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Abstract. A generalized analytical model for benthic water flux forced

by linear surface-gravity waves over a series of layered, hydrogeologic units

is developed by adapting a previous solution for a hydrogeologic unit with

an infinite thickness (Case I) to a unit with a finite thickness (Case II), and

to a dual-unit system (Case III). The model compares favorably with lab-

oratory observations. The amplitude of wave-forced benthic water flux is shown

to be directly proportional to the amplitude of the wave, permeability of the

hydrogeologic unit, and the wave number; and inversely proportional to the

kinematic viscosity of water. A dimensionless amplitude parameter is intro-

duced and shown to reach a maximum where the product of water depth and

the wave number is 1.2. Submarine groundwater discharge (SGD) is a ben-

thic water discharge flux to a marine water body. The Case I model estimates

an 11.5–cm/d SGD forced by a wave with a one second period and five cen-

timeter amplitude, in water that is 0.5m deep. As this wave propagates into

a region with a 0.3–m-thick hydrogeologic unit, with a no-flow bottom bound-

ary, the Case II model estimates a 9.7–cm/d wave-forced SGD. As this wave

propagates into a region with a 0.2–m-thick hydrogeologic unit over an in-

finitely thick, more permeable unit, the Case III quasi-confined model esti-

mates a 15.7–cm/d wave-forced SGD. The quasi-confined model has benthic

constituent flux implications in coral reef, karst, and clastic regions. Waves

may undermine tracer and seepage meter estimates of SGD at some loca-

tions.
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1. Introduction

Submarine groundwater discharge (SGD) has been the focus of numerous field, lab-

oratory, and modeling investigations over the past decade. Field observations of SGD

typically employ either seepage meters or naturally occurring tracers. Taniguchi et al.

[2002] tabulated 45 SGD field studies on five continents; the tabulated studies used 20

different SGD characterization techniques. SGD estimates from these studies range from

8× 10−3 cm/d to 124 cm/d. Although most field studies are conducted at locations where

surface-gravity waves are ubiquitous, waves are frequently ignored as a significant SGD

forcing mechanism.

SGD is exclusively a marine process; in the current work, the more general term “benthic

flux” is used in place of SGD to avoid this limitation. Benthic flux qbf is the rate of flow

of some property across the bed of a water body, per unit area of bed, with no limitation

on the type of water body or direction of flow. Benthic flux is a vector quantity, where

the vector is normal to the bed. Benthic discharge flux qbd is oriented from the geologic

domain to the surface-water domain, and benthic recharge flux qbr is oriented from the

surface-water domain to the geologic domain (Figure 1), such that

qbf =

{
qbd, qbf > 0
qbr, qbf < 0

(1)

The units of qbf are a function of the property under consideration. For example, the

units of a benthic volume flux are [L3T−1L−2] = [LT−1], where [L] is a length dimension

and [T ] is a time dimension. SGD is then a benthic water discharge flux qbd.w to a marine

water body.
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The primary objective of the current work is to develop a generalized analytical solution

for benthic water flux qbf.w forced by linear surface-gravity waves over layered strata, by

employing Reid and Kajiura’s [1957] boundary value solution for linear-wave damping by

a rigid, porous medium. Three specific cases of the generalized solution are developed

(Figure 1): Reid and Kajiura’s [1957] hydrogeologic unit of infinite thickness (Case I), a

unit of finite thickness (Case II), and a dual-unit system that consists of a unit of finite

thickness over a unit of infinite thickness (Case III). A hydrogeologic unit is a zone of rock

or soil that can be described with a single realization of representative parameters, which

are typically used to quantify the flow of water in a porous medium, such as permeability

k or porosity n. Although a single realization of a parameter, such as one k value, is used

to describe a hydrogeologic unit, the unit is not necessarily homogeneous.

Reid and Kajiura [1957] showed that a wave loses energy to “percolation” as the wave

propagates across a porous medium. Reid and Kajiura’s [1957] percolation is a benthic

water flux, forced by the pressure gradient at the bed. Reid and Kajiura [1957] used a

complex wave number

λ = λr + ıλı (2)

where λr = 2π/L and λı are real and imaginary components, and L is wave length,

to show that wave amplitude a is damped by e−λıx over some distance x, such that

a(x > 0) = a(x = 0)e−λıx.

Riedl et al. [1972] showed that the observed amplitude of qbf.w (2.5× 10−5 m/s to 6.0×

10−5 m/s off Bogue Bank, North Carolina, USA) compared favorably with an amplitude

predicted with Reid and Kajiura [1957] (3.0× 10−5 m/s); and identified the phenomenon
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as subtidal pumping. Riedl et al. [1972] did not parse observed qbf.w off Bogue Bank into

components forced by waves and components forced by other processes.

The current work generalizes the existing solution for one hydrogeologic unit of infinite

thickness, to address a series of layered units. Reid and Kajiura’s [1957] use of the term

“infinite” may be misleading to some readers. It will be shown in Section 6.1, after

the development of necessary mathematics, that qbf.w on a hydrogeologic unit of finite

thickness ĥ approaches qbf.w on a hydrogeologic unit of infinite thickness, where λrĥ > π.

Note that the product λrĥ—dimensionless hydrogeologic unit thickness—includes both

wave (λr) and hydrogeologic unit (ĥ) characteristics.

Secondary objectives of the current work are to (1) validate the solution using laboratory

data from Yamamoto et al. [1978], and (2) examine the role that wave length, wave period,

hydrogeologic unit thickness, water depth, and permeability play in damping or amplifying

wave-forced qbf.w. A practical example is presented to show that small-amplitude waves

force O(10cm/d) SGD. Finally, the possibility that waves may confound tracer and seepage

meter estimates of SGD is discussed.

2. Benthic Flux Boundary Value Problem

Reid and Kajiura [1957] solved a two-dimensional boundary value problem in horizontal

x and vertical z dimensions (Figure 1A). The bed is horizontal and planar, with a normal

oriented parallel to the gravity vector. The porous medium is homogeneous and isotropic.

Flow in the surface-water domain is irrotational and inviscid. Flow in the porous domain

is laminar and viscous. A low-amplitude, linear wave forces a water-surface displacement

η = aeı(λx−σt) about the still-water surface at z = 0, where σ = 2π/T is wave radial

frequency, T wave period, and t is time. Total pressure ptotal is parsed into static pstatic
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and dynamic p components, such that

ptotal = p + pstatic

= p− ρgz (3)

where ρ is the density of water and g is gravitational acceleration. Governing equations

are the Laplacian ∇2 of the velocity potential φ(x, z, t) in the surface-water domain and

dynamic pressure ppm(x, z, t) in the porous medium

∇2φ = 0 (4)

∇2ppm.j = 0 (5)

where the subscript pm identifies a porous-medium variable and the subscript j is a

hydrogeologic unit counter (j = 1 for the unit bounded by z = −h). Dynamic and

kinematic boundary conditions constrain the solution at (1) the free surface (z = η):

η =
1

g

∂φ

∂t
(6)

w =
∂η

∂t
(7)

where w is vertical, z-oriented velocity; (2) the bed (z = −h):

p = ppm.(j=1) (8)

w = wpm.(j=1) (9)

where the absence of a subscript on the left-hand-side of the equation denotes a variable

in the surface-water domain; and (3) the interface of two hydrogeologic units (for example:

z = −h− ĥ in Figure 1C):

ppm.j = ppm.(j+1) (10)

wpm.j = wpm.(j+1) (11)
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A no-flow boundary condition wpm = 0 exists at the base of the deepest unit. If the

deepest unit is infinitely thick, then wpm(z → −∞) = 0.

