
Eur. J. Mech. B/Fluids 18 (1999) 889–930

 1999 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

On short-crested waves: experimental and analytical investigations

O. Kimmouna, H. Brangerb,*, C. Kharif c

a Ecole Supérieure d’Ingénieurs de Marseille, IMT Technôpole de Château-Gombert, 13451 Marseille cedex 20, France
b Institut de Recherche sur les Phénomènes Hors Equilibre, Laboratoire Interaction Océan-Atmosphère, 163 Avenue de Luminy,

Case 903, 13288 Marseille cedex 9, France
c Ecole Supérieure de Mécanique de Marseille, IMT Technôpole de Château-Gombert, 13451 Marseille cedex 20, France

(Received 15 September 1998; revised 11 January 1999; accepted 19 January 1999)

Abstract – Analytical and experimental investigations were conducted on short-crested wave fields generated by a sea-wall reