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The effect of currents flowing across a bar field on resonant reflection of surface waves
by the bars is investigated. Using a multiple-scale expansion, cvolution equations for
the amplitudes of linear waves are derived and used to investigate the reflection of
periodic wave trains with steady amplitude for both normal and oblique incidence.
The presence of a current is found to shift resonant frequencies by possibly
significant amounts and is also found to enhance reflection of waves by bar fields due
to the additional effect of the perturbed current field.

1. Introduction

The possibility of obtaining strong reflections of incident surface water waves
through interaction with undular topography has drawn attention in recent years to
the mechanism’s possible impact on coastal geomorphology. Davies & Heathershaw
(1984) have investigated bottom topographies of the form

hz) = h+8(x), (1.1)

where h(x) denotes total water depth, % represents a steady mean depth and
6(x) represents a small-amplitude, rapid perturbation. ‘Small amplitude’ implies
|£8] € 1 in general scaling or [6/h| <€ 1 in shallow-water scaling. In experiments to
date, d(x) has been given the simple form

O0(x) = DsinAz; 0<x< L. (1.2)

This represents a long-crested bar field confined in the region {0 < x < I} consisting
of n bars, with uniform bar amplitude D and bar wavenumber A constrained
according to A = 2nn/L. The sinusoidal form is convenient in that it is physically
plausible and contributes only a single wave-like perturbation in the mathematical
analysis. Davies & Heathershaw experimented with normally incident waves of
variable wavenumber—{requency {k, w} and clearly demonstrated a strong resonance
in the neighbourhood of 2k/A = 1, leading to greatly enhanced reflection. They
pointed out the analogy between this resonance and Bragg-scattering in crys-
tallography, but provided an analysis only for the case of weak reflection. Their
analysis, done in the context of regular perturbations, breaks down at the resonance
condition.

Mei (1985) examined the neighbourhood of the resonance directly using a resonant-
interaction analysis and obtained good predictions of the maximum reflections
observed in Davies & Heathershaw’s experiments. Mei also cxamined the case of
detuned interaction, where wave frequency w is allowed to deviate from resonant
frequency w, by an amount 2. No direct comparison was made between the
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predictions for detuned waves and data. Kirby (1986) provided an extension of the
mild-slope equation to handle the general case of arbitrarily varying &(x,y) on a
slowly varying mean depth h(z,y). Numerical simulation of Davies & Heathershaw’s
experiments also provided good reproduction of measured reflection coefficients.
Hara & Mei (1987) have extended the resonant-interaction theory to second order in
18] and have performed additional experiments which illustrate the existence of a
cutoff condition for frequency £, which is explained further below.

The existence of the Bragg scattering mechanism provides a possible means for
constructing coastal protection devices which are relatively low in profile in
comparison to local water depth. The installation of such an artificial bar field
fronting a beach may provide a means for significantly reducing wave energy
arriving at the surf zone. Given that any such installation would necessarily be of
finite extent in the longshore direction, it is likely that the resulting localized
depression in maximum set-up behind the bar field would generate a nearshore
circulation pattern. Prediction of such a pattern depends on future hydrodynamic
modelling. However, its result would be to introduce onshore or (more likely) offshore
flows over the bar field. In order to evaluate the effectiveness of the bar field in the
presence of an induced circulation, it is necessary to understand the effect of
wave—current interaction over the bar field.

In this study, we examine the reduced case of the propagation of waves over a bar
field 8(x) resting on an otherwise flat bottom z = — k. Not accounting for the bar-field
perturbation, the current field {U,, V,} is taken to be constant and of the order of
linear wave phase speed (e.g. O(1)) in the perturbation analysis. In §2, we state the
full problem and then give the solutions for the steady flow to O(d), following
Kennedy (1963) and Reynolds (1965). Then, in §3, we examine the current’s effect
on the conditions for Bragg resonance. The evolution equations for the linear wave
scattering problem are constructed in §4. Solutions and various examples for normal
wave incidence are examined in §5. Finally, in §6 we provide sufficient information
to construct the similar solutions for the oblique-incidence case.

2. Solution for the perturbed mean flow

We first solve for the flow field and surface displacement resulting from the
interaction of a uniform flow {U,, V,} and bottom displacement 8(x) given by (1.2).
Figure 1 illustrates the various quantities described below. The full problem for
waves and current may be written in terms of surface displacement 7 and velocity
potential ¢ according to

Vig+¢.,. =0, —h<z<y, 2.1a)
¢, = eV, {0V, 8}, z=—h, (2.1b)
g+, +3(Vy @) +3(@) =clt), z2=1, (2.1¢)
N+ $ Vo = ¢, z=1, (2.1d)

where ¢ denotes the effect of the small bottom perturbation. Noting that only linear
wave motion is to be considered, we may split ¢, 7 and ¢ into time-steady parts
associated with the current and time-harmonic parts associated with the waves:

p=gtPu; N=bFN; ©=CcFClu (2.2a,b,¢)
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F1GURE 1. Definition sketch.

Substituting (2.2) in (2.1) and isolating time-steady terms yields

Videtde .. =0, —h<z<b, (2.3a)

, Be.. =€V, (0V, ¢,), 2 =—h, (2.3b)

V) i S =, 2=, (2.30)

: Vi Vb =g, ., z= b, (2.3d)
'e We now introduce the expansion

b= boot et (2.4a)

b =b,+eb,, (2.4b)

¢ = ¢y tec,. (2.4¢)

At O(1) we obtain the solution for the undisturbed current field :

$oc = (Ugz+ V), (2.5)
; by =0, (2.6)
o =3Us+V3), (2.7)

where ¢, is chosen so as to render the O(1) depth equal to k. We define Froude
numbers associated with the horizontal currents according to

U V
F 0 1> F = Mol .
T T Gy =9

At O(e), we obtain the problem considered by Kennedy (1963) and Reynolds (1965),
restricted here to the case of time-steady bottoms. The solution to that problem is

; given by
| $re = %{/3 cosh A(h+2)+a sinh A(h+2)} €% 4 c.c. (2.9)
—iMFID
' 2acoshAn® TEO L (2.10)
where o = AhFZ—tanh AA, (2.11a)
| £ = 1—AhF? tanh Ah. (2.110)
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