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ABSTRACT 

Kirby, J.T., 1986. Rational approximations in the parabolic equation method for water waves. 
Coastal Eng., 10: 355-378. 

Approximations based on minimax principles are developed in order to allow for large-angle 
propagation in the parabolic equation method. Numerical studies show that the minimax approx- 
imations do not cause any significant degradation of accuracy at small angles of incidence when 
compared with an existing model based on a (1,1) Pad~ approximant, and that they allow for 
much more successful treatment of large angles of incidence than is possible using the previously 
available methods. 

1. INTRODUCTION 

The application of the parabolic equation method (PEM)  to any relevant 
wave propagation problem implies tha t  a principal propagation direction may 
be identified in the {x,y} plane of propagation. Then,  an aperture, or window 
of directions with respect to the principal direction, is associated with any 
particular approximation, and limits the range of propagation directions which 
may be adequately represented by the approximation (Fig. 1 ). The borders of 
a given aperture are defined only loosely and depend mainly on the amount  of 
error the modeller is willing to allow in the wave prediction. This error may be 
evaluated for any given approximation by examining the approximation in 
terms of the related expansion of the wavenumber vector. Errors in predicted 
wavelengths and propagation directions may then be evaluated directly. 

The purpose of this paper is to develop a set of parabolic approximations 
based on a minimax principle, which have the effect of maximizing the allowed 
aperture 0a within arbitrarily chosen limits of error introduced in approxima- 
tions for small 0. In section 2, we first review existing parabolic approxima- 
tions and their connection to Pad~ approximants relating the components of 
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Fig. 1. Definition of aperture for parabolic approximations: / / / / allowed aperture: lower-order 
approximation; \ \ \ \ allowed aperture: higher-order approximation. 

the wavenumber vector. Then in section 3, we discuss methods for obtaining 
higher-order approximations based alternatively on minimax approximations, 
and present the resulting numerical coefficients. In section 4, we develop the 
appropriate PEM for weakly nonlinear waves on slowly varying water depth. 
Several computational examples are considered in section 5, and it is shown 
that  the minimax approximations developed here are successful in allowing 
relatively large angles of wave propagation in the computational grid. We con- 
clude with a discussion of approximations which are tailored to a specific angle 
of incidence in the computational grid. 

2. PARABOLIC EQUATIONS AND PADI~ APPROXIMANTS 

The lowest-order parabolic equation for forward scattering of time-har- 
monic linear waves in the x (principal) direction in water of constant depth 
may be derived by substituting: 

tl(x,y) =A (x,y)e '(hx-~t) (2.1) 

into the governing Helmholtz equation: 

IX2//A- k 2 ~ = 0  (2.2) 

to obtain: 

2ikAx + Ayy = 0 + higher-order terms ( 2.3 ) 
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where we have assumed: 

JAxJ << O(kJAI) (2.4) 

This approximation may be examined in light of the plane wave of permanent  
form: 

~-~-ae i(lx+my-eOt) ; 12 + m  2 : k  2 (2.5) 

A(x ,y )  in eqn. (2.1) is then given by: 

A (x,y) =ae '[(l-h)x+my] (2.6) 

which gives: 

~ = 1 -  (2.7) 

after substitution in eqn. (2.3). Equation (2.7) in turn is the lowest-order 
binomial expansion (or, equivalently, the (1,0) Pad6 approximant) of: 

g= 1 -  (2.s) 

for fixed re~k= sin 0<<1, 0 being the propagation direction. The accuracy of 
any approximation over the range of propagation directions 0 ~< 0 ~< 0,, where 
0, is the aperture width, may be evaluated by comparing predicted l/k to exact 
Ilk = cos 0 over the range in question. This comparison is given in Fig. 2 for 
eqn (2.7). Equation ( 2.7 ) forms the basis of the lowest-order approximations 
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Fig. 2. Absolute errors (l/k)-cos 0 for several expansions of (l/k)= [1-(m/k) 2 ] 1/~ about 
(m/k)~O. binomialexpansion; . . . .  (1,1) Padd approximant;-.- (2,2) Padd approximant. 
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given by Radder (1979) for water waves and Tappert (1977) for underwater 
sound propagation. 