3. Generalized Solution

It can be shown that

ppm = f
(
λh, λĥj, kj,

σ

ν

)
ρga

cosh λh
eı(λx−σt)

×
[
δc cosh(λh + λz +

∑
λĥj) + δs sinh(λh + λz +

∑
λĥj)

]
(12)

satisfies Equation 5, where f is a dimensionless function of hydrogeologic-unit character-

istics, h depth from the still-water surface to the bed, ĥj finite thickness of hydrogeologic

unit j, kj permeability of hydrogeologic unit j, ν kinematic viscosity of water, and δc and

δs are binary functions of hydrogeologic unit geometry, which take the value 0 or 1. It

can be shown with Equation 12 that

qbf.w.nd =
qbf.w

α
= − cos(λrx− σt) + β sin(λrx− σt) (13)

where qbf.w.nd is dimensionless qbf.w forced by waves,

α =
P̂ agkλre

−λıx

ν cosh(λrh)
(14)

is qbf.w amplitude,

β = tanh(λrh)(P̂R− λıh) +
λı

λr

+ Q̂ (15)

is qbf.w amplification parameter, P̂ and Q̂ are dimensionless model parameters that change

with model geometry, and

R =
σk

ν
(16)

is Reid and Kajiura’s [1957] fundamental dimensionless permeability modulus. Increases

in permeability cause R to increase; increases in wave period and viscosity cause R toD R A F T January 23, 2009, 3:27pm D R A F T
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decrease. Equation 13 is plotted in Figure 2: where β = 0, the extrema in the wave

surface correspond with the mirrored extrema in qbf , such that maximum qbr occurs at

the wave crest and maximum qbd occurs at the trough. The role that β plays in amplifying

qbf.w.nd is discussed in Section 6.3. The generalized dispersion equation

σ2 − gλ tanh(λh) = −ıP̂R
[
gλ− σ2 tanh(λh)

]
(17)

relates σ and λ. Substitution of Equation 2 into Equation 17 yields

σ2 ≈ gλr tanh(λrh) (18)

λı ≈ 2P̂Rλr

2λrh + sinh(2λrh)
(19)

Equation 18 is the well-known dispersion equation, which relates T to L, such that

changes in σ are implicitly tied to conclusions based on dimensionless parameters in λr.

Equation 18 is not a function of porous domain geometry, and is therefore valid for all

cases. Equation 19 is a function of porous domain geometry because it includes the

dimensionless model parameter P̂ .

4. Specific Solutions

4.1. Case I: Hydrogeologic Unit with Infinite Thickness

Reid and Kajiura [1957] assumed the following forms of the solution

φ(x, z, t) = [A cosh(λh + λz) + B sinh(λh + λz)] eı(λx−σt) (20)

ppm(x, z, t) = Ceλh+λzeı(λx−σt) (21)

which satisfy Equations 4, 5, and wpm(z → −∞) = 0 (Figure 1A). Their solution employs

Bernoulli’s equation

p = ρ
∂φ

∂t
(22)
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the definition of the velocity potential

w = −∂φ

∂z
(23)

and Darcy’s Law

wpm =
−k

µ

∂ppm

∂z
(24)

where µ is the dynamic viscosity of water, to yield four equations (Equations 6, 7, 8, and

9) and four unknowns (A, B, C, and λ), such that

σ2 − gλ tanh(λh) = −ıR
[
gλ− σ2 tanh(λh)

]
(25)

Latin-lettered unknowns are presented in the Appendix, for all cases.

Substitution of Equation 2 into Equation 25 yields Equation 18 and

λı ≈ 2Rλr

2λrh + sinh(2λrh)
(26)

This development exploits the fact that the product of small terms (λı ¿ 1 and R ¿ 1)

is negligible, such that λıR ≈ 0, R2 ≈ 0, λ2
ı ≈ 0; and that asymptotic approximations

exist for hyperbolic trigonometric operations on small terms, such that sinh(ıλıh) ≈ ıλıh,

and cosh(ıλıh) ≈ 1. Equations 21, 24, and A3 yield

qbf.w.I = <[wpm] = −αI [cos(λrx− σt)− βI sin(λrx− σt)] (27)

where P̂ = 1, Q̂ = 0,

αI =
agkλre

−λıx

ν cosh(λrh)
(28)

βI = tanh(λrh)(R− λıh) +
λı

λr

(29)

Case-specific solution components are referenced in the current work with subscript I

for Case I, II for Case II, and III for Case III. Dimensionless model parameters P̂ and Q̂D R A F T January 23, 2009, 3:27pm D R A F T
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are detailed for each case in Table 1. Example applications are detailed for each case in

Section 7.

4.2. Case II: Hydrogeologic Unit with Finite Thickness

To adapt Reid and Kajiura’s [1957] solution (Case I) to a hydrogeologic unit with a

finite thickness (Case II; Figure 1B), assume solutions of the form

φ(x, z, t) = [A cosh(λh + λz) + B sinh(λh + λz)] eı(λx−σt) (30)

ppm(x, z, t) =
[
C cosh(λh + λĥ + λz) + D sinh(λh + λĥ + λz)

]
eı(λx−σt) (31)

which satisfy Equations 4 and 5. Use the no-flow boundary wpm(z = −h− ĥ) = 0. Solve

the system of five equations (Equations 6, 7, 8, 9, and the no-flow boundary condition)

and five unknowns (A, B, C, D, λ) to yield

σ2 − gλ tanh(λh) = −ıP̂IIR
[
gλ− σ2 tanh(λh)

]
(32)

P̂II = tanh(λrĥ) (33)

λı ≈ 2P̂IIRλr

2λrh + sinh(2λrh)
(34)

qbf.w.II = <[wpm] = −αII [cos(λrx− σt)− βII sin(λrx− σt)] (35)

αII =
P̂IIagkλre

−λıx

ν cosh(λrh)
(36)

βII = tanh(λrh)(P̂IIR− λıh) +
λı

λr

+ Q̂II (37)

Q̂II =
2λıĥ

sinh(2λrĥ)
(38)

The Case II solution must become approximately equal to the Case I solution where

the hydrogeologic unit of finite thickness becomes very thick. Restated, the generalized

model exhibits case congruence with convergent hydrogeologic-unit properties. Specifi-
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cally, Case II to Case I congruence occurs as ĥ →∞ (the unit becomes thick), such that

P̂II → 1, Q̂II → 0, and Case II model elements (Equations 32 and 35) reduce to Case I

model elements (Equations 25 and 27)—or the Case II solution becomes approximately

equal to the Case I solution.

4.3. Case III: Two-Layer System

To adapt Reid and Kajiura’s [1957] solution (Case I) to a two-layer system (Case III;

Figure 1C), which consists of a hydrogeologic unit (identified with subscript 1) with a

finite thickness over a hydrogeologic unit (identified with subscript 2) with an infinite

thickness, specify governing equations for ppm in both hydrogeologic units

∇2ppm1 = 0 (39)

∇2ppm2 = 0 (40)

and assume the solution presented in Equation 30, with additional solutions of the form

ppm1(x, z, t) =
[
C cosh(λh + λĥ + λz) + D sinh(λh + λĥ + λz)

]
eı(λx−σt) (41)

ppm2(x, z, t) = Eeλh+λĥ+λzeı(λx−σt) (42)

such that ppm2 satisfies wpm(z → −∞) = 0. Solve the system of six equations (Equa-

tions 6, 7, 8, 9, 10, and 11) and six unknowns (A, B, C, D, E, λ) such that

σ2 − gλ tanh(λh) = −ıP̂IIIR1

[
gλ− σ2 tanh(λh)

]
(43)

P̂III =
tanh(λrĥ) + k2

k1

k2

k1
tanh(λrĥ) + 1

(44)

λı ≈ 2P̂IIIR1λr

2λrh + sinh(2λrh)
(45)

R1 =
σk1

ν
(46)

qbf.w.III = <[wpm] = −αIII [cos(λrx− σt)− βIII sin(λrx− σt)] (47)
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αIII =
P̂IIIk1agλre

−λıx

ν cosh(λrh)
(48)

βIII = tanh(λrh)(P̂IIIR1 − λıh) +
λı

λr

+ Q̂III (49)

Q̂III =
λıĥ(1− k2

k1
)
[
1− tanh2(λrĥ)

]
[

k2

k1
tanh(λrĥ) + 1

] [
tanh(λrĥ) + k2

k1

] (50)

where k2/k1 is the dimensionless permeability ratio (Figure 3).

The Case III solution must become approximately equal to the Case I solution where

the hydrogeologic unit of finite thickness becomes very thin. Restated, Case III to Case I

congruence occurs as ĥ → 0 (the unit becomes thin), such that (k2/k1) → 1, P̂III → 1,

Q̂III → 0 and Case III model elements (Equations 43 and 47) reduce to Case I model

elements (Equations 25 and 27)—or the Case III solution becomes approximately equal

to the Case I solution.

The Case III solution must become approximately equal to the Case II solution where

the permeability of the hydrogeologic unit of finite thickness becomes much larger than

the permeability of the underlying unit. Restated, Case III to Case II congruence occurs

where (k2/k1) ¿ 1 (permeability of unit of finite thickness much larger than permeability

of underlying unit), such that P̂III → P̂II , Q̂III → Q̂II and Case III model elements

(Equations 43 and 47) reduce to Case II model elements (Equations 32 and 35)—or the

Case III solution becomes approximately equal to the Case II solution.

5. Comparison with Laboratory Observations

Yamamoto et al. [1978] used a flume with a 0.50 m-deep sediment trench centered on

the bottom to measure wave-forced pore pressure response on z < −h. Sleath [1970]

conducted similar work. Yamamoto et al.’s (1978) bed was saturated with water, with

no entrained gas within the porous matrix, such that the pore fluid was incompressible.

D R A F T January 23, 2009, 3:27pm D R A F T



KING ET AL.: WAVE-FORCED BENTHIC FLUX X - 13

Yamamoto et al. [1978] reported |p(z < −h)|/p(z = −h), which can also be determined

analytically for a flume

|p(z < −h)|
p(z = −h)

=
cosh

[
λr(h + ĥ + z)

]

cosh(λrĥ)
(51)

by employing Case II (Equations 2, 31, A6, and A7) at x = 0.

Equation 51 compares favorably with Yamamoto et al.’s [1978] observations in a

1.2–mm-diameter, sand medium (Figure 4). Observational inputs are detailed in Ta-

ble 2, outputs in Table 3. Coefficients of determination are 0.998, 0.996, 0.991, and 0.970

for the 1.0, 1.5, 2.0, and 2.6 s waves, respectively. The 1 s wave is a deep-water wave

(π < λrh); the 1.5, 2.0, and 2.6 s waves are intermediate depth waves (π/10 < λrh < π).

No definitive conclusion can be offered with respect to the weak decreasing trend in the

coefficient of determination, as a function of T . This trend may correlate with a higher

level of noise in the observational system, as a function of T . Unfortunately, it is not

possible to calculate α or plot qbf.w because Yamamoto et al. [1978] did not report a.

6. Discussion

6.1. Infinite Thickness and a Cutoff between Cases I and II

Reid and Kajiura’s [1957] assumption of a hydrogeologic unit of “infinite” thickness may

be misleading to some readers. the current work shows that Case I is relevant where a

finite hydrogeologic unit is sufficiently thick, such that tanh(λrĥ) ≈ 1. Case II is necessary

where tanh(λrĥ) < 1. It is possible for the relevant solution to transition from Case II

to Case I in time at a particular location as λr increases, or in space along a particular

wave ray as ĥ and/or λr increase. For example, P̂II = tanh(λrĥ) > 0.996 and αII → αI ,

where λrĥ > π. However, as λrĥ continues to increase, tanh(λrĥ) never exceeds unity.
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The hydrogeologic unit of finite thickness, with λrĥ > π, behaves like a unit of infinite

thickness, with λrĥ →∞.

6.2. Dimensionless Amplitude Parameter for Benthic Water Flux

The dimensionless amplitude parameter for qbf.w

Â =
ανh

agk
=

λrhP̂

cosh(λrh)
(52)

is developed using Equation 14 at x = 0. The right-hand side of Equation 52 is a function

of dimensionless depth λrh, λrĥ, and k2/k1. A maximum Â exists at the intermediate

depth λrh = 1.2, as shown in Figure 5 for Cases I and II, and in Figure 6 for Cases I and

III. Case I is represented in both figures with λrĥ →∞.

For λrĥ → finite, Â decreases under Case II, from a Case I maximum of 0.663 (Figure 5).

For Case III, Â increases or decreases, as a function of k2/k1, from the Case I maximum:

Â increases (Figures 6C and 6D) where (k2/k1) > 1 (quasi-confined system, Figure 3A);

Â decreases (Figures 6A and 6B) where (k2/k1) < 1 (quasi-finite system, Figure 3B). The

dimensionless model parameter P̂ modifies ÂI to generate ÂII and account for the finite

hydrogeologic unit thickness of Case II. Because P̂II < P̂I = 1, αII < αI for equivalent

λrh (Figure 5).

