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ABSTRACT

Matching conditions used by Mei and Lo to study wave scattering at a vertical vortex sheet in the shallow
water (long wave) limit are seen to be incorrect and, as a result, wave action is not conserved during scattering
by a single vortex sheet. Here, we establish the correct kinematic condition for the more general case of a step
discontinuity in depth as well as current, and modify Mei and Lo’s results accordingly.

1. Introduction

Problems involving scattering of waves at vortex
sheets, which represent surfaces of discontinuity be-
tween ambient streams of dissimilar velocity, have re-
ceived increasing attention recently due to the general
interest in wave—-current interaction. In the general
theory, the schematization of a shear layer as a discrete
vortex sheet allows the flow to either side to be consid-
ered irrotational, thus allowing the introduction of a
velocity potential for each region. Evans (1975) used
such an approach to treat the scattering of a linear
deepwater wave which was obliquely incident on a
vortex sheet. Smith (1983) similarly treated the case of
two adjacent sheets bounding jetlike, “top-hat™ flow
in deep water.

Recently, Mei and Lo (1984, hereafter referred to as
ML) have used the shallow water theory in conjunction
with jetlike flows in order to illustrate several corre-
spondences between the quantum mechanics and wa-
ter-wave scattering problems. ML present general forms
for solutions for waves trapped on jets, and derive re-
flection and transmission coefficients for waves
obliquely incident on a top-hat jet bounded by regions
with no ambient current. The results in ML are inter-
esting and useful; however, as will become evident be-
low, the matching conditions used by ML are inap-
propriate, and their results are thus in quantitative
eITor.

. The purpose of this comment is to derive matching

conditions at discontinuities which lead to scattering
solutions that satisfy the appropriate condition of con-
servation of action. The general case of variation in
both depth £ and velocity ¥ across the sheet is consid-
ered.

2. The linearized problem

The linear shallow water theory used here may be
obtained from ML. Define u(x, y, ), v(x, y, t) as wave-
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induced velocities, {0, V(x)} as the ambient current,
h(x) as the water depth, and n(x, y, t) as the wave-
induced free surface displacement. The linearized
equations of motion and continuity are then given by

U+ Vi, = —gnx (2.1
v+ Vo, + uVy = —gny 2.2)
n + Voy + (hu) + hv, = 0 2.3)

where subscripts denote differentiation. We assume
motions which are uniformly periodic in time and in
the y-direction, perpendicular to any variations in the
ambient flow. Then

(, v, ) = [u(x), v(x), n(x)]e ™™ (2.4)

where w is the angular frequency in stationary coor-
dinates (x, ¥). Waves propagate in the +)y-direction with
wave number m; current V(x) may be = 0, with no
resulting loss of generality. Introducing (2.4) in (2.1)-
(2.2) yields

—ignx — ~ignx

- 2.5

“ w—mV o 25)

p= _{ 8Vnx __&mn - _{ngﬂx _ gm’]}
(w—mVy w-—-m o? o

(2.6)

where ¢ is the intrinsic frequency relative to the am-
bient current V. Substitution of (2.5) and (2.6) in (2.3)
leads to the second-order ODE

2

Toe + {h—; 4 2m V"}nx "—h - mz}n =0. 7

In the following, we consider only regions which

consist of subregions of constant depth 4 and current

V, divided by step discontinuities. ML’s treatment of

continuous current and depth variation is correct as it
stands. Thus, in any region (i), we have
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i + {g—h - mz}m =0 (2.8)
which has the solutions
"= aeilix + be—ilix
2 1/2
L= (;}‘% - m2) . (2.9)

Depending on the parameters of the problem, /; may
be real, leading to freely propagating waves in region
(i), or imaginary, leading to only forced waves in region
(i). We consider here only the case of freely propagating
waves everywhere, although our results are generally
applicable to both cases.

3. Matching conditions at a stép discontinuity in depth
and current

Mei and Lo treated the case of a vortex sheet in
water of constant depth, previously considered by
Mollo-Christensen (1978). They chose as matching
conditions that » and », be continuous across the dis-
continuity. Continuity of » implies the continuity of

dynamic pressure and represents the shallow water .

limit of the condition that pressure be continuous over

the vertical extent of the sheet in the general depth case

(Smith, 1983; Miles, 1967). The second condition of

1, continuous does not have physical significance.
Mei and Lo show that the governing equation (2.7)

may be transformed to the one-dimensional Schrodin-

ger equation by introducing the quantity

_gh_  gh

o =

@ (w—mV)?’
Using this substitution reduces (2.7) to the form
(anx)x + (1 - mza)n = (.,

(3.1)

3.2)

[Note the correction of a typographic error appearing
in ML’s (5.1)]. Now consider the integral of (3.2) across
a step discontinuity at x = 0, which gives.

