 1981) is utilized to construct the higher- 
order (or large-angle) approximation. Booij's method has been justified previously in the 
context of a consistent multiple-scale expansion by Kirby (1986). 

We wish to split the governing Helmholtz equation (Eq. 26) into equations for forward 
and back-scattered waves qb + and qb-, where q~= q~+ + qb-. Booij showed that an asso- 
ciated equation 

(o" 1 4,.,..). + O'4,m = 0 (31) 

is split identically into 

( 4,,+, ) ,  = i~r4,~ 

(4,m). = - io'4,m (32) 

where 4,. + + 4,.S = 4,m" We proceed by defining 

4,,, =aq~ (33) 

which, when substituted into Eq. (31 ) gives the equation 
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Now, we rewrite Eq. (26) as 

(~uu qt- 0"2~  = 0 (35) 

where o -2 is defined according to 

o-2@=k2J( @+k-2J-Xqg.~) (36) 

Noting that Eq. (35) contains no single derivatives of q~, we require the coefficient of q>. 
in Eq. (34) to be zero and obtain 

A=o- 1/z (37) 

q~.. + ~[ ( x  - 2A.) . ]  q:,+ A"q~ = 0 (38) 

and 

The higher order terms (second derivatives of )t with respect to u and terms which are 
quadratic in A.) may be neglected to recover Eq. (35) from Eq. (38). Using Eq. (37) in 
Eq. (32) then gives 

(A~i~ + )u = i ) t 3 ~  + (39) 

((K2j) 1/4(~ + + _b.Gq~ ~Kj1 ))u'~l/4~ = i(K2j)3/~dp+ + ~zJ~'+ I "  ~3/4 

or  

(40) 

Approximating the operators in Eq. (40) using the first two terms of the binomial expansion 
(following Booij, 1981 ) gives the parabolic model equation 

((K2j)l/4(cIg+nt-A l.~T~+II =i(K2j)3/n(cl)+q-43"~t:~+l ( 4 1 )  
4K J 11. K J ] 

Carrying out the derivatives then gives (where the + superscript has been dropped) 

ci9 + ( 2KJ 1/2) -1 ( Kjl/2).qb _ ~( K2j) -3/2((K2j) 1/2). qb, 

+ (4KZJ) - l@.vv =iKJ1/2@+~(Kj1/2 ) -1@ .... (42) 

Finally. an equation for the amplitude A(u,v) follows by using the substitution (27) with 
J = Jo to obtain 

2iKJ'/2A. + 2Kj1/2( Kj  1/2 - KoJ~/2)A + i( KJ 1/2) .a  + { 3  _ 
1 [K~Jo'~ 1 /2-] 

3i ¢ Kjl/2 ~ A i 
4K2j . . . . . .  + 2K--~TT-zA.w =0  (43) 
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This approximation has been referred to as the higher-order or large-angle approximation 
in the literature. Kirby (1986) has shown that equations of this form are the next higher- 
order approximation beyond the level of Eq. (28) in a consistent perturbation expansion. 
The large-angle model equations developed in the following two sections are all contained 
in Eq. (43) in principle. 

3. Waves between diverging breakwaters 

As a first example, we consider the geometry shown in Fig. 1, along with the coordinate 
mapping, w = In (z/ro),  where w = u + i v and z = x + iy are complex variable representations 
of the coordinates. The entrance to the breakwaters lies on the circle, ro and between lines 
of constant 0, which represent lateral boundaries in an { r,O} domain, with waves assumed 
to propagate principally in the + r direction. 

.,r Seqments 

Go __ Ob 

r 0 

r b 

Incident Wove Crests 

Fig. l. General configuration of diverging breakwaters. 
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3.1. The coordinate transformation and lowest order model 

The most natural choice of a coordinate system from a physical point of view is the polar 
transformation 

~ )  /cos0"~ _((xZ+ya) ' / z~  
=r~sinO], ( ; ) -~tan_, (y /x)  ] (44) 

which relates { r, 0} to a Cartesian reference frame with a common origin. However, a more 
appropriate choice of coordinates, which represents a true conformal map, is 

x] , /cosy] (u] (ln(r/ro) ~ (45) 
] = r o e  [sinv ], t v l=tO ] 

with the domain (ro ~< r ~< ~) .  The first representation can also be written as z = ro ew. The 
Jacobian of this transformation is 

J= rge z" (46) 

We consider only the case of a fiat bottom, so that K =  k. Substituting into the simple 
parabolic approximation of Eq. (30) gives 