One of the simplest ways of extending the accuracy of a polynomial expan- 
sion is to construct a rational approximation consisting of the ratio of two 
polynomial expressions. Of the possible choices, the Pad6 approximant serves 
as the logical starting point (Baker, 1975). For eqn. (2.8), the appropriate 
(1,1) Padd approximant is given by: 

1 - 3  - -  

l k 
k -  2 (2.9) 

The Pad6 approximant has the property of predicting the proper value and 
slope of the approximated function l/k as m/k (or 0) becomes small. The 
approximation thus maintains the accuracy of the lowest-order approximation 
at small 0, and at the same time extends the accuracy of the approximation as 
0 increases, as shown in Fig. 2. Rewriting eqn. (2.9) as: 

2 k ( l - k )  +m 2 - 1 ( l - k )  m 2 =0 (2.10) 

and retracing the steps of eqns. ( 2.3 ) - ( 2.6 ) using the method of operator cor- 
respondence then gives: 

2ikAx + Ay~ + ~  Ax~ =0 (2.11) 

Dingemans (1983) and Kirby (1986a) have shown that the no-current, con- 
stant-depth form of Booij's (1981) parabolic approximation is essentially 
equivalent to eqn. (2.11), and proposed the Pad6 approximant as the relevant 
analysis of the splitting method employed by Booij to obtain his PEM approx- 
imation. Kirby (1986a) has further shown, by means of multiple-scale expan- 
sion to the proper order, that the correct evolution equation to the next higher 
order beyond that giving eqn. ( 2.3 ) is given by: 

2ikA~ + A~  + ~---~g Axx Cg Ok A ~  4Cg Ok A ~ = 0  (2.12) 

in which eqn. (2.3) represents the lowest-order terms. Using eqn. (2.3) to 
eliminate terms in Axx and Amy in favor of terms in Axyy reduces eqn. (2.12) 
to eqn. (2.11). Interestingly, using the same substitutions to eliminate terms 
in Axyy and A ~  in favor of A~ terms reduces eqn. (2.12) to the elliptic form: 

2ikAx + A N + Axx = 0 (2.13) 

which is the exact governing equation in the present context. The (1,1) Pad6 
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form of the PEM thus has at least a reasonable connection to the theory of 
higher-order approximations, within allowable limits of substitution between 
higher-order terms using lower-order results. Similar approximations applied 
to underwater sound propagation are described by Botseas et al. (1983). 

The multiple-scale method used by Kirby (1986a), or the Padd approximant 
itself, can in principle be extended to any higher-order degree; in particular, 
the next relevant Padd approximant would be the (2,2) approximant: 

2 
5 m 

l 1--z(~-)  + ~ ( k )  4 
-- 4 

k 3 ( m )  2 Q k )  -/- 
(2.14) 

which is presented in Fig. 2. The desirability of carrying approximations to 
this order is apparent. However, all approximations at this order would involve 
derivative terms of higher order than Ax, Ayy or Axyy and are then not resolvable 
by the Crank-Nicolson implicit algorithm (and resulting tridiagonal matrix) 
usually applied to parabolic equations. 

3. MINIMAX APPROXIMATION 

Greene (1984, 1985) has suggested that improvements may be achieved while 
staying within the scheme of eqn. (2.9) by relaxing the exact connection 
between eqn. (2.9) and eqn. (2.8) as (m/k) --. 0 in favor of adopting an approx- 
imation which minimizes the maximum error ( l / k - c o s  0) over a prespecified 
aperture 0 ~< 0 ~< 0a. Greene investigated these so-called minimax approxima- 
tions, which may be written in the present context as: 

