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The reflection of linear surface waves by sinusoidal bottom undulations is considered in the 
case where the incident wave is not necessarily close to the resonant frequency. For 
finite detuning away from the resonant frequency, two previous solutions are shown to give 
results which are inconsistent with direct numerical solutions, especially when the 
results are extended to oblique incidence. The correction to the methods is given, and various 
consequences of the new results are examined. 

1. INTRODUCTION 

In recent years, the problem of the reflection of surface 
waves by undular bottom features has drawn considerable 
attention, owing primarily to the mechanism’s possible re- 
lation to coastal morphology. Kirby’ has derived an exten- 
sion to the usual mild-slope equation’ which provides a 
theoretical umbrella for most of the existing analytical re- 
sults. Davies and Heathershaw3 solved for the reflection 
coefficient for the case of weak reflection (far from reso- 
nance) and sinusoidal bars in otherwise constant depth. 
Their solution was recovered from Kirby’s equation by 
Kirby and Anton,4 who also provided the extension to the 
case of oblique incidence over the bar field. Close to the 
resonant condition, where the bar wave number is twice 
the wave-number component of the surface wave in the 
direction normal to bar crests, Mei provided a solution 
using a multiple scales approach. His solution was ex- 
tended to oblique incidence by Dalrymple and Kirby6 and 
Mei et ~1.~ (hereafter referred to as MHN). Kirby’ showed 
that Mei’s analysis could be obtained from the extended 
mild-slope formulation. Further explication of the problem 
(along with some additional solution techniques) may be 
found in Davies et al. ,8 Kirby,g and Benjamin et al. lo As in 
these papers, we restrict our attention here to the case of 
perfectly sinusoidal bars. 

The resonant reflection solution of Mei proceeds by 
assuming that the waves are described by carrier waves 
which are exactly in resonance with the bar field, together 
with amplitudes which vary slowly in both space and time, 
to account for both frequency-wave-number detuning and 
slow evolution over the bar field. The analysis results in a 
set of perfectly tuned, coupled evolution equations for the 
wave amplitudes; these may be solved for the reflection 
coefficient and for the wave heights over the bar in the case 
of time-periodic motions. 

For the case of finite, arbitrary detuning, it is natural to 
extend the approach given by Mei to consider the fre- 
quency and wave-number detuning as part of the carrier 
wave; as a result, the coupled amplitude equations become 
explicitly detuned, but may still be easily solved for the 
case of periodic waves. Liu” and Yoon and Liu” (referred 
to as YL) took this approach in two related studies. Liu 
considered the resonant reflection of linear monochromatic 
waves in a channel with, corrugated sides and bottom, 

while YL considered the scattering of incident cnoidal 
waves by a sinusoidal bar field in the context of Boussinesq 
theory. (The latter problem has also been addressed by 
Kirby and Vengayil.13) For the case of normal incidence 
on the bar field, Liu’s solution gave “cutoff’ conditions 
(demarcating the boundary between exponential and sinu- 
soidal behavior of the incident and reflected wave enve- 
lopes) which differed markedly from the values given by 
Mei.’ These differences were attributed to the effect of fi- 
nite detuning. 

In this paper, we formulate the problem of detuned 
scattering by a field of sinusoidal bars, and obtain a solu- 
tion with different properties than would be found using 
the methods in Liu and YL. In Sec. II, a new formulation 
of the detuned-interaction theory is developed. This is fol- 
lowed in Sec. III by a discussion of previous results and of 
their breakdown in the oblique incidence case. The meth- 
ods of Liu and YL are extended to the oblique incidence 
case in the Appendix. In Sec. IV, numerical results are 
used to establish the validity of the present formulation. 
We also show that the resonant interaction theory of Me? 
is reasonably robust for the entire range of physically rel- 
evant cases. The effect of laminar bottom boundary-layer 
damping on the reflection process is briefly discussed in 
Sec. V. 