2ikroe"A, + ikroe"A + Aov = 0 (47) 

To find the polar representation, we then use the change of variables 

r= ro eu 0 = v (48) 

from Eqs. (44) and (45), and obtain the lowest-order parabolic model in polar coordinates: 

2ikr2Ar + ikrA + Aoo = 0 (49) 

Solutions A(r,O) of Eq. (49) have the property of decaying like r - ~/2 as r ~  % consistent 
with the radial decay of emissions from a point source in two dimensions. It is convenient 
in some applications to introduce the further transformation 

B = rl/ZA (50) 

which isolates the radial decay factor. Substitution of Eq. (50) in Eq. (49) gives the alternate 
model 

2ikr2Br + Boo = 0 (51) 

Either Eq. (49) or Eq. (51 ) is to be solved in a domain { ro ~< r ~< oo; - Oa <~ 0 <~ Ob }. 

3.2. An alternate direct derivation in polar coordinates 

The parabolic models contain the assumption that I A,, [ << l e"A, I, which may be 
deduced directly from Eq. (7) using the given coordinate transformations. This assumption 
needs closer inspection in order to interpret its meaning. Consider a direct derivation of Eq. 
(49) from a polar coordinate form of the Helmholtz equation, given by 

r2rlrr + rrlr + rio o + ( kr)Zrl = 0 (52) 
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Assuming r/to be of the form 

r/= A ( r, 0) e ikr + complex conjugate (53) 

and substituting Eq. (53) in Eq. (52) then gives 

r2Arr + r(2ikr + 1)Ar + ikrA + Aoo = 0 (54) 

The parabolic approximation is constructed by neglecting second derivatives in the propa- 
gation direction in comparison to second derivatives in the transverse direction; however, 
an asymptotic analysis in the present case indicates that this may only be done consistently 
in a region kr >> 1, far from the singularity at r = 0. Solutions of Eq. (52) have singular 
points at the origin r =  0; the classic example is that of the radially-symmetric case (0/  
0 0 - 0 )  which reduces Eq. (52) to a Bessel's equation of order zero. The well-known 
solution representing a cylindrical wave propagating to large r is 

rl( r ) = aH~( kr) (55) 

where Ho ~ is the Hankel function of first kind and order zero. Using the asymptotic form for 
large values of kr gives 

~ a  / 2-~ i(kr-~'/4) 
rl(r ) V~kr  (56) 

This may be arranged into the form of Eq. (53), giving 

~ ~2_~__~e - '1 '/2 
rl(r) I~ ~k i~/2~ r -  I/2ei~r=A(r)eikr (57) 

where the bracketed term is essentially arbitrary due to free choice of the amplitude a. It is 
then easy to verify that A(r)  = a ' r -  1/2 is a solution of a reduced form of Eq. (54) given 
by 

2ikr2Ar + ikrA = 0 (58) 

and thus the neglect of the term unity in the coefficient (2ikr+ 1) in Eq. (54) is required 
in order to maintain consistency when Arr is neglected. This then recovers Eq. (49), which 
is then valid only in the region kr >> 1. 

A comparison of the two derivations of Eq. (49) used here indicates that the assumption 
A,,, << A,,,, } may only be applied consistently in regions which are asymptotically far from 

i rO IL x ( x, y)-- .~.(r,O) 

y~  

o.,- -o -o~ 

Fig. 2. Symmetrical breakwater configuration for the analytic solutions in Section 3.4 and Appendix B. 



J.T. Kirby et al. / Coastal Engineering 23 (1994) 185-213 195 

singularities in the coordinate mapping, or here, in the asymptotic far field of the Hankel 
function solution. This is not a strong restriction practically, since kr accumulates by a value 
of 2~ over each wavelength, and hence the start of the computational domain may be as 
close as one or two wavelengths from r = 0. 

An analytic solution of this parabolic model for the case of oblique incidence in a 
symmetric breakwater configuration (Fig. 2) is given in Appendix B. In practice, it is faster 
to obtain numerical results than to evaluate the Bessel functions in the solution. A numerical 
approach also allows for the inclusion of wave nonlinearity, absorbing boundaries, and 
more complex breakwater configurations. We thus concentrate on numerical results below. 