2 

a o + a l ( k  ) 
l 
k -  2 (3.1) 

l + b 1 ( k  ) 

for values of 0, up to 40 °. It is suspected that Greene did not extend the cal- 
culations to higher values of 0, due to the increasing degradation of accuracy 
in the limit 0--.0, as will be discussed below. Since Greene's results are pre- 
sented in different form and since he considers a maximum 0, of only 40 °, it 
is relevant to reinvestigate approximations of the form ( 3.1 ). To do so, we have 
performed the determination of the minimax approximation (3.1) which min- 
imizes the error: 

e=MAX]l/k(O) --cos OI ; O~<O~<Oa (3.2) 
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where Ilk is predicted by eqn. (3.1) and cos 8 = Ilk  is given by eqn. (2.8). The 
procedure for obtaining minimax approximations is too extensive to summa- 
rize here; the reader is referred, for example, to Chapter 6 of Morris (1983). 
Calculations here were performed using the Harwell library subroutine 
PEO5AD (Hopper, 1979). A list of values of ao, al and bl for (3.1) are given 
in Table 1 for aperture widths ranging from 10 to 90 ° in increments of 10 °. 
The coefficient values are seen to be asymptotic to the (1,1) Pad~ approximant 
as 8a-~ 0. Figure 3 gives plots of the absolute error in predicted (//k) for values 
of 0a=40 °, 60 ° and 80 °. A plot of the (1,1) Pad~ approximant, eqn. (2.9), is 

T A B L E  1 

Coefficients of  the  ra t ional  approx ima t ion  de te rmined  by varying aper ture  wid th  

Aperture  ao al bl 

Pads  1 - 0 . 7 5  - 0 . 2 5  
10 ° 0.999999972 -0 .752858477 -0 .252874920 

20 ° 0.999998178 -0 .761464683 -0 .261734267 

30 ° 0.999978391 -0 .775898646 -0 .277321130 
40 ° 0.999871128 -0 .796244743 -0 .301017258 

50 ° 0.999465861 -0 .822482968 -0 .335107575 

60 ° 0.998213736 -0 .854229482 -0 .383283081 
70 ° 0.994733030 -0 .890064831 -0 .451640568 

80 ° 0.985273164 -0 .925464479 -0 .550974375 

90 ° 0.956311082 -0 .943396628 -0 .704401903 

0 5 0  
. . . . . .  Pod@ 

eo= 4 0  ° 
- -  - -  eo = 6 0 '  

- -  - -  e o =  8 0 "  

Q25 

0 0 0  _ _ - -  ~ - - - "  . . . . .  - -  - - - - :  

-° o 'o  o "  ' ' 0 6 0  0 8 0  I O0 

s ine  

Fig. 3. Absolute errors  ( l / k  ) - cos 0 for var ious aper ture  wid ths  0,  for the  m i n i m a x  (1,1) rat ional  

approximat ion .  - - - - 0,  = 0 ° (PadS) ; 0a = 40 °; - '  - 0a = 60 °; . . . .  0a = 80 °. 
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included for comparison. For values of 0a ~ 60°, the correspondence between 
the minimax and (1,1) Pad~ approximant remains close at 0 = 0, the deviation 
for 0a = 60 ° being (1 - ao) × 100 = 0.2 %. Deviations for 0a > 60 ° at 0 = 0 increase 
rapidly due to the difficulty in approximating eqn. (2.8) as m/k~ 1. However, 
the advantages of the 0a=60 ° approximation over the (1,1) Pad~ approxi- 
mant, when considered over the entire range 0 ~< talk ~ 1, are apparent. A com- 
parison of Figs. 2 and 3 indicates that the 0~ = 60 ° approximation attains about 
the same level of accuracy as m/k~ 1 as the (2,2) Pad~ approximant, with only 
a slight decrease in accuracy at small values of 0. 