Where (k2/k1) < 1, such as a location where a clay unit of low k is overlain by a sand

unit of high k (quasi-finite system, Figure 3B), the underlying unit of lower permeability

(k2) acts as a semi-impermeable bed, such that Case III becomes a quasi-finite-thickness

version of Case II, P̂III < P̂I = 1, and αIII < αI for equivalent λrh (Figure 6A and

B). For Case III, where (k2/k1) > 1, such as a location where a karst unit of high k is

overlain by a consolidated sediment unit of low k (quasi-confined system, Figure 3A),
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the semi-impermeable confining unit of lower permeability (k1) amplifies α, such that

P̂III > P̂I = 1 and αIII > αI (Figure 6C and D).

Cases I and III are congruent at (k2/k1) = 1. As k2/k1 deviates from unity,
∣∣∣∂Â/[∂(λrĥ)]

∣∣∣

increases, such that
∣∣∣∂Â/[∂(λrĥ)]

∣∣∣
(k2/k1)=0.1

<
∣∣∣∂Â/[∂(λrĥ)]

∣∣∣
(k2/k1)=0.01

in Figures 6A and

6B, and
∣∣∣∂Â/[∂(λrĥ)]

∣∣∣
(k2/k1)=10

<
∣∣∣∂Â/[∂(λrĥ)]

∣∣∣
(k2/k1)=100

in Figures 6C and 6D. Physically,

λrĥ plays a more significant role in governing Â, as k diverges in each unit of the dual-unit

system.

It is clear from Darcy’s Law that pstatic does not force qbf.w. For shallow-water waves

(λrh < π/10), Â decreases from the intermediate-depth maximum (Figures 5 and 6) be-

cause the pressure distribution is dominated by the static component. For deep-water

waves (λrh > π), Â decreases from the intermediate-depth maximum because wave or-

bitals lose contact with the bed.

6.3. Benthic Water Flux Amplification Parameter

Examination of Figure 2 and Equation 13 show that β > 0 amplifies qbf.w and causes

the time to maximum qbf.w to lag qbf.w at β = 0. However, under typical conditions (such

as the conditions detailed in Table 4) β < 0.1, and Equation 13 reduces to

qbf.w.nd ≈ − cos(λrx− σt) (53)

The reduced approximation is not valid where β > 0.1 [King , 2007, Figure 4-6], which

occurs on R > O(10−1), R = O(10−2) and λrh < O(0.1), or R = O(10−3) and λrh <

O(0.01). For example, consider hydrogeologic units of 1–cm-diameter gravel (k = 10−7m2)

and 1–mm-diameter sand (k = 10−9 m2). With ν = 10−6 m2/s, h = 0.5 m, and T = 1 s:

then (1) β = 0.57 (Equation 15), R = 0.63 (Equation 16), and the amplitude of qbf.w.nd
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is 1.15 for the 1–cm gravel (Equation 13, Figure 2); (2) β = 0.0057, R = 0.0063, and the

amplitude of qbf.w.nd is 1.00 for the 1–mm sand. The gravel yields β > 0.1 and amplifies

qbf.w.nd by 15%, in the same wave climate. A similar conclusion can be drawn for a longer

period wave and a different set of additional parameters: T = 4s, ν = 10−6m2/s, h = 4m,

k = 5 × 10−7m2 for gravel and k = 5 × 10−7m2 for sand: then (1) R = 0.79, β = 0.65,

and the amplitude of qbf.w.nd = 1.19 for the gravel; (2) R = 0.0079, β = 0.0065, and the

amplitude of qbf.w.nd = 1.00 for the sand. The gravel in the second example also yields

β > 0.1 and amplifies qbf.w.nd by 19%. Different sediment properties and wave climates

may yield different conclusions.

6.4. Simple Model for Wave-Forced Benthic Constituent Flux

Wave-forced qbf.w integrates to zero over one wave period at a point on the bed,

q̄bf.w =
1

T

∫ T

0
qbf.wdt = 0 (54)

However, for some constituents, the benthic constituent flux driven by qbf.w may not

integrate to zero over one wave period at a point on the bed because constituent concen-

trations in surface waters may not be equivalent to concentrations in the hydrogeologic

unit, near the bed.

The average qbd.w generated by the qbf.w signal over one wave period is

q̄bd.w =
1

T

∫ 3T
4

T
4

qbf.wdt =
α

π
(55)

where β = 0. Integration is limited to the discharge portion ([σT/4] → [3σT/4]) of qbf.w,

such that q̄bd.w = −q̄br.w. Average qbd.w over one wave period is equivalent to average,

wave-forced SGD over the period.
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Wave-forced wpm within the hydrogeologic unit diminishes with depth into the bed, as

z → −∞. It can be shown with Equations 2, 21, 24, and A3 that the ratio of vertical

velocity at z = (−h− ζ) to vertical velocity at the bed is

wpm(z = −h− ζ)

qbf.w

≈ e−λrζ (56)

for Case I, where ζ is the thickness of the region of porous medium over which the wave-

forced velocity field transports constituents (Figure 1A). If [wpm (z = −h− ζ) /qbf.w] =

e−2π then ζ ≈ L, where e−2π is both small and mathematically convenient.

Consider a rectangular, differential control volume of unit (horizontal) cross-sectional

area, in which the bottom face of the control volume is aligned with the bed, and the top

face of the control volume is in the surface-water domain, at a vertical height ∆z above

the bed,

Qχ = q̄bd.wCbd.χ + q̄br.wCbr.χ =
∆Cχ∆z

∆t

= q̄bd.w(Cbd.χ − Cbr.χ) (57)

is a mass conservation statement about the control volume for a non-reactive constituent

χ of qbf.w, where Qχ is the rate of wave-forced mass-transport of χ, per unit area of bed;

and Cbd.χ and Cbr.χ are representative concentrations of χ in qbd.w and qbr.w, respectively.

The surface-water domain is loaded with χ where Qχ > 0. Equation 57 is not appropriate

where χ undergoes chemical or geochemical reactions during transport.

6.5. Model Limitations

A model of a natural system is usually an abstraction of a more complex prototype,

with a soluble system of less complexity. The abstraction process requires assumptions,

which can lead to limitations. The current model for qbf.w assumes a two-dimensional
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x-z oriented system; linear wave; incompressible pore fluid; irrotational, inviscid flow in

the surface-water domain; horizontal, plane bed; rigid, homogeneous, isotropic, porous

medium; laminar and viscous flow in the porous medium; case-specific, no-flow boundary

conditions; Darcy’s Law; Equations 4 to 11; λı ¿ 1; R ¿ 1; and the hydrogeologic-unit

concept. In a strict sense, some of these assumptions, such as a two-dimensional system,

are never valid for practical applications. The abstraction process permits conclusions

about the prototype to be drawn from the behavior of the model. Clearly, because Riedl

et al. [1972] showed agreement between model a and observed a off Bogue Bank; and

Equation 51 compares favorably with Yamamoto et al. [1978], it is possible to draw some

meaningful conclusions about these natural or laboratory systems from the abstracted

model.