II. SOLUTION OF THE GENERALIZED MILD-SLOPE 
EQUATlON FOR DETUNED RESONANCE 

In this section, we present a perturbation solution of 
the equation of Kirby’ which differs from the previous 
detuned-interaction results given by Liu and YL. The der- 
ivation here follows the notation of MHN closely, although 
the governing modulation equations are arrived at by a 
different method. We consider the case of a patch of sinu- 
soidal bars S(x) given by 

S(x) = D sin(,%x), ,%=25-/L, (1) 

where L is the bar wavelength and D is the bar amplitude. 
A finite patch of n bars rests in the interval O<x<nL, 
superimposed on a uniform depth h. We generalize the 
previous results somewhat by considering the case of ob- 
lique incidence on the bar field, and take 8 to represent the 
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angle between x and the incident wave-number vector. The 
general two-dimensional form of the governing equation is 
then written as 

VW (pV& + k’CC$=O, (2) 

where 

p=CCg- [g&r)/cosh’ kh], (3) 

and where the angular frequency w, wave number k, phase 
speed C, and group velocity C, are determined based on the 
mean depth h and the actual (tuned or detuned) wave 
period. For obliquely incident waves, we take 

~=$(x)e”“Y, m==k sin 8. (4) 

The governing equation is reduced to the second-order or- 
dinary differential equation in x; 

&L-l- (Px/PMx+Yv=O9 (5) 

where the factor g is given by 

” +,+--‘CC,--m”, (6) 

which, for the case of small bottom perturbations, may be 
approximated by 

+rz+ gk”S 
CCg cosh2 kh ’ 

I- ,/G’= k cos 8. (7) 

As in Kirby,’ we seek coupled first-order equations of the 
form 

~,f=&~+-tw+,~-), (8) 

#,= --W~--W+,~-), (9) 

where the total wave field is divided into incident and re- 
flected components, 

(b=(b+ +#- (10) 

and + ( - ) denotes the incident (reflected) wave. Substi- 
tuting (8)-( 10) in (5) leads to the result 

F=-C(yP)d2yPl(~+-~-). (11) 

To the leading order of approximation in powers of 6, the 
coefficients in (8) and (9) are given by 

2CC, cash’ kh cos’ 0 ’ 

(YPIX C&06, -= -- 
2YP kC,D ’ 

where 

a =cos 20/cos” 8 

and 

Qo=gk2D/4a cash’ kh. 

(12) 

(13) 

(14) 

(15) 

Note that Cn, here differs from the value given in Me? in 
that it is evaluated at the detuned wave number rather than 
the resonant wave number. We also note that no approxi- 
mations have been made in obtaining the basic form of the 

381 Phys. Fluids A, Vol. 5, No. 2, February 1993 

coupled equations (8) and (9); the splitting is reversible 
and no information has been suppressed. We introduce the 
explicit form of 6,: 

S,= (AD/2) (eiAx+emiAx) (16) 

and seek a solution for slowly varying incident and re- 
flected waves of the form 

cp+=A(x)ei’x=A(x)eikCoSeX, 

$- = B(x)e-iLX= B(x)e-ikCOS ex, (17) 

Following Liu and YL, we construct an approximate 
detuned-interaction model by substituting ( 17) in (8) and 
(9) and retaining terms which come closest to satisfying 
resonance conditions. This leads to the coupled evolution 
equations 

(18) 

(19) 

where 

k,,=i1/2 cos 0 

is the resonant wave number, and 

(201 

/3=/l-2k cos e (21) 

is the detuning parameter, as introduced in Liu and YL. 
For l=k cos 8=U2, we recover the exactly resonant in- 
teraction equations following from MHN, Eq. (2.5). The 
detuned equations differ from the results in MHN by the 
inclusion of the factor (k,,/k), which introduces an asym- 
metry in the coupling coefficient. We see that waves with 
lower wave numbers (indicating relatively shallower wa- 
ter) become more strongly coupled, as may be expected on 
physical grounds. 