Using the method of operator correspondence to back-track again, eqn. (3.1) 
may be used to derive the corresponding parabolic approximation: 

2 i k A x + 2 k 2 ( a o - 1 ) A + 2 ( b l - a l ) A y y  2ibl k A~yy = 0 (3.3) 

which reduces to eqn. ( 2.11 ) as 0~-* 0. Looking at the case of 0 = 0 ( a/ay = 0 ), 
we see that: 

Ax = ik  (ao - 1 ) A  (3.4) 

giving a wave of the form: 

= aeikaOx (3.5) 

with wavelength: 

2~ 
Lo, -kao =L(exac t )  × a ~  1 >L(exac t )  (3.6) 

The effect of the deviation of the value of ao from 1, and hence ( l /k) (0  =0)  
from cos (0) = 1, is to distort the wavelength of a wave propagating in the 
principal propagation direction. Since range (or distance over an accumulated 
number of wavelengths) is a quantity of major interest in the underwater sound 
application, this distortion may be the factor causing Greene to limit his aper- 
ture widths to 40 °. However, in surface-water wave applications, problem areas 
are at present confined to a relatively small number of wavelengths, while the 
possible presence of strong refraction effects leads to the desirability of utiliz- 
ing the larger-aperture approximations developed here. 

As a means of further comparing the various approximations, values of 
numerically predicted normalized wavenumber: 

k ' =  (3.7) 

and numerically predicted propagation direction calculated by: 

m l 
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are  g iven  in  T a b l e  2 for  t h r e e  cho ices  o f  0a. A n  i n s p e c t i o n  o f  t h e  r e su l t s  in  
T a b l e  2 sugges t s  t h a t  a n  a p e r t u r e  o f  0a = 70 °, w i t h  a c o r r e s p o n d i n g  w a v e l e n g t h  
d i s t o r t i o n  o f  0.6% a t  0 --  0, m a y  be  a r e a s o n a b l e  a p p r o x i m a t i o n  in  m o s t  p r e s e n t  
a p p l i c a t i o n s  o f  t h e  P E M .  

TABLE 2 

Numerically predicted wavenumbers and propagation directions for several empirical 
approximations 

l l k' 
e ( ° ) ~ (exact) ~ (numerical) (eqn. 3.7) eN ( ° ) (eqn. 3.8) 

0o=8 ° (Pad4): 
0 1 1 1 0 

10 0.984808 0.984809 1.000002 10.0000 
20 0.939692 0.939749 1.000106 19.9989 
30 0.866025 0.866667 1.000555 29.9816 
40 0.766044 0.769615 1.002738 39.8689 
50 0.642788 0.656142 1.008636 49.4189 
60 0.5 0.538462 1.019775 58.1282 
70 0.342020 0.433411 1.034827 65.2396 
80 0.173648 0.359870 1.048500 69.9266 
90 0 0.333333 1.111111 71.5651 

8a=60°: 
0 1 0.998214 0.998214 0 

10 0.964808 0.983826 0.999033 10.0098 
20 0.939692 0.940454 1.000715 19.9851 
30 0.866025 0.867811 1.001546 29.9489 
40 0.766044 0.766681 1.000486 39.9766 
50 0.642788 0.641125 0.998939 50.0726 
60 0.5 0.501786 1.000894 59.9114 
70 0.342020 0.368694 1.009434 68.5772 
80 0.173648 0.270172 1.021195 74.6589 
90 0 0.233469 1.026892 76.8586 

8°=70°: 
0 1 0.994733 0.994733 0 

10 0.984808 0.981258 0.996504 10.0354 
20 0.939692 0.940293 1.000564 19.9882 
30 0.866025 0.870506 1.003883 29.8721 
40 0.766044 0.770820 1~03663 39.8248 
50 0.642788 0.642780 0.999995 50.0003 
60 0.5 0.494782 0.997401 60.2596 
70 0.342020 0.347287 1.001814 69.7169 
80 0.173648 0.234007 1.012228 76.6334 
90 0 0.190875 1.018054 79.1936 
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4. THE PARABOLIC APPROXIMATION FOR WEAKLY NONLINEAR WAVES ON 
SLOWLY VARYING DEPTH AND CURRENT 