3.3. Large-angle model in polar coordinates 

Using dimensionless (u,v) coordinates defined according to Eq. (45), we obtain the 
higher-order approximation from Eq. (43); 

1 3i i 
2ikA,, +ikA +roe A,, v 4kro~-~A,,v + ~ , A , v v  =0 (59) 

Adopting the transformation r = roe", 0 = v further gives 

2ikr2Ar + ikrA + (1 - 3i ]A i 
4kr] °° + 2-k Ar°°=O (60) 

Eq. (60) represents the higher-order correction to the model equation (49). The corre- 
sponding equation for the envelope function B defined by Eq. (52) is given by 

( k - - r )  i 2ikr2Br+ 1 -  Boo+~-~Broo=O (61) 

Forms essentially equivalent to Eq. (60) or Eq. (61) have been given by Hill (1986) and 
others for underwater acoustics applications. Eqs. (60) and (61 ) are not solvable by simple 
separation of variable method, and hence recourse must be made to numerical solution 
techniques. 

3.4. Comparison to the exact result 

For the linear problem, the parabolic models can be compared to the exact solution. The 
governing Helmholz equation (Eq. 9) is recast into polar coordinates, so that the problem 
is separable. 

Cbrr +lqbr +~qboo + k2=O (62) 

An assumed solution for this equation which satisfies no-flow boundary conditions at 
0=___0eis 

qg=F(r)cos~n(O+Oe) for n = 0,1,2,3 .... (63) 

where 
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nT"g 
/3, - (64) 

20e 

For cases when the solutions are symmetric with the channel centerline (0=  0), the odd 
values of n can be neglected. 

Substituting the assumed solution into the governing equation (62) gives Bessel's equa- 
tion for F(r) .  Its solutions are 

F(r) =H~,)(kr) n =0,1,2 .... 

The Hankel functions of the first kind guarantee outgoing waves as r ~ oo. 
The final solution is then written as 

q)(r,O) = ~_, a,H~>(kr) cos~,( O+ Oe) (65) 
n = 0 

The values of the unknown coefficients a. are found from the initial condition at r = ro, 
which is prescribed as a function of O: 

@(ro,O) = G ( 0 )  

Using the orthogonality of the cosines over the range - 0e ~< 0 ~< 0e, we have 

F'mf ~'Og G( O)COS ~m( O+ 0e)d0 
for m = 0,1,2,3,... (66) 

am = 2 0 e H ~ .  ) (k ro)  

Here, E m is unity for m = 0, and 2 otherwise. For the case of a plane wave train entering into 
a diverging channel centered about 0 = 0, G (0) = exp (ikr o cos 0), corresponding to normal 
incidence. The result (Eq. 66) may be expressed as a series of Bessel functions, as in Eqs. 
(B5)-(B6) .  

Figs. 3 and 4 show a comparison between the exact solution (Eq. 65) and results for the 
small-angle and large-angle parabolic models. The wave condition corresponds to the 
experimental condition considered in Section 3.6. Fig. 3 shows the distribution of wave 
amplitude a (r, 0) along three lines of constant distance r from the coordinate origin. The 
results are normalized by ao, the incident wave amplitude. At r/ro = 1.38, the exact solution 
shows a rapid diffraction of wave energy into the shadow zone behind the diverging 
breakwaters. On the other hand, diffraction effects in the small-angle model are relatively 
slow, and a wide region of constant amplitude, indicating the undistorted incident wave, is 
seen. For this geometry, the large angle model corrects about half of the error between the 
small-angle approximation and exact solution, and still leaves qualitative as well as quan- 
titative differences between model and exact solutions. In particular, the large dip in ampli- 
tude at the centerline, predicted by the exact solution, may be seen in the laboratory data in 
Fig. 6. Neither parabolic model is able to predict this dip. 

At greater r values, the disagreement between the large angle model and the exact solution 
is reduced, although there are still differences in the form of the wave amplitude distribution. 
Large discrepancies between the small-angle and exact solutions remain, however, and the 
small-angle model does not successfully reproduce the exact solution in the far field of the 
breakwater gap for any of the radii compared. 
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- _ : _ . .  ' . . . . . .  - ~ . . . .  ' _ - _ - . . - . '  , , , 

. .  

r/ro = 1.38 " " - ~ _  
~'0"4t I I I I L I I " -  i ~ " ~ - : - ~ - -  ' 

"~ 0 5 10 15 20 25 30 35 40 45 

o0"61 r/ro = 1.87 
~.~ 0.4[- . . . . .  