We can increase the correspondence between the re- 
sults of MHN and the present derivation by introducing a 
detuning wave number 

K= k- k,, (22) 

and a corresponding frequency parameter 

l-l=KC,, (23) 

Note that R again differs from Mei’s fi since detuning is 
finite and the relation between the detuned wave number 
and the detuned frequency here is not linear, except in the 
limit of extremely shallow water. The detuning parameter 
fi may now be written as 

fl= -2K cos 8. 
We introduce the transformation 

(24) 

(25) 

and obtain the coupled equations 

ii,=iKcos ei- (26) 
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f& cos 8 k,, - 
B,= -iK cos 8 B-T--- 

g ( 1 
k A. (27) 

We may reduce these to two second-order equations for 2 
and B: 

(28) 

The parameter P is determined from 

p=y [ ($)2-~2(!$)2]“2 (29) 

and may be either real or imaginary depending on the term 
in square brackets. The expression for P here is also similar 
to the expression given in MHN, with the exception of the 
appearance of the k,,,/k ratio. The cutoff condition in the 
solution corresponds to the value P=O. 

Equations (28) are solved with the boundary condi- 
tions 

ii(O) =A,,, B( nL) =o, (30) 
which indicates an incident wave amplitude of A, at the 
start of the bar field and a reflection coefficient of zero at 
the downwave end. The solution is given by 

A(x) ,Aoe-iKCOS 0.X 

and 

X 
PC,cos P(nL-x) -iQ cos 8 sin P(nL-x) 

PCg cos nPL-ifl cos 8 sin nPL 

(31) 

B(x) ,AoeiKcos 0x 
&,a(k,,/k)cos 8sin P(nL-x) 
PCg cos nPL-ift cos e sin nPL * (32) 

The reflection coefficient upwave of the bar field is given by 

lzjq=I 
f&p (k,,,/k) cos 19 sin nPL 

PCg cos nPL-iM cos e sin nPL ’ (33) 

We illustrate the present solution in comparison to the 
resonant solution of MHN by plotting contours of reflec- 
tion coefficient as a function of 0 and 2k//2, where reso- 
nance occurs at 2k cos e//2= 1. The solution of MHN is 
implemented exactly as given in their paper, with K spec- 
ified based on the chosen wave-number parameter and n 
computed from fi = KCg(resj. 

To maintain correspondence with experimental results 
given in Davies and Heathershaw,3 we choose n=4, D/h 
=0.32, D=5 cm, L=l m, and h=15.625 cm. Solutions 
are computed for the parameter range 0.25<2k cos 8/ 
1~1.75, 0”<8<85”. Solutions for the resonant theory of 
MHN are shown in Fig. 1. The theoretical results are sym- 
metric about the resonance condition 2k cos 6/d= 1, and 
the solution dies out for large values of 8. Figure 2 shows 
reflection coefficient contours and the locus of the cutoff 
condition for the present analytic theory. The results here 
are markedly asymmetric about the resonance condition. 
Agreement between the two analytic solutions is good, 
both for reflection coefficients and cutoff conditions, up to 
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FIG. 1. Reflection coefficient and cutoff condition: solution of Mei et al. 

8= 55”. For larger 8’s and for values of 2k cos B//z < 0.5 
and > 1.5, the asymmetry of the solution becomes marked 
and the two approximate solutions deviate. 

The apparent agreement between the cutoff conditions 
predicted here and the conditions predicted by the Mei and 
MHN theory is in marked contrast to the large deviation 
between cutoffs seen in comparing the theories of Liu and 
Mei (see Sec. 4 in Liu) . Direct numerical determination of 
the detuning fi corresponding to the cutoff condition has 
been made for the bar geometry considered here, but with 
a range of D/h values. The cutoff condition on the high- 
frequency side of resonance is compared to Mei’s theory in 
Fig. 3, where we plot the percent error in Mei’s result 
relative to the present theory. The results typically agree to 
within 1% or so. In contrast, Liu shows deviations on the 
order of 50% between his and Mei’s predicted cutoffs. 

For angles less than about 60”, we will evaluate the 
disagreement between the approximate solutions here by 
comparison with numerical solutions for the full problem. 
We close this section by remarking that both of the ap- 
proximate solutions studied here would be expected to 
break down far from resonance, since the effect of ne- 
glected nonresonant terms in the equations would become 
as important as the effects of the retained terms. 
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FIG. 2. Reflection coefficient and cutoff condition: present solution. 