(o) — (Ag)e- = —fi ('l — m2a)ndx. (3.3)

Assuming that o and » are suitably behaved in the
vicinity of x = 0 (indeed, 5 is continuous while « has
a single step discontinuity of finite value) and letting
e*, e — 0 gives

(amy)o- = (amx)o+ 34
or, using (3.1),
hw b o @
(28] g9

This condition replaces the condition used in ML when
h, = h,. The condition (3.5) is kinematic in nature
and may be obtained by using a depth-averaged form
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of the general-depth kinematic condition used by Evans
(1975) and Smith (1983). Evans defines the position
of the vortex sheet as £(3, z, ) and requires that particles
in regions 1 and 2 which are on the vortex sheet remain
on the vortex sheet. This leads to the kinematic re-

quirements
u(z) = & + Vi(2)§, (3.6)

ux2) = & + VA2)§,. 3.7
Assume V,(z), V(z) = constant and take A, and A,
= h. Performing the depth integration appropriate to
shallow water theory gives

0
hul = —jo, fh £dZ (38)

0
huz = —iﬂ'z fh Edz

(3.9)

where

e ‘
hu, =f u(2)dz, hu, =f
h

0

. u(2)dz (3.10)

and where we have used (2.5). Eliminating the integral
of £ from (3.8-9) gives

h
huy _ huy 3.11)
[ [}
which, for uniform depth, implies
o172, = 02 2 (3.12)

in place of the condition used in ML. Note that the
integral of the vortex sheet displacement £ from x = 0
leads to a quantity that represents the volume of dis-
placement, per unit length of £, relative to the equilib-
rium position x = 0, due to wave motion. We denote
this volume by %V and state the condition that the vol-
umes of displacement V; caused by the flow in regions
(i) on either side of a depth or current discontinuity
must be equivalent.

For the case of nonequal depths, the resulting ki-
nematic conditions are expressed by

hu, =YV, +"Y,; x=0" (3.13)
huy =V, + 1LY,; x=0" (3.14)

which gives
ﬁ;Tul = ﬁ:_l:g . (3.15)

Equation (3.15) reduces to the mass flux condition
suggested by Lamb (1945) in the absence of currents
and is equivalent to (3.5) after using (2.5).

We now consider the scattering of an incident wave
from region 1 (x < 0) at a discontinuity of # and V" at
x = 0. The components of the wave train are given by
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n= eulx (3.16)

2 172
, ll={zw——m2} >0; x<0

h

nr = Re™¥* (3.17)

(w—mVy)
gh;
where 7;, nr, n7 are the incident, reflected, and trans-

1/2
nr = Te"™ I, ={ mz} ; x>0 (3.18)

mitted wave, and where subscript 2 denotes quantities ~

in region 2 (x > 0) with depth 4, and velocity V5.
Requiring continuity of n at x = 0 gives

1+R=T. (3.19)
Then, applying (3.5) at x = 0 gives
hil, _ by
o (1-R)= " T. (3.20)
Solving for R and T then gives
hz 0'12 [2)/( hZ 612 IZ)
R={1-—+*—-+ 1+—=—=7F);
( hy 022 A hy 022 [ ’
hz 0'12 lz)
T= 1+ —=—=). 3.21
2/( * hy 022 l ( )

These results may be tested for consistency by inves-
tigating action conservation. Waves propagating on
currents have wave action as a conserved integral
quantity, with wave action defined as the ratio of the
local energy density over the local intrinsic frequency
o. In the general two-dimensional, time-steady case,
we have (Bretherton and Garrett, 1968)

E
Vi {— C, + U)} =0 (3.22)
[}
where C, is the vector group velocity relative to U, the
ambient current. In the present shallow water case, with
uniform conditions in the y-direction, (3.22) reduces

to
E
[— Veh (1)] =0 (3.23)
¢ K/l
where //k is the direction cosine, from
2
=L =12+ m (3.24)
gh

Integrating across a step discontinuity at x = 0 implies

E l E l
5], - [2 ),
G kJ 1o- o k] Jo+
It may be readily shown that (3.21) satisfies the con-
dition (3.25).

(3.25)

4. Modification to ML results

Mei and Lo consider the scattering of waves by a
top-hat current defined by
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x| > a
(4.1)

0,
v= {
v,
Denoting the jet region as (2) and the external regions
as (1), we have

x| < a.

eihtx+a) 4 Re—ill(xﬂl)’ x < -—-a (42)

n =1 Ae™ + Be ", Xl<a  (43)
Teii](x—a), x >a (44)

where
2
12 = ;"_h —m=k2—-m? 4.5)
— mVy
L2 = (i_ng_)_ —m?> 0. (4.6)

Using the matching conditions derived above, we ob-
tain the reflection and transmission coefficients.

_ 4b

- (1 + b 2e—2ilza _ (1 _ b)Ze?.ilza
—‘(l _ b2)[e—2ilza _ e2ilza]

- (1+ b)ze—Zilza -1 - b)ZeZilza

which are equivalent to ML’s results with the exception
that b is here defined by

b= 110'22/]20'12 (49)

rather than by /, /L, as in ML. In ML, these results are
expressed in terms of parameters

T

4.7)

R - (4.8)

K = w/(mVgh) (4.10)
F=v/Vgh. (4.11)

In terms of these quantities, b in (4.7-8) is given ac-

cording to

_ (1= FKYK* - 1)
(K—F? -1

while their a,a (our a) remains unchanged. ML’s

other results may be adjusted accordingly.

b (4.12)
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