"~ 0 5 10 15 20 25 30 35 40 45 

I I i I i I I 1 

~-0.2 L -- , , , . ~ _  . . . . . .  
0 5 10 15 20 25 30 35 40 

0 

- i  

45 

Fig. 3. Comparison of normalized amplitude a (O)/ao along constant r lines, linear results. ( ) Exact solution 
(Eq. 65); ( - - - ) large-angle parabolic model; ( . . . . .  ) small-angle parabolic model. 

3.5. Nonlinear and other effects 

The experiments described in the next section were carried out with the goal of  deter- 
mining the effect of  wave nonlinearity on the diffraction process. The model  equations 
described above may be extended to include third-order Stokes wave dispersion effects and 
bottom friction effects fol lowing Kirby and Dalrymple (1984) and Liu (1986).  The 
extended parabolic approximation for frictionally damped, weakly-nonlinear Stokes waves 
is given by 

ik + 1 / 1  3i ~ iP~ 
2ikAr + rA  r-~ - ~ r r P 1 ) A o o + 2 - - ~ r  2Aro° 

3 • 1 / 2  

-KIAI2A+ .4kh~!l++_i),,h(~ I a = 0  (67) 
sin zKn zt¢ \ z to !  

where 

.[ C ~ [cosh4kh + 8 - 2tanh2kh~ 
K = k l ~  8 s--~-nh-~ ) (68) 

is an ampli tude dispersion coefficient and v is the kinematic viscosity of  water. Also, P1 ~ 0 
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Exact solution (Eq. 65); ( - - - ) large-angle parabolic model; ( . . . . .  ) small-angle parabolic model. 

produces the lower order approximation and P1 = 1 produces the next higher order approx- 
imation. Eq. (67)  may be written in finite difference form using the Crank-Nicolson method. 
We also consider the alteration of  the simplest  lateral boundary condition, Ao = 0, to include 

partial absorption: 

Ao = ikrc~A O= Oa,Ob (69) 

where a ~ 1 implies pure transmission of  normally incident waves; see, e.g., Dalrymple 
(1992) for absorbing boundaries of  entrance channels. In the examples considered below, 
it was found that laminar boundary layer damping did not have a significant effect on the 
computed solution (Kaku  and Kirby, 1988), and this effect is not considered further here. 

3.6. Comparison with experimental results 

Kaku and Kirby (1988) have described a series of  experiments which were conducted 
to test the application of  the conformal mapping technique to the diverging breakwater 
geometry. Two geometries  were tested, one with a flat bottom and one with a channel at 
the harbor entrance and extending into the harbor. A description of  the fiat-bottom geometry 
is given in Fig. 5. The wave tank was 7.24 m X 7.24 m. The water depth at the wavemaker 
was 0.45 m and decreased with a slope of  1 : 10 up to the horizontal part, which had a water 
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Fig. 5. Experimental configuration. 

depth of 0.15 m. The wooden breakwaters, constructed from 1" plywood, were placed on 
the horizontal part. The breakwater enclosed a 90 ° sector with a gap of  1.74 m width. The 
other ends of the breakwaters were connected to the corners of  the tank so that wave 
propagation around the ends of the breakwaters could be prevented. Sand, rocks and glued 
fiber mats were placed at the end-wall and the comers of side-wall and breakwaters in order 
to damp reflected waves inside and outside the breakwaters. A flap-type single paddle 
wavemaker generated the incident waves, whose direction was normal to the gap. A polar 
coordinate grid was drawn on the bottom. Each breakwater was placed on a line of constant 
0, and the origin of the coordinates was on the horizontal part. Sample stations were then 
established at fixed locations on the (r,0) grid. Wave records were obtained at each pre- 
determined sampling station using capacitance-type wave gages mounted on steel tripods. 
The analog signal from the wave gage was converted into a digital signal by means of an 
A / D  converter driven by a MICRO PDP-11 digital computer. The computer also controlled 
the measuring system, including calibration of gages, computation of calibration coefficients 
by least-square method, timing the sampling frequency and period, and storing the data into 
a specific file. 

Because of the limited size of  the tank, some physical effects caused by the tank bound- 
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aries such as cross-wise re-reflected waves and currents on the down wave side of the 
breakwaters were generated by the incident waves and often grew with time. A modulation 
of the incident wave amplitude, possibly due to a complex motion of water behind the wave 
maker, was also observed several minutes after turning on the wave maker. Finally, we note 
that several of the experiments were run with incident wave steepnesses large enough to 
promote the onset of Benjamin-Feir sideband instabilities. As a result of these difficulties, 
sampling was done only within the first minute of each run. Up to five minutes was then 
allowed between two consecutive samples in order to let the water calm down. A 20 Hz 
sampling frequency was chosen for each sample. The sampling period was selected between 
15 sec and 30 sec, depending on the period of the incident waves and on the location of the 
sampling station. The stations far from the gap and near the breakwater sometimes required 
a longer sampling period due to the presence of relatively larger amplitude modulations 
relative to the incident wave amplitude. In analysing the data records, a Fourier transform 
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was applied to isolate the fundamental frequency band, and then wave amplitudes were 
calculated for each station. 