III. COMPARISON WITH PREVIOUS RESULTS 

In this section, we compare the present results to the 
results obtained by extending the derivation techniques 
used in Liu and YL. Those derivations are described in the 
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FIG. 3. Percent error in detuning parameter /3 based on Mei’s theory and 
detuning parameter /3 based on present theory, for the cutoff condition. 

I 
0.5 1 1.5 2 2.5 

FIG. 4. Comparison of loci of zero reflection: ---, present solution; -.-, 
Liu solution; . . . , YL solution.-, resonance curve. 

Appendix. The resulting derivations produce coupled 
equations with the same form as Eqs. (18) and (19), and 
hence we can consider the correspondence between the 
form of the coupling coefficients, the values of the factor P 
and loci of the cutoff conditions, and numerical values of 
predicted reflection coefficients. We limit the comparison 
here to an examination of the coupling coefficients and, in 
particular, to the determination of the zeros of those coef- 
ficients, where we see a decoupling between the wave and 
bar fields. Both the Liu and YL theories have the interest- 
ing feature of predicting decoupling for normally incident 
waves at a finite value of the parameter 2k/A.. When ex- 
tended to oblique incidence, both theories produce patterns 
of decoupling which are at odds with the present theory, 
with the MHN resonant theory, with the nonresonant the- 
ory of Kirby and Anton,4 and with numerical results. 

The interaction coefficient for the present theory may 
be written as 

f&J cos 28 k,, 
cgcOse k 3 ( 1 

(34) 

which has a zero at 0=45” for all incident wave frequen- 
cies. This result also was found by MHN for the resonant 
case, and is a feature of a wide range of nonresonant scat- 
tering theories for small obstacles (see Kirby and Anton 
for a review). The locus of the zero in the present coupling 
coefficient is shown in Fig. 4 along with the locus of the 
resonance curve 2k/d = l/cos 8. 

The coupling coefficient al obtained from the YL der- 
ivation has zeros on the curve 2k/A=2 cos 8, shown in 
Fig. 4. The intersection of this curve with the resonance 
curve occurs at 8=45” and 2k/A.= VZ, as does the curve for 
the zeros of the present theory. Away from this intersec- 
tion, the predicted zeros deviate markedly. 

For the second theory of the Appendix, the interaction 
coefficient a2 leads to decoupling on a curve 2k/A=vZ/ 
cos 0, which lies to the right of the resonant interaction 
curve in Fig. 4 and does not intersect it anywhere. 
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The two theories described in the Appendix clearly 
predict patterns of wave-bottom interaction which are at 
odds with the remaining body of theory on this problem. 
This result points out the sensitivity of the results here to 
the method of derivation; in particular, theories which ne- 
glect terms of the order of terms that appear eventually in 
the equations to be solved (A, and B,, here) lead to in- 
correct results. The splitting method employed by Kirby’ 
and Kirby and Vengayil13 appears to be a robust method. 

IV. NUMERICAL RESULTS 

Numerical solutions are obtained for the parameter 
range 0.5<2k/i1<2.5, 0”<8<85”, using second-order accu- 
rate centered finite differences applied to (5 1. Boundary 
conditions for the numerical problem are discussed in 
Kirby.’ Results for the n=4 Davies and Heathershaw bar 
field are shown in Fig. 5. We see that the numerically 
predicted solution shows nearly total reflection at large 
angles of incidence, as well as very small reflection at 
8=45”, as predicted by the analytic theories developed 
here. The reflection coefficient does not drop identically to 
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FIG. 5. Reflection coefficient computed numerically from (5). 

0.8 - 

FIG. 6. Reflection coefficient at normal incidence. -, numerical solu- 
tion; ---, present analytical solution; . . . , Mei er al. 

zero for 8=45” owing to the etfect of nonresonant modes in 
the solution which are not accounted for in the analytic 
approaches. 