For every application, users of these models must determine the degree to which ab-

straction influences conclusions. For example, non-linear wave crests are steeper and

more narrow than linear wave crests. Non-linear wave troughs are more shallow and more

elongated than linear wave troughs. A wave-pumping effect clearly exists for the linear

wave (Figure 2). This effect will also exist for the non-linear wave, where, intuitively, the

steeper non-linear wave crest will translate into a more negative, steeper qbf.w.nd trough;

and the more shallow non-linear wave trough will translate into a less positive, elongated

qbf.w.nd peak. The abstraction associated with representing a non-linear wave with a linear

wave model may then introduce some error in extrema estimation. Equation 54, however,

is valid for both linear and non-linear waves.

Benthic water flux is forced by multiple gradients in a natural system. For example,

numerous investigators have considered the component of qbf forced by wave-generated
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flows on rippled beds [Shum, 1992; Precht and Huettel , 2003; Precht et al., 2004; Precht and

Huettel , 2004; Pilditch and Miller , 2006]. Wave-forced qbf.w in a natural system might then

be a combination of both the flow—rippled bed interaction and the percolation mechanism

of Reid and Kajiura [1957]. Except where noted, qbf.w is exclusively forced throughout the

current work by waves on a horizontal, plane bed, using the models detailed herein. Users

of these models in natural systems are cautioned that qbf.w described by these models

is only one component of an array of potential forcing mechanisms that may exist in a

natural system.

7. Example Application

The following hypothetical example demonstrates the utility of the generalized model by

showing that a typical, ubiquitous, small-amplitude wave (T = 1 s, a = 0.05 m) generates

an O(10 cm/d) SGD in knee-deep water (h = 0.5m). This wave might be common during

an SGD field study.

Consider the near-shore location described in Table 4 (Case I, λrĥ > π). The 1 s

wave is an intermediate-depth wave in 0.5 m of water ([π/10] < λrh = 2.1 < π). The

dimensionless amplitude parameter ÂI = 0.51 at λrh = 2.1 (Equation 52 and Figure 5) is

less than the maximum dimensionless amplitude parameter, ÂI.max = 0.66 at λrh = 1.2,

because the benthic pressure gradient diminishes at this location, as wave orbitals lose

contact with the bed. The parameter will maximize for this wave if h decreases to 0.25 m

with T = 1 s, or if T increases to 1.4 s with h = 0.5 m. Small terms necessary to simplify

the dispersion equation for this wave are of the appropriate magnitude (R = O[10−5] ¿

1, λı.I = O[10−5]m−1 ¿ 1 m−1). Equation 53 is valid, with βI < 0.1. Equations 14 or

52 yield αI = 36.1 cm/d. (It is shown in Table 4 that an identical αI = 36.1 cm/d is
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generated where T = 5 s, a = 0.233 m, h = 2.5 m; and where T = 10 s, a = 0.611 m,

h = 5.0 m.) For the 1 s wave, an increase in a, decrease in h, or increase in T to a

maximum of 1.4 s will cause αI to increase. Decreases in h can be forced by tide, or by

episodic events. If qbf.w constituent concentrations are not equivalent in qbd.w and qbr.w,

then q̄bd.w = −q̄br.w = 11.5 cm/d will cause a net advective constituent flux.

Assume that a hypothetical 222Rn activity of 2 dpm/l (analogous to concentration) is

representative of the activity in qbd.w at this location. (For comparison, over a one year

period, Martin et al. [2006] observed 222Rn activities up to 40 dpm/l at a depth of 10 cm

below the bed, in the Indian River Lagoon, Florida.) Radon 222—a noble gas—is inert and

non-reactive; atmospheric evasion and rapid radioactive decay result in a negligible 222Rn

activity in surface water. Equation 57 yields wave-forced Qbd.I = 230 dpm/m2d for 222Rn,

at this hypothetical location. At locations where 222Rn activity in the wave-mixed region

of the porous medium (−h > z > −h − ζ) is equivalent to 222Rn activity in the surface

water (z > −h), wave-forced qbf.w will not load surface waters with 222Rn, and SGD

estimates based on 222Rn balance techniques may not include wave-forced SGD. At these

locations, SGD estimates made with 222Rn balance techniques (1) may be underestimated

by as much as q̄bd.w, and (2) may only reflect a subset of all processes that force SGD at

the location, where the subset only contains processes that transport 222Rn.

Consider an abrupt geologic transition in space from the hydrogeologic unit described in

Table 4 to the 0.3–m-thick unit described in Table 5. Using the Case II model, λrĥ = 1.2

generates P̂II = 0.8 (Equation 33), for the 1 s wave. The abrupt transition reduces

ÂI = 0.51 for this wave to ÂII = 0.43, αI = 36.1 cm/d to αII = 30.6 cm/d, and q̄bd.w.I =

11.5 cm/d to q̄bd.w.II = 9.7 cm/d. The geologic transition reduces α and q̄ by P̂II = 0.8.
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If the hypothetical 2–dpm/l activity exists at this location, Qbd.I = 230 dpm/m2d reduces

to Qbd.II = 195 dpm/m2d across the transition, for the 1 s wave. The hydrogeologic unit

of finite thickness damps qbf.w as waves cross the abrupt geologic transition.

Consider an alternate abrupt geologic transition in space, from the hydrogeologic unit

described in Table 4 to the dual-unit system described in Table 6, where the upper layer is

0.2m thick with k1 = 10−11m2 and the lower layer is more permeable, with k2 = 10−10m2,

such that (k2/k1) = 10. This quasi-confined, Case III system ([k2/k1] > 1, Figure 3A)

may exist in a region with karst geology; on a coral reef; or in clastic settings, where a

veneer of finer estuarine sediment overlies coarser sediment. As the 1 s wave crosses the

abrupt transition, the quasi-confined stratigraphy increases ÂI = 0.51 to ÂIII = 0.70,

αI = 36.1 cm/d to αIII = 49.4 cm/d, and q̄bd.w.I = 11.5 cm/d to q̄bd.w.III = 15.7 cm/d.

This transition increases α and q̄ for this wave by P̂III = 1.4. If the hypothetical 2–dpm/l

activity exists at this location, the abrupt transition increases Qbd.I = 230 dpm/m2d to

Qbd.III = 315dpm/m2d, for the 1s wave. One potential consequence of the quasi-confined,

Case III system is that benthic constituent fluxes driven by waves in karst, coral reef, or

clastic regions may be elevated when compared to neighboring regions, with similar wave

climates and bed-surface geology.