Because of  the difficulties noted with long wave generation and re-reflection within the 
harbor, we show the results of  only one test here. The results shown here are typical of  the 
range of tests done; no one test showed a greater degree of  systematic agreement or 
disagreement with model results than the chosen one. The test chosen here had the largest 
value of  wave steepness of  all the tests conducted, and hence provides a stronger test of  the 
nonlinear aspects of  the model equation. For this test, a wave period of T =  0.49 s and 
amplitude of  a o = 0.017 m were used, leading to an initial wave steepness ka o = 0.288. The 
resulting data are compared to numerical results in Fig. 6. The numerical grid was uniformly 
discretized over 0, with the 90 ° sector divided into 100 steps. Discritization in u was distorted 
in order to obtain equal steps in physical distance r, and 100 steps were taken from an initial 
radius r/r o = 1.23 to a final radius r/ro = 2.5. 

In general, for the constant depth case, results of  the higher-order approximation agree 
well with laboratory data. On the section r/ro= 1.38, the laboratory data indicate that 
diffraction effects occur at smaller 0 values than the values predicted by the lowest-order 
model and are well predicted by the higher-order approximation. On the section r~ ro = 1.87, 
the higher-order approximation predicts the wave amplitude very well within 0 ° ~< 0 ~< 20 ° 
and slightly underpredicts the laboratory data at 0=  30 ° and 0=  40 °. On the section r~ 
ro = 2.2, reasonable agreement with the higher-order nonlinear or lowest-order nonlinear 
approximation is seen, although the differences between the different approximations are 
reduced at this distance into the harbor. 

The results here are indicative of  the general level of  agreement between data and 
numerical prediction found in the data set as a whole. Experimental errors in the data set 
make it difficult to clearly determine that the large-angle approximation is out-performing 
the small-angle approximation in all cases. In this regard, the results of  Section 3.4 should 
be taken as the primary indication that the large angle model provides a better approximation. 

4. Circular channel 

As an alternative example, consider the case of  waves in a curved channel, as shown in 
Fig. 7. Here, the wave field is prescribed at the entrance of  the channel, which has a width 
of  rz - r~. The mapping is not the same as in the diverging channel section, as we want to 
keep u as the propagation direction; now z = - r~e iw*, or w* = - ilniz/r~. Alternatively, we 
can write it 

( ~ ) =  v/sinu ] ( 0 +  ~ / 2  
r le~--cosuJ ' (~)=, ln(r /r , ) , l  (70) 

For this transformation, J =  - r~e 2°, which is now a function of  v, not u, as in Eq. (46).  
The transformed domain, as shown in Fig. 7, ranges from 0 ~< v ~< In (1"2 / r~ ), 0 ~< u. 
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4.1. Parabolic approximation 

The small and large angle parabolic models are the same as used before: Eqs. (28) and 
(43). The value of  Jo used is that at the midpoint of  the channel, where v = In[ (rl + r2)/ 
(2rl)  ]. Results of  parabolic model calculations are compared to an exact solution in Section 
4.3. 

4.2. Exact solution 

Again, the polar form of  the Helmholz equation (Eq. 62) is used, except that in this 
example, the radial direction is across the channel and the 0 direction corresponds to the 
channel axis. The assumed form of  the progressive wave solution is now 

qb = F ( r )  e iz, c o+ ~-/2) (71 ) 

where y is not necessarily an integer. The resulting Bessel equation has a solution in terms 
of  Bessel functions of  order y: 

F( r) = aJr( kr) + b Ye( kr) (72) 

where a and b are unknown constants. There are two no-flow conditions to be satisfied at 
the sidewalls, 

F , . = 0  at r = r l ,  F r = 0  at r=r2, for 0 > ~ ' / 2  (73) 
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The first condition relates a to b, 

• Y ' r ( k r l  ) 
a =  - o  (74) 

where the primes denote derivatives with respect to kr. The second no-flow condition 
establishes a condition on y. 