In Fig. 6, reflection coefficients for normally incident 
waves obtained numerically, from Mei’s solution, and from 
the present analytical solution are compared. The numer- 
ical solution (solid line) is seen to obtain a somewhat 
higher maximum than in the analytic solutions, and the 
maximum is shifted to a slightly lower wave number. The 
two analytic solutions agree at resonance but deviate 
slightly away from resonance. The numerical solution also 
indicates that reflection is slightly stronger for the first lobe 
on the short wave side of the main resonance, in contrast to 
the prediction of the present analytic theory. The solution 
of Mei is therefore a somewhat more accurate representa- 
tion of the numerical solution, although the two analytic 
results agree more closely with each other than they do 
with the numerical result. Overall, the deviation between 
the numerical and analytical results would not be resolv- 
able within the accuracy of the Davies and Heathershaw 
data set. 

V. EFFECTS OF FRICTIONAL DAMPING 

The propagation of waves over a bar field is affected by 
a number of mechanisms which are not included in the 
analysis presented above. YL and Kirby and Vengayil13 
have discussed some of the consequences of nonlinear in- 
teraction on the scattering process. In real applications, it 
is expected that a number of dissipative mechanisms could 
come into play. Bottom boundary-layer damping would 
affect the waves moderately, causing a small decrease in 
the transmitted and reflected waves predicted by the theory 
described above. For bars fronting a beach face in rela- 
tively shallow water, the protruding bar crests could also 
induce breaking of steep incident waves, leading to signif- 
icant reduction of incident energy over the bar field. 

Here, we consider the effect of laminar frictional 
damping on the predicted reflection coefficient. Following 
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Booij14 and Kirby,’ we may extend the generalized mild- 
slope equation to include damping effects according to 

&+w&-v* (pV&) + (&-~qJ&0 (35) 
or, for time-harmonic waves, 

V l (pVJ> + k2CCJ-t iw W&= 0. (36) 

Here, W is a generalized complex damping term. Follow- 
ing the derivation in Sec. II leads to the coupled evolution 
equations 

A,- 

(37) 

(38) 
where we have assumed that the dissipative effects act uni- 
formly and equally on the incident and reflected waves. 
The new dissipative term may be absorbed in the previous 
derivation by defining a new complex detuning factor 

W 
---=-~KCOS O--i------- cgcOs e* (39) 

From this point, the derivations in Sec. II follow through 
exactly, with the exception that the definition of P in (29) 
is replaced by 

fiocOse R 2 . RW 
P’---yy-- 

B Ii 1 - +zn;Cos2e 00 -(2i20L2e)2 

---(r (40) 

For the case of laminar bottom boundary-layer damp- 
ing, an expression for W is given byt5 

~ gk2 
J 

Y 
W=(l-i) co cash” kh 2; 

For laminar damping alone, the effects on the results 
given above are quite small, owing to the relatively short 
length of the bar field. The reflection coefficients with 
damping can be either smaller or larger than the coeffi- 
cients without damping, due to the effect that damping has 
on the wave speed and wavelength. It is not anticipated 
that local damping over the bar field has any significant 
effects in any of the available laboratory data sets. 

VI. DISCUSSION 

The results of this and previous studies have shown 
that numerical solutions of a generalized mild-slope equa- 
tion may be used to model the reflection of waves from 
simple (nearly sinusoidal) bar fields. A body of analytic 
approximations are also now available for providing esti- 
mates in the same situation. 

Several recent studies have indicated that bottom con- 
figurations having multiple Fourier components can lead 
to additional reflection peaks appearing at difference wave 

numbers resulting from the interaction of two or more 
individual bottom components.t6 This situation is not han- 
dled properly by the existing generalized mild-slope equa- 
tion. The problem of these subharmonic resonances is be- 
ing pursued further by the present author in the context of 
a generalization of the mild-slope equation to handle the 
presence of nonpropagated modes. 
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APPENDIX: EXTENSION OF LIU AND YL RESULTS 
TO THE CASE OF OBLIQUELY INCIDENT 
WAVES 