We are now in a position to extend the PEM approximation to waves in a 
slowly varying domain by employing the correspondences between existing 
PEM approximations and the formulae derived above. Kirby (1986a) gave a 
parabolic approximation for forward-scattered, weakly nonlinear Stokes waves 
in water with slowly varying depth and ambient current, which may be written 
in the form: 

= ikk 1/2 (p _ U 2 ) 1/2 (1  k2(p_U2) ' )~  + (4.1) 
P2M 

where ~+ is related to the wave velocity potential ~ by: 

~b" ., 3+,  , c o s h k ( h + z )  
[x,y,z,~)=~ [x,y) co--~k'h e-i~t (4.2) 

with: 

(x,y) 

a= (gk tanh kh ) 1/2 (4.3) 

and where: 

M~ + = {20)kV+io) ( Va" .U) -a2k2D[AI z +iaw}~ + - ( UV~ + )x 

- ( U V ~ + ) y + [ ( p - y 2 ) ~ + ] y + 2 i o g U ' V h ~  + (4.4) 

and: 

p = CCg, C= a/k, Cg = Oa/Ok 

The coefficients P1 and P2 are given by: 

P1 =0 ; P2 =1/2 (4.5a) 

o r :  

P1 = 1/4 ; P2 = 3/4 (4.5b) 

The two sets of coefficients (P1,P2) are related to the lowest-order binomial 
expansion (2.7) and the (1,1) Pads approximant (2.9), respectively. Follow- 
ing this line of reasoning, we switch from the approximation (2.9) to the min- 
imax approximation (3.1) and introduce the coefficients ao, al, bl in eqn. (4.1) 
according to: 



3 6 4  

hiM ] '14+ = 

( - - )  =ikkl/2(p-U2)l/2 ao k2(p_U2) ~+ (4.6) 

To date, the model has only been tested in the absence of currents due to 
lack of available data. For this case, M~ + reduces to: 

M~ + = ( CCg¢+ ), +iwwO + _o)2k2DlA] 2~ + (4.7) 

The second and third terms on the right-hand side of eqn. (4.7) represent the 
effects of dissipation (with w generally a complex dissipation coeffi'cient) and 
third-order nonlinear self-interaction, respectively, with: 

D = (cosh 4 k h - 8 +  2tanh2 kh) /8  sinh4 kh 

Substituting: 

~+ = Ae 'y~(x)d~ (4.8) 

where/~ ( x ) is some average of k (x,y) over the y-direction and where we assume 
that  wave phase accumulates principally in the x-direction, leads to the para- 
bolic equation: 

CgAx+i(k-aok)CgA+~(Cg)xA+~ a l - b l ~  (CCgA,)y 

bl/k,, ( C g ) ~  io)k 2 [2A+Wa = 0 
_ b~(ogk CCgAy)yx - - t - -~-k- f f+~)(CCgAy)y +---~DIA 2 -  (4.9) 

where we have arbitrarily retained the correct form (in the sense of a multiple 
scale expansion) of the nonlinear and dissipation terms. Equation (4.9) may 
be written in finite-difference form using the Crank-Nicolson formulation. The 
scheme is extended to include higher-order derivatives by writing the term 
( CC~Ay ) y,, as: 

( CCgAy ) yx x { t+ 1 ---- tx[ ~ C~'t+ lvg/+l Jr-eGg 1 ) {At+l''*J+' - -Aj  +1 ) 
= ( t +  ½ ),gx 

y =j , Jy  

- (CC~ +~ +('Ct+~) (Aj+I -At+l)] /2Ay2 
- V ~ © l  ~- (4.10) 

- [(CC~+, +CC~)(A~+I -.4'3) - (CC~ +CC~=~) 

( Aj - A'j_~ ) ]/2Ay2 t /Ax 

This formulation fits conveniently in the usual tridiagonal matrix formulation 
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of the Crank-Nicolson implicit scheme. For the case of constant coefficients 
and no nonlinearity or dissipation, stability analysis shows that  the resulting 
scheme is unconditionally stable with an amplification factor IA'+I/A'I =1.  
The finite-difference formulation for the usual parabolic portion of the equa- 
tion may be found in Kirby and Dalrymple (1983). 