t ¢ Yr' (krl)Jr '  (kr2) - Jr (krl) Y~, (kr2) = 0 (75) 

There are only a finite number of  discrete values of 0 < y < kr2 for which this condition is 
satisfied. The total solution is given by 

@= ]~_~an[ Y'~( kr l )J~(  kr) - J'~( krl ) Yr.( kr) ] e  i~'(°+ 7r/2) (76) 
n 

= ~ a . F . ( r )  eir,,(o+ ,~/2~ (77) 
n 

Each function F.(r)  is orthogonal over the range rl <~r<~r2 with weight 1/r, from the 
Sturm-Liouville theory. Therefore, at the beginning of  the channel, 0 = - 7r/2, the initial 
condition is used to determine the values of  an. 

~ a , (  r '~( krl ) J~(  kr) - J'~( kr I ) Y~(  kr) ) = G(r)  (78) 
t l  

which, using the orthogonality condition, yields 

f~F , ( r )  G(r) dr 

a n = 

r 

I 2 F  " z (79) 
r~ dr  

r 

In the following examples, the initial condition is a wave train with constant amplitude 
across the channel, or G (r) = 1. This solution has been previously discussed by Rostafinski 
(1976) in the context of  acoustics. 

4.3. Comparison of the parabolic models to the exact solution 

The parabolic model and exact solutions are compared here for a particular choice of  
geometry and wave conditions. Only linear waves are considered, since the exact solution 
does not have a nonlinear counterpart. The channel lies between two radii, r~ = 75 m and 
r2 -- 200m, and covers a 180 ° arc. Plane waves with a uniform amplitude across the channel 
are imposed at the entrance. The water depth is uniform with h = 10 m, and the wave period 
is taken to be T =  4 s. 

Fig. 8 shows a plot in physical coordinates of  the instantaneous water surface specified 
by the exact solution, with a plane wave entering at the bottom right of  the figure and 
propagating around the bend in a counter-clockwise direction. A zone of  reflection develops 
along the outside wall, with the wave height along the wall reaching a maximum at about 
60 ° from the entrance. At the same time, a shadow zone with a diffracted wave field develops 
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on the inside wall as the wall bends away from the incident wave. The region from 60 ° to 
90 ° is dominated by an intersecting wave pattern resulting from the superposition of the 
incident wave and the wave reflected off the outer wall. Beyond this angle, the wave field 
is more organized with the exception of a complex re-reflection pattern which develops 
again along the outer wall. 

In Fig. 9, we show a comparison of the surface elevation variation along the outer wall. 
The solid line shows the exact solution. The small-angle parabolic model solution is indi- 
cated by the dash-dot line. This line begins to diverge from the exact solution around the 
first maximum in the wave height, after which there are strong dissagreements (both in 
amplitude and phase) between the two results. The large-angle model, whose results are 
indicated by the dashed line, shows a much stronger agreement with the exact solution, 
maintaining fairly accurate phase and amplitude around the entire 180 ° sector. 

4.4. Nonlinear effects 

Waves entering a gradual channel bend are initially incident at a very small angle to the 
outer channel wall. This angle increases from zero to large values as distance around the 
bend increases. In the region of initial, small incidence angle, it is known that the regular 
reflection pattem predicted by linear theory is replaced, in nonlinear theory, by the appear- 
ance of a Mach stem, which is an analog to Mach reflection in shock wave dynamics. The 
stem consists of a section of wave crest oriented perpendicular to the vertical boundary 
wall, beyond which a more standard reflection pattern develops. For the case of Stokes 
waves in deep or intermediate water depth, the phenomenon has been studied by Yue and 
Mei (1980). In order to illustrate the Mach stem effect in the present context, we show a 
series of calculations in Figs. 10 through 12 which correspond to a linear solution and to 
nonlinear solutions with wave steepness ka o = 0.2 and 0.3. The nonlinear model is again an 
extension of the results in Kirby and Dalrymple (1984). The computations are based on 
the same set of parameters as in the previous section. Results are plotted in the u (or O)-v 
plane. The series of figures shows a gradual weakening and displacement down the channel 
of the principal reflected wave crest, which leaves the channel wall near 0 = 45 ° in the linear 
wave case. The width of the initial wave crest along the outer channel wall increases 
markedly with increasing nonlinearity, which is the principal manifestation of the Mach 
stem effect. In Fig. 12, where the nonlinear effects are most pronounced, we see that the 
growth of the wide stem wave is repeated in each re-reflection pattern along the outer 
channel wall. 