The problem of specifying the evolution equations for 
the detuned interaction between surface waves and the 
sinusoidal bar field has been considered previously by Liu 
and YL, as well as by Kirby and Vengayil.t3 The study of 
Liu was restricted to normal incidence of linear waves in a 
channel with both bottom and side-wall corrugations, 
while the theory of YL was for the same channel configu- 
ration but for weakly nonlinear, weakly dispersive waves 
obeying the Boussinesq equations. Here, we consider the 
case of normal or oblique incidence of linear dispersive 
waves over an infinitely wide bar field, as in Sec. II, and 
extend the theories of Liu and YL accordingly. Section III 
of the main text gives a comparison between various fea- 
tures of these extended results and the results in Sec. II. 

The YL approach is conceptually simpler than the Liu 
approach, and so we follow it first. We start by rewriting 
the governing equation as 

V’s+ k2$= wC ‘zfh2 kh (sv2&+‘X&C), (AlI 
8 

where we have used the fact that the mean depth is taken 
to be uniform and the bar field varies as 6(x) only. Em- 
ploying the separation (4) in the main text reduces (Al ) 
to 

b-t&= WC ctth” kh (~~xx-%~x-m2~$). L42) g 
We now make the separation into incident and reflected 
waves with slowly varying amplitudes, as specified in (10) 
and (17). These are substituted directly into (A2) without 
a prior splitting. An apparent ordering is made which 
equates the importance of slow derivatives of A and B with 
terms that are first order in S. Terms of 0(S2) are then 
dropped. Then, substituting the expression (1) for S and 
retaining terms closest to resonance leads to the coupled 
equations 

A,= - (RO/Cg)al Beifix, 

B,= - (fIo/Cg)aIAe2i13X, 

(A3) 

(A4) 
where 

(A5) 
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and where all other notations are as in the main text. The 
resulting model is similar in form to ( 18) and ( 19) in the 
main text, except for a change in the interaction coefficient. 
We remark that the mincipal reason for the differences 
between the present model and the model in the main text 
arises due to neglect of terms involving the factors 6A, and 
SB,. If these terms were retained by effectively dividing 
through by the quantity p as in the main text, the resulting 
model would be equivalent. 

For the case of normal incidence and in the limit of 
long wave theory, the interaction coefficient becomes 

a0 
-a& (A---k) 

Cg 
(A6) 

as in YL. At resonance, this reduces to AD/8h as in Kirby 
and Vengayil,13 but it disagrees with their theory (again, 
based on a splitting procedure) away from resonance. 

Turning to the work of Liu, we rewrite (A2) as 

(PqLL+~2cc&fJ=o. C-47) 
We then employ the Liouville transformation 

4=p-1/25 WI 
and obtain 

~xx-fp-~*+12p-w&&o. 

Retaining terms to O(6), this becomes 

(A91 

i+P<-jg+ $+Ps f=O. g i ) (AlO) 

We then employ the split into incident and reflected waves 
according to 

~=~+(x)eiz~+~-(x)e-izx. (All) 
Direct substitution and the neglect of second-order terms 
in the slow derivatives leads to the set of coupled equations 

$z = - ( fl,/C,) a2$-eip”, 

t/; = - ( f20/Cg)a2$+e-iPx , 

where 

(A121 

(A131 

For the case of normal incidence, 
in (A12) and (A13) reduces to 

l-414) 

the interaction coefficient 

a0 a0 

( ) 
A2 k2 

qa2-k2Cg Tr 
(A151 

as in Liu. 
The main drawback in the derivation of (A12) and 

(A13) lies in the fact that the amplitudes $+ and $- are 
not properly decoupled. For example, compare the trans- 
formed incident wave to an untransformed form: 

~+eilx=pl/2AeiX, (A161 

Taking x derivatives of both sides of (A16) leads to the 
expression 

Icl;’ ~p”~A,+$,r *‘%A. (A171 

We see that the derivative of $+ contains a term which 
would resonate with the reflected, B wave, indicating that 
the incident-reflected wave separation is incomplete in this 
method. 
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