5. MODEL PERFORMANCE AT SMALL AND LARGE ANGLES OF PROPAGATION 

Before testing the large-angle capabilities of the present model, it is neces- 
sary to show that  the relaxation of model accuracy at small angles of propa- 
gation does not cause a degradation of performance in comparison with previous 
models. For this purpose, we use the laboratory results ofBerkhoffet  al. (1982), 
who studied the focusing of waves by a submerged elliptic shoal resting on a 
plane beach. This data set has been extensively employed as a test of parabolic 
model accuracy. Kirby and Dalrymple (1984) have shown that  the lowest- 
order parabolic approximation provides a good model of wave focusing in this 
experiment when nonlinear effects are included. More recently, Kirby (1986a) 
has shown that  additional features of the amplitude envelope such as the dif- 
fraction fringes are well predicted using a model incorporating the (1,1) Padd 
approximant and the approximate nonlinear model of Kirby and Dalrymple 
(1986). We thus assume that  the results of the (1,1) Padd approximant model 
may be used as a reference case, against which the minimax approximations 
may be tested for loss of accuracy as errors at small angles of incidence are 
allowed to increase. The topography and measurement transects are shown in 

I Inc ident  Wove 
I 

0 , ' I - :- :-  
s e c  

bo,o  
x(m) ~ 
1(3 __ 

" 

y(rn) 
Fig. 4. Experimental configuration: Berkhoff et al. (1982). Labelled transects correspond to sec- 
tion 1 through 8 in Figs. 5 and 6. 
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Fig. 5. Comparison of minimax approximation (0,=60 ° ) with (1,1) Pad~ approximant (Kirby, 
1986a) and laboratory data (Berkhoffet al., 1982). Pad~; .... 0a=60°; 0 data. 
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Fig. 6. Comparison of minimax approximation (~a = 70 ° ) with ( I, 1 ) Pad~ approximant ( Kirby, 
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Fig. 4; reference may be made to Kirby (1986a) and Berkhoff  et al. (1982) for 
a description of the topography. 

Two tests were conducted in order to determine the amount  of degradation 
of accuracy in the large-aperture models. Aperture angles of 60 ° and 70 o were 
chosen, as this represents the range where error at normal incidence starts to 
become significant. Results for the 60 ° and 70 ° aperture approximations are 
plotted for the labelled transects 1-8 in Figs. 5 and 6, respectively. All calcu- 
lations were performed using a wave period T =  1 s, wave amplitude Ao = 0.0232 
m, and a uniform grid spacing Ax=Ay-=0.25 m. 

An inspection of Figs. 5 and 6 indicates that  each minimax approximation 
deviates (to varying degree) from the prediction of the Pad~ model. Differ- 
ences between the 60 ° aperture model and the Pad~ model (Fig. 5 ) seem to be 
localized and non-systematic,  except for a slightly faster focusing of waves in 
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Fig. 7. Wave fields calculated using the (1,1) Pad~ model. Contours are in increments of 0.5 Aofor 
instantaneous t/(x,y). (a) 0o=0 °, normal incidence. (b) 00=45 °. 

the 60 ° model. Overall, the 60 ° model corresponds well to the Padd model, and 
both are good models of the laboratory data. 

The 70 ° aperture model also is a good predictor of the overall structure of 
the focus and wave field. However,  the small deviations from the Padd results 
seem to take on a more systematic character  here, especially with regard to a 
slight overprediction of the focus height which increases with downwave dis- 
tance (Fig. 6, section 7) and a downwave-displacement of a partial node of the 
amplitude envelope on section 6. This  general downwave displacement of fea- 
tures may be due to the accumulated effect of the overprediction of  wavelength 
in the 70 ° model. 

Strictly speaking, the 60 ° model corresponds bet ter  to the experimental 
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results and previous calculations than does the 70 ° model, and therefore seems 
to be a better choice for situations where the principal angle is essentially nor- 
mal to the grid but where spreading angle (diffraction or refraction effects) 
may be relatively large. However, deviation between data and the 70 ° model is 
not drastic or even terribly significant, and the 70 ° model would still be a 
suitable choice for most situations of this type. 