Fig. 13 shows the evolution of wave height along the outer channel wall for the three 
cases shown in Figs. 10-12. Increasing nonlinearity causes a reduction of maximum wave 
height in the stem wave region, and displaces the maxima progressively further downwave, 
as mentioned in the previous paragraph. Fig. 14 shows the cross-channel wave height at the 
point along the channel where the first maximum in stem wave height occurs. Increasing 
nonlinearity leads to lower stem waves with wider crests perpendicular to the wall, as has 
also been previously noted. 

Nielsen (1962) studied a case very similar to the one studied here. In Nielsen's experi- 
ments, a Mach stem is induced along an initially straight wall, which then is smoothly 
matched to a radial wall section. As the Mach stem propagates around the wall, the incident 
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wave becomes more oblique and the Mach reflection is replaced by regular reflection and 
separation of  a reflected wave train from the wall. We  consider here the particular case with 
parameters T=0 .2813  s, kh=2 .51327 ,  and kao=0.226.  The outer radius of  the concave 
wall is 1.016 m. The corresponding Fig, 35 from Nielsen (1962) is shown in Fig. 15. The 
figure shows the development  of  a Mach stem and a hexagonal wave pattern along the outer 
wall, with subsequent separation of  the reflected wave from the wall around 0 = 55 °. This 
reflection is quali tat ively similar to the pattern seen in Figs. 10-12. Fig. 16 shows the results 
of  a numerical calculation using the parameters above and an inner radius r~ = 0.05 m. Since 
the initial straight wall section in Nie lsen ' s  experiment is not modelled, the comparisons 
here are only qualitative. The results indicate a very similar pattern, however, with the 
apparent growth of  the Mach stem up to 0 = 45 °, and subsequent separation of  the reflected 
wave from the wall and the appearance of  a quiet zone along the wall in the region 0 > 70 °. 
The hexagonal appearance of  the wave field in Nie lsen 's  picture is not reproduced in Fig. 
16 since the parabolic model  gives only the fundamental amplitude component.  Reproduc- 
tion of  the visual hexagon pattern requires the inclusion of  the forced second harmonic 
components in the reconstructed water surface. 
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Fig. 15. Wave pattern along curved breakwater: kh = 2.513, ka o = 0.226, h = 4.88 cm (from Nielsen, 1962, Fig. 
35). 

4.5. Variable depth 

In the constant depth case, it was clear that the wave crests become distorted in the channel 
due to the differences in travel t ime along the circumferential paths taken by the waves. It 
is possible,  however,  to chose a depth for which the wave phase speed varies across the 
channel accounting for the longer travel distance at the outer circumference. Examining the 
parabolic equation for this case (Eq. 30) ,  we see that the third term, ( K 2 J  - K~J(U,Vo) )A, 
is responsible for the changes in wave phase across the channel for constant values of  u, If  
we choose a bot tom variation across the channel such that the local wave number K causes 
this term to be zero, then the wave crests will be constant for constant values of v, or, in the 
real domain,  there will be no phase variation with v across the channel. Therefore, for each 
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/ 

Fig. 16. Qualitative comparison to the photographic result in Fig. 35 of Nielsen (1962), showing wave evolution 
along a concave wall. 

location across the channel the depth is found from the dispersion relationship for a k given 
by 

= k,, vS-o/J (80) 

A Newton-Raphson procedure can readily solve Eq. (80) for the correct depth distribution, 
given k. 

5. Discussion 

The work done here provides an adequate foundation for the application of  small and 
large angle parabolic approximations in distorted grids which are related to Cartesian space 
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by a conformal transformation. It is felt that grids of this type are desirable since the scaling 
aspects of the resulting parabolic models are well understood. (For an example of the 
ambiguity arising in non-conformal cases, see Kirby, 1988.) For both of the test cases 
considered here, the large-angle parabolic approximation (in the form developed by Booij, 
1981 and Kirby, 1986) provided a reasonably good prediction of the modelled wave field 
in comparison with more complete analytical solutions of the problem. 

Although a distinct difference has been found between models based on arbitrary trans- 
formations and ones based on strictly conformal transformations, some effort should be 
made in the direction of almost-conformal transformations, which presumably would lead 
to models which differed from the present ones by terms which are in some sense small. 
This extension would allow for the use of the wide range of orthogonal grid generating 
schemes which are now available, and which do not produce strictly conformal grid struc- 
tures. 