8. Wave-Forced Benthic Flux May Confound Traditional SGD Observational

Techniques

Consider a transient wave climate that forces a transient qbf.w signal. In addition,

consider an SGD estimate based on a tracer concentration χ made in a well, at a depth

z ¿ −h− ζmax, where ζmax is associated with the most aggressive wave that occurs

during the observation. Wave-forced qbf.w will not affect χ at the sampling location
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because the wave-forced velocity field does not penetrate deeper than z = −h− ζmax.

The SGD estimate made with χ will not incorporate wave-forced qbf.w because χ is taken

at z ¿ −h− ζmax, beyond the influence of the wave. SGD estimates made with tracer

concentrations taken at depths beyond the influence of waves (1) may underestimate SGD

by as much as q̄bd.w, and (2) may only reflect a subset of all processes that force SGD at

the location, where the subset contains processes that transport χ.

Lee [1977, Figure 3] observed a flux asymmetry in laboratory tests of the Lee-type seep-

age meter. Lee [1977] generated a series of positive and negative, steady-state hydraulic

gradients i in a laboratory setting and measured seepage velocities, qbd.w and qbr.w, with a

manual seepage meter. Lee [1977] observed that a plot of q versus i displayed two distinct,

linear trends

qbf.w =

{
qbd.w ≈ 19.1i, i > 0
qbr.w ≈ 11.7i, i < 0

(58)

where qbf.w, qbd.w, and qbr.w in Equation 58 are not forced by waves. Lee [1977] explained

the flux asymmetry by suggesting that fine sediment is deposited on the bed when i < 0

and suspended when i > 0. The flux asymmetry ratio

C =
qbr.w

qbd.w

(59)

can be used to estimate a seepage-meter, flux-asymmetry error

ε = q̄bd.w + Cq̄br.w

= q̄bd.w(1− C) (60)

Where a seepage meter is flux symmetric, C = 1 and ε = 0.

Consider the small-amplitude wave climate described in Table 4 and assume C ≈

11.7/19.1 = 0.6 from Lee’s [1977] observation (Equation 58). The assumed asymme-
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try error ε = 4.5 cm/d will fill a one-liter measurement bag attached to a traditional,

Lee-type, manual seepage meter in 2.1 hr.

Lee [1977] investigated steady-state i; he did not consider wave-forced oscillatory load-

ing. Wave-forced flux asymmetries may differ from the C = 0.6 estimated with Equa-

tion 58. For example, the oscillatory qbf may suspend the fine sediments that caused

Lee’s (1977) asymmetry under the steady-state i. The interior of the seepage meter is

not exposed to the bed-parallel currents, which exist outside the meter. These currents

may play an important role in suspending fine sediments outside the meter. The absence

of these currents inside the meter may enable the asymmetry. This simplistic analysis

should not be interpreted as conclusive evidence that small-amplitude waves undermine

the utility of the seepage meter, at all locations. Lee’s (1977) asymmetry and this sim-

plistic analysis suggest that the seepage meter should be subjected to detailed, controlled,

documented, repeatable laboratory experiments, in which this asymmetry and the per-

formance of the seepage meter are fully investigated under an array of wave forcings and

sediment distributions.

Consider a Lee-type, manual seepage meter deployed at a location where the sediment

distribution causes the meter to operate in a flux-symmetric manner (C = 1 and ε = 0).

This flux-symmetric deployment will not measure waved-forced qbf.w because the qbf.w

signal integrates to zero over integer multiples of one wave period (Equation 54). SGD

estimates made with a flux-symmetric seepage meter may underestimate SGD by as much

as q̄bd.w.

If the valve that connects the measurement bag to the seepage chamber is one-way, such

that flow from the bag to the chamber is prohibited (a discharge-only orientation), then
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C = 0 and ε = q̄bd.w. If forcing is limited to waves, then the seepage meter may mea-

sure wave-forced q̄bd.w with the discharge-only orientation. It may be possible to deduce

wave-forced SGD with a trio of deployed seepage meters: one discharge-only orientation,

one-recharge only orientation, and one traditional discharge-recharge orientation. These

observational strategies require laboratory validation.

9. Conclusions

A generalized analytical model for wave-forced qbf.w over a series of rigid hydrogeologic

units is developed by modifying a boundary value problem by Reid and Kajiura [1957].

Solutions for hydrogeologic units of infinite and finite thickness, and for a dual-unit system

are shown to be congruent, with convergent values of ĥ and k. Yamamoto et al.’s [1978]

observations of |p(z < −h)|/p(z = −h) in a laboratory flume match the Case II solution

(Figure 4).

A dimensionless amplitude parameter Â is introduced for wave-forced qbf.w. It is shown

that Â is maximized for an intermediate-depth wave, with λrh = 1.2; and that Â de-

creases from this maximum (1) on λrh > 1.2 because wave orbitals lose contact with the

bed, and (2) on λrh < 1.2 because the pressure distribution becomes hydrostatic. For

the same wave climate (λrh), both qbf.w for the hydrogeologic unit of finite thickness and

qbf.w for the quasi-finite, dual-unit system are less than qbf.w for the hydrogeologic unit of

infinite thickness (qbf.w.II < qbf.w.I and quasi-finite qbf.w.III < qbf.w.I). For the same wave

climate (λrh), qbf.w for the quasi-confined, dual-unit system is greater than qbf.w for the

hydrogeologic unit of infinite thickness (quasi-confined qbf.w.III > qbf.w.I). Case II damps

qbf.w.I ; the quasi-finite, Case III system damps qbf.w.I ; the quasi-confined, Case III system

amplifies qbf.w.I . The potential for wave-driven qbf.w amplification by quasi-confined sys-
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tems suggests that benthic constituent fluxes may be greater in quasi-confined systems

than in neighboring regions without quasi-confinement. The quasi-confined system may

exist in regions with karst geology, on coral reefs, or in clastic settings.