A further run to test the 80 ° aperture model (for which the distortion to 
wavelength in the normal incidence direction is 1.5% ) indicated an accentua- 
tion of the systematic distortion to the focusing pattern which begins to develop 
in the 70 ° approximation, with the deviations in the 70 ° approximation being 
increased by a factor of 2-3. In particular, the partial node apparent on transect 
6 is displaced to a position close to ( x -  10.5 ) = 9 m, almost one meter from the 
Pad~ result. It appears that  the 70 ° approximation represents some sort of 
relative upper bound for quantitative accuracy; the 80 ° approximation begins 
to exhibit only a qualitative agreement with data and other approximations. 

Having verified that  large-aperture approximations in the range of 60-70 ° 
represent good predictors of wave field development at small angles of inci- 
dence, we turn to the question of initial propagation at large angles to the pre- 
established computational grid. In order to maintain some correspondence with 
the previous example, we choose the case of a circular shoal with dimensions 
similar to the laboratory shoal of Berkhoff et al. (1982). We choose geometry: 

i ho=0.336 m ; r>R 
2 2 1/2 (5.1) 

h(x,y)= [ h o ÷ 0 . 3 _ 0 . 5 { 1 _ [ ( 5 )  + ( 5 )  1 )  ;r<.R 

where R = 4 m and r = (x 2 +y2) 1/2. The symmetry of the shoal allows the inci- 
dent wave field to be rotated to any angle to the x-axis; a "correct" model will 
be one that  causes no distortion to the resulting focusing pattern resulting from 
changes in 0o, the incidence angle. 

We take a rectangular grid with zlx' =zly' =0.25 m and overall dimensions 
0 <~ x'y' <~ 24.75 m. We use the incident wave period and amplitude conditions 
of Berkhoff et al. (1982). Two incident wave directions are studied; 00 = 0 °, 
with the shoal centered at (x' ,y') -- (5,10), and 0o= 45 °, with the shoal cen- 
tered at (x' ~ ' )  = (5,5). Open lateral boundary conditions are applied using 
the algorithm given in Kirby (1986b). 

For the first series of tests, we use the (1,1) Pads model of Kirby (1986a) to 
study the two incident wave angles. Figure 7 shows the wave patterns for the 
two incidence angles in the form of contours of surface elevation in increments 
of 0.5 Ao. The asymmetrical distortion to the focusing pattern at the 45 ° angle 
of incidence is apparent, as is a tendency for the focus to be shifted off the 
picture diagonal in the ÷ x direction, or downwave in the computational sense. 
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Fig. 8. Amplitude contours and  topography for circular shoal. Amplitude contours IA/Aol as labelled; 
(1,1) Pad~ approximant .  0o=0° ;  . . . . .  0o=45° ;  - - - dep th  contours. 

The distortion to the wave pattern due to the 45 ° angle of incidence is illus- 
trated clearly by the superposition of wave amplitude contours in Fig. 8. The 
superposition was obtained by rotating the wave field of Fig. 7b about the cen- 
ter of the shoal by 36.5 ° in a counterclockwise sense, or 45 ° minus an 8.5 ° 
distortion which represents the angle between the diagonal and the line joining 
the shoal center to the point of maximum wave height in the focus. This 8.5 ° 
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Fig. 9. Wave field calculated using 0a = 70 ° model; 00 = 45 °. Contours as in Fig. 7. 

distortion accounts for the shift of  the diffraction pattern in the downwave 
sense on the computation grid. Figure 8 shows clearly that the focus is elon- 
gated and shifted further from the shoal center than in the normal incidence 
case, with corresponding distortion in the diffraction fringes. Contour values 
in Fig. 8 (and Fig. 10) are relative to incident wave amplitude. 