Acknowledgements 

This work is a result of research sponsored by NOAA Office of Sea Grant, Department 
of Commerce, under Grant No. NA/16RG0162-03 (Project Nos. R/OE-12 for R.A.D. and 
R/OE- 13 for J.T.K.). The U.S. Government is authorized to produce and distribute reprints 
for governmental purposes, notwithstanding any copyright notation that may appear hereon. 
The authors also thank Prof. Robert Wiegel for providing the original of the photograph 
used in Fig. 15. 

Appendix A. Expressions for V2u and V2v 

The general form of the transformed Helmholtz equation (Eq. 11 ) involves the expres- 
sions 

V 2U = 1.Ix. x -t- Uyy ( A  1 ) 

V2U = V xx -t- V yy (A2) 

For {x,y} given in terms of {u,v }, these expressions may be written as 

V2u = J  - 3{xv( fly,, - 23,y,,, + o~y,,v) -y~(/3x, ,  - 2yx, o + axvv) } (A3) 

V2v = J  -3{yu( fix,, - 2~/x,o + ooc,,~) - x , ( / 3y , ,  - 23'y,~ + ocyo,) } (A4) 

where J is given by Eq. (18). For {u,v} conformal to {x,y} ,  use of the Cauchy-Riemann 
conditions (Eq. 23) in Eqs. (A3) and (A4) yields the results (Eq. 24). 

Appendix B: analytic solution for the small-angle parabolic model for symmetrical 
breakwaters: linear theory 

In order to allow an analytic treatment, we consider a simplification of the Fig. 1 setting 
and take 0, = -  0b = Oe,ra = rb = ro; we will thus study the wavefield entering the gap 
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between a symmetric breakwater configuration shown in Fig. 2. We seek a solution of Eq. 
(49) by separation of variables in the form 

A = R ( r ) c o s ~ , (  O+ Oe) (B1) 

which satisfies the no-flow boundary conditions at 0 = + 0e, and gives 

2ikr2R ' + i k r R -  fl2R = 0 (B2) 

where/3, is defined in Eq. (64). 
Therefore, solving the R equation, we have 

E ] A(r,O) = ao + ~ a ,  ei~"2~2/2ae2kr)cos{ ~ , ( 0 +  Oe) } r -1/2 (B3) 
n = l  

The radial amplitude decay of all modes is equal to r - ~/2, the same as for a cylindrical 
wave front entering the domain. The remaining exponential factors in each mode are phase 
distortions caused by small angles of propagation with respect to the local coordinate 
direction. 

The solution must now be matched to the initial condition at the breakwater entrance. 
We write the incident plane wave as 

a e i ( k c o s o o x  + ksinOoy) ~ C.C.  

~1 = 2 

a 
=_eikrocos~O oo> +c.c. (B4) 

2 

on r =  ro. The amplitudeA(ro, O) may then be written as 

A ( r o,0) = ae ikr°t cos~o- ~,~ - 11 (B5) 

which must be equal to the solution within the breakwaters (Eq. B3) evaluated at ro. 
Following MacCamy and Fuchs (1954), with further reference to Abramowitz and 

Stegun (1972, Eqs. 9.1.44-45), we may writeA(ro, O) as 

a(ro,O) = ae-ik~°{Jo(kro) + ]~, 2(i)mJm(kro)cOs[m( O-  0o)]} (B6) 
m = l  

where Jm is the Bessel function of first kind and order m. The coefficients ao, an and bn may 
now be determined using a standard orthogonalization procedure, which yields 

2 ( i )  m 
ao = arl/2e ik~°{Jo(kro) + Y'  mve sinmOecosmOo } (B7) 

a, = 2ar~/2e i~k'°+"2~2/ak'°°'21. ~ ,  (i)mJm(kro)I~.,cosmOo 
m =  1 

(B8) 

where 
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= ~ ' (  - 1 )ns inm0e{  1/ (rnOe -nTr) + 1/ (mOe + nzr) }, m--gnTr/ Oe~ 
I~,n I , {1  +sin2mO/2mOe}, m=nTr/OeJ 

( B 9 )  

Eq.  ( B 3 ) ,  t oge the r  w i th  Eqs .  ( B 7 )  and  ( B 8 ) ,  ful ly specif ies  the  l inear  so lu t ion  for  the  

s imp le  pa rabo l i c  case  cons ide red ,  and  m a y  be  u sed  to ver i fy  s u b s e q u e n t  numer i ca l  s c h e m e s  

for  Eqs .  ( 4 9 ) .  
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