Seepage meters and tracers may not accurately measure wave-forced qbf.w at all loca-

tions. SGD estimates based on tracer concentrations that are collected at depths below

the wave-forced velocity field may not register the influence of wave-forced qbf.w. Where

a tracer exhibits equivalent, representative concentrations in both the surface water near

the bed and in the wave-mixed region of the porous medium, wave-forced qbf.w may not

transport a net load from the porous medium into the surface water. SGD estimates

based on tracer conservation statements at these locations may underestimate SGD by as

much as q̄bd.w. Lee [1977] showed that the flux response of the Lee-type, manual seepage

meter is asymmetrical, under certain conditions. At some locations, a sediment distribu-

tion may exist that enables Lee’s (1977) asymmetry, such that wave-forced qbf.w pumps

water into the seepage meter. It was shown that a T = 1 s, a = 5 cm wave forces an

11.5 cm/d SGD in 0.5 m of water; and that if a C = 0.6 flux asymmetry exists at this

location, wave-forced qbf.w will fill a one liter measurement bag attached to a standard,

Lee-type seepage meter, in 2.1hr. Where the seepage meter is flux-symmetric, the seepage

meter may not be capable of measuring wave-forced qbd.w due the symmetrical qbf.w signal

(Equation 54). Laboratory experiments should be performed to investigate Lee’s (1977)

asymmetry under an array of wave forcings and sediment distributions.
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Appendix

Case I:

A =
ıC

σρ
(A1)

B =
Ck

µ
(A2)

C =
ρga

cosh(λh) [1− ıR tanh(λh)]
(A3)

Case II:

A =
ıC

σρ
cosh(λĥ) (A4)

B =
Ck

µ
sinh(λĥ) (A5)

C =
ρga

cosh(λh) cosh(λĥ)
[
1− ıR tanh(λh) tanh(λĥ)

] (A6)

D = 0 (A7)

Case III:

A =
ı
[
C cosh(λĥ) + D sinh(λĥ)

]

σρ
(A8)

B =
k1

µ

[
C sinh(λĥ) + D cosh(λĥ)

]
(A9)

C = E (A10)

D =
k2

k1

E (A11)

E =
ρga

cosh(λh) cosh(λĥ)

× 1[
1 + k2

k1
tanh(λĥ)− ıR1 tanh(λh)

[
tanh(λĥ) + k2

k1

]] (A12)
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Notation

222Rn Radon-222.

A unknown in boundary value

problem, [L2T−1].

Â dimensionless amplitude pa-

rameter for qbf.w.
As surface area of spherical sedi-

ment particle, [L2].
B unknown in boundary value

problem, [L2T−1].
C unknown in boundary value

problem, [ML−1T−2].
C seepage meter asymmetry ratio.

Cχ concentration of constituent χ,

[ML−3].
Cbd.χ concentration of constituent χ

in qbd.w, [ML−3].
Cbr.χ concentration of constituent χ

in qbr.w, [ML−3].
D unknown in boundary value

problem, [ML−1T−2].
E unknown in boundary value

problem, [ML−1T−2].
[F ] force dimension.

L wave length, [L].

[L] linear dimension.

Ms specific surface of spherical sed-

iment particle, [L−1].
[M ] mass dimension.
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O(¦) order of magnitude of some pa-

rameter ¦.
P̂ dimensionless, generalized qbf.w

model parameter.

Q̂ dimensionless, generalized qbf.w

model parameter.
Qχ rate at which a surface-water

body is loaded with a con-

stituent χ, [ML−2T−1].
R Reid and Kajiura’s [1957] fun-

damental dimensionless perme-

ability modulus.
< real part of a complex number.

T wave period, [T ].

[T ] time dimension.

Vs volume of spherical sediment

particle, [L3].
a amplitude of linear water wave,

[L].
d̄ mean diameter of sediment

particle, [L].
e = 2.71828183 . . ..

f a dimensionless function.

g gravitational acceleration, [LT−2].

h mean surface-water depth, [L].

ĥ hydrogeologic-unit thickness,

[L].
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i hydraulic gradient, [LL−1].

ı imaginary number, ı =
√−1.

k permeability, [L2].

k2/k1 dimensionless permeability ratio.

n porosity, [L3L−3].

p dynamic pressure, [FL−2 =

ML−1T−2].
pstatic static pressure, [FL−2 = ML−1T−2].

ptotal total pressure, [FL−2 = ML−1T−2].

ppm dynamic pore pressure, [FL−2 =

ML−1T−2].
qbd benthic discharge flux, prop-

erty specific units: for exam-

ple, [L3T−1L−2 = LT−1] for a

benthic volume discharge flux,

[MT−1L−2] for a benthic mass

discharge flux.
qbf benthic flux, property specific

units.
qbr benthic recharge flux, property

specific units,
qbd.w benthic water discharge flux,

[LT−1].
q̄bd.w average benthic water dis-

charge flux over one wave pe-

riod, [LT−1].
qbf.w benthic water flux, [LT−1].
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q̄bf.w average benthic water flux over

one wave period, [LT−1].
qbf.w.nd dimensionless qbd.w.

qbr.w benthic water recharge flux,

[LT−1].
q̄br.w average benthic water recharge

flux over one wave period,

[LT−1].
t time, [T ].

w vertical velocity, [LT−1].

wpm vertical velocity in the porous

medium, [LT−1].
x Cartesian horizontal dimen-

sion, [L].
z Cartesian vertical dimension,

[L].
α amplitude of qbf.w, [L].

β dimensionless amplification pa-

rameter for qbf.w.
ε seepage meter flux asymmetry

error, [LT−1].
ζ thickness of the region of

porous medium over which

a wave-forced velocity field

transports constituents, [L].
η water surface displacement about

z = 0, [L].
λ wave number, [L−1].
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λı wave number, imaginary com-

ponent, [L−1].
λr wave number, real component,

[L−1].
λrh dimensionless depth.

λrĥ dimensionless hydrogeologic-unit

thickness.
µ dynamic viscosity of water,

[FTL−2 = ML−1T−1].
ν kinematic viscosity of water,

[L2T−1].
π = arccos(−1).

ρ density of water, [ML−3].

σ wave radial frequency, σ =

(2π)/(T ), [L−1].
φ velocity potential, [L2T−1].

∇2(¦) two-dimensional Laplacian op-

erator on some parameter ¦,

where ∇2(¦) = (∂2¦)/(∂x2) +

(∂2¦)/(∂z2).
∞ infinity.

Subscripts:

0 parameter at the bed.

1 hydrogeologic unit bounded by

z = −h.
2 hydrogeologic unit with top in-

terface bounded by Unit 1.
I Case I.
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II Case II.

III Case III.

bd benthic discharge.

bf benthic flux.

br benthic recharge.

ı imaginary component of imag-

inary number.
j hydrogeologic unit counter.

nd dimensionless.

pm porous medium variable.

r real component of imaginary

number.
w water.

χ hypothetical constituent.
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Table 1. Dimensionless model coefficients.
hydrogeologic unit thickness

case surficial underlying P̂ Q̂
I ∞ - 1 0

II ĥ - tanh(λrĥ) 2λiĥ

sinh(2λrĥ)

III ĥ ∞ tanh(λrĥ)+
k2
k1

k2
k1

tanh(λrĥ)+1

λiĥ(1− k2
k1

)[1−tanh2(λrĥ)][
k2
k1

tanh(λrĥ)+1

][
tanh(λrĥ)+

k2
k1

]

Table 2. Model input and derived sediment parameters for the application of Case II to

Yamamoto et al.’s [1978] laboratory observations, where d̄ is mean sediment diameter, As surface

area of sediment sphere, Vs volume of sediment sphere, and Ms is specific surface of the sediment

sphere.

parameter value unit note
n 0.4 canonical value
ρ 1000 kg/m3 canonical value
ν 1.12× 10−6 m2/s canonical value
h 0.90 m given by Yamamoto et al. [1978]

ĥ 0.50 m given by Yamamoto et al. [1978]
d̄ 1.2 mm given by Yamamoto et al. [1978]
As 4.52× 10−6 m2 = πd̄2

Vs 9.05× 10−10 m3 = πd̄3/6
Ms 5000 m−1 = As/Vs

Bear [1988, Equation 2.6.4]
k 1.42× 10−9 m2 = n3/ [5M2

s (1− n)2]
Kozeny-Carman Equation
Bear [1988, Equation 5.10.18]

Table 3. Model output parameters for the application of Case II to Yamamoto et al.’s [1978]

laboratory observations.