Figure 9 shows the wave field for the 45 ° angle of incidence, using the 0a = 70 ° 
minimax approximation. There is still some apparent asymmetric distortion 
and a shift of  the focus off the diagonal in the + x direction; however, these 
effects are much less accentuated than in the Pad~ model. Amplitude contours 
for the normal and 45 ° incidence in the 70 ° approximation are superposed in 
Fig. 10. Here the counterclockwise rotation of the 45 ° case is 39.75 °, with a 
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Fig. 10. Amplitude contours and topography for circular shoal 0a--- 70 ° approximation. 
. . . . .  00 = 45 °; . . . .  depth contours. 

00=0°; 

distortion of 5.25 °. The two results agree reasonably well in terms of the area 
and extent of contours in the focus, and in the distance of the focus from the 
shoal center. The overall diffraction pat tern is maintained reasonably well out 
to two maxima of the diffraction fringe away from the central focus. 

The 0a= 70 ° minimax approximation clearly provides a better model for 
large-angle propagation than  does the Padd approximant model of Kirby 
(1986a). Further tests were conducted using the 80 ° approximation. This model 
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exhibited marginally better  agreement between 00 = 0 ° and 45 o than did the 
70 o model, but  caused a significant distortion to the overall extent  of the focus 
in comparison to the Pad~ and 70 ° models. 

6. DISCUSSION OF U N - C E N T E R E D  A P E R T U R E S  

This study has shown that  large-aperture minimax approximations can pro- 
vide a significant extension of the range of validity of the PEM. Tests indicate 
that  aperture widths on the order of _+ 70 ° may be used with little short-range 
distortion to a wave field resulting from errors in predicted wavelength. 

The freedom to choose a particular aperture also leads to the question of 
whether apertures centered on a nonzero principal angle could be constructed 
for cases where the non-zero angle is known in advance. For the examples 
above, this would lead to the consideration of apertures of the form 45 o + 0a. 
Table 3 gives computed coefficients for apertures centered on 45 °, with 0a 
ranging from 10 ° to 40 °. Errors for these choices are shown in Fig. 11. It was 
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Fig. 11. Absolute errors (l/k) - c o s  0 for various aperture widths, for an aperture centered on 
0 = 4 5  ° . 0 ,=10% . . . .  0~=20°; . . . . .  0 ,=30° ;  . . . . . .  0a=40 ° . 

TABLE 3 

Coefficients of the rational approximation for varying aperture width, centered on 0o = 45 ° 

Aperture B ~ ao al bl 

10 0.989725391 -0.855391072 -0.410525678 
20 0.988862080 -0.875510773 -0.444238479 
30 0.985955255 -0.906411468 -0.508501259 
40 0.974025149 -0.938102389 -0.619921508 



377 

found that the form of the function cos 0 as 0- .  90 ° did not allow these approx- 
imations to give significantly better approximations in the limit 0- ,  90 ° with- 
out accruing significant error over the aperture width. The approximation 
45 ° _+ 30 ° was found to give suitable results for the circular shoal problem, but 
an inspection of the coefficients for this case shows that this approximation 
differs very little from the 70 ° aperture centered on 0 °. It appears that, for 
examples such as those shown here, there is little advantage in choosing a 
specialized aperture over using a broad aperture centered around normal 
incidence. 

7. CONCLUSIONS 

It has been shown that the range of wave angles which is allowable within 
the limitations of the parabolic approximation may be significantly increased 
by relaxing the local accuracy of approximations based on Pads approximants 
at normal wave incidence in favor of minimax approximations, which mini- 
mize the maximum error occurring over a prespecified range of wave direc- 
tions. Numerical results are given which show that the resulting minimax 
approximations do not cause significant distortion to calculated wavefields at 
small angles of incidence. Further, we have shown that the minimax approxi- 
mations provide quantitatively accurate results for a focusing pattern devel- 
oping in a wave propagating at 45 ° to the principal direction. This range of 
quantitative accuracy is seen to be well beyond the limitations of the (1,1) 
Pad~ approximant model given earlier by Kirby (1986a). 
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