T [s]
parameter 2.6 2.0 1.5 1.0 unit note
σ 2.42 3.14 4.19 6.28 s−1 = 2π/T
R 3.1× 10−3 4.0× 10−3 5.3× 10−3 8.0× 10−3 Equation 16
λr 0.89 1.25 1.91 4.03 m−1 Equation 18
L 7.03 5.04 3.29 1.56 m = 2π/λr

λrh 0.80 1.12 1.72 3.63

λrĥ 0.45 0.62 0.95 2.02

P̂ 0.42 0.55 0.74 0.97 Equation 33
λı 5.7× 10−4 8.0× 10−4 7.9× 10−4 8.6× 10−5 m−1 Equation 34

Q̂ 5.6× 10−4 5.0× 10−4 2.4× 10−4 3.1× 10−6 Equation 38
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Table 4. Hypothetical application of Case I.

parameter value unit note
general inputs
T 1 5 10 s
a 0.050 0.233 0.611 m
g 9.8 9.8 9.8 m/s2

k 1× 10−11 1× 10−11 1× 10−11 m2

ρ 1030 1030 1030 kg/m3

ν 1.2× 10−6 1.2× 10−6 1.2× 10−6 m2/s
h 0.5 2.5 5.0 m
Cbd.222Rn 2 2 2 dpm/l
Cbr.222Rn 0 0 0 dpm/l
general outputs
σ 6.3 1.3 0.6 1/s = 2π/T
λr 4.2 0.27 0.093 1/m Equation 18
L 1.51 23.1 67.6 m = 2π/λr

λrh 2.1 0.68 0.46
R 5× 10−5 1× 10−5 5× 10−6 Equation 16
Case I outputs

P̂I 1.0 1.0 1.0 Table 1
λı.I 1× 10−5 2× 10−6 5× 10−7 1/m Equation 19

Q̂I 0.0 0.0 0.0 Table 1
βI 5× 10−5 1× 10−5 6× 10−6 Equation 15

Â 0.51 0.55 0.42 Equation 52
αI 4.2× 10−6 4.2× 10−6 4.2× 10−6 m/s Equation 14

36.1 36.1 36.1 cm/d
q̄bd.w.I 1.3× 10−6 1.3× 10−6 1.3× 10−6 m/s Equation 55

11.5 11.5 11.5 cm/d
Qbd.I for 222Rn 2.7× 10−3 2.7× 10−3 2.7× 10−3 dpm/m2s Equation 57

230 230 230 dpm/m2d
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Table 5. Hypothetical application of Case II, where additional inputs and case-independent

outputs are detailed in Table 4.

parameter value unit note
additional Case II inputs

ĥ 0.3 m
Case II outputs

λrĥ 1.2

P̂II 0.8 Table 1
λı.II 1× 10−5 1/m Equation 19

Q̂II 1× 10−6 Table 1
βII 4× 10−5 Equation 15

ÂII 0.43 Equation 52, Figure 5
αII 3.5× 10−6 m/s Equations 14 and 52

30.6 cm/d
q̄bd.w.II 1.1× 10−6 m/s Equation 55

9.7 cm/d
Qbd.II for 222Rn 2.3× 10−3 dpm/(m2s) Equation 57

195 dpm/(m2d)

Table 6. Hypothetical application of Case III, where additional inputs and case-independent

outputs are detailed in Table 4.

parameter value unit note
additional Case III inputs

ĥ 0.2 m
k1 1× 10−11 m2

k2 1× 10−10 m2

Case III outputs

λrĥ 0.8
k2/k1 10

P̂III 1.4 Table 1
λı.III 1× 10−5 1/m Equation 19

Q̂III −1× 10−7 Table 1
βIII 7× 10−5 Equation 15

ÂIII 0.70 Equation 52, Figure 6C
αIII 5.7× 10−6 m/s Equations 14 and 52

49.4 cm/d
q̄bd.w.III 1.8× 10−6 m/s Equation 55

15.7 cm/d
Qbd.III for 222Rn 3.6× 10−3 dpm/(m2s) Equation 57

315 dpm/(m2d)
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Figure 1. A two-dimensional, vertically-oriented cross section—in x and z dimensions—of

wave-forced qbr.w and qbd.w, with a water surface at z = η oscillating about a still-water surface

at z = 0. The bed of the water-body is located at z = −h. The following domain geometry

is used to solve two-dimensional boundary value problems in the current work: (A) Case I:

hydrogeologic unit of infinite thickness; (B) Case II: hydrogeologic unit of finite thickness; (C)

Case III: dual-unit system, which consists of a unit of finite thickness over a unit of infinite

thickness. The wave-forced velocity field transports constituents within the porous domain, over

−h > z > −h− ζ.

Figure 2. Dimensionless benthic flux and dimensionless surface-water displacement versus

dimensionless phase position, for benthic flux amplification parameter between 0 and 1.

Figure 3. Stratigraphy that represents (A) quasi-confined system: a low permeability hydro-

geologic unit over a high permeability hydrogeologic unit (permeability ratio greater than unity),

and (B) quasi-finite system: a high permeability hydrogeologic unit over a low permeability

hydrogeologic unit (permeability ratio less than unity).

Figure 4. Depth versus ratio of the amplitude of the pressure signal at depth to the amplitude

of the pressure signal at the bed |p|/p0 for 1.0 (diamonds), 1.5 (squares), 2.0 (triangles), and 2.6s

(circles) wave periods, where symbols are from Yamamoto et al.’s [1978] laboratory observations

of a coarse-grained medium and lines are generated with Equation 51.

Figure 5. Dimensionless benthic flux amplitude parameter versus dimensionless depth for

dimensionless hydrogeologic unit depths from 0.01 to ∞, where dimensionless hydrogeologic unit

depth approaching ∞ represents Case I and dimensionless hydrogeologic unit depth less than ∞

represents Case II.
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Figure 6. Dimensionless benthic flux amplitude parameter versus dimensionless depth for

dimensionless hydrogeologic unit depths from 0.01 to ∞, for four permeability ratios (A) 0.01,

(B) 0.1, (C) 10, (D) 100, where dimensionless hydrogeologic unit depth approaching∞ represents

Case I and dimensionless hydrogeologic unit depth less than ∞ represents Case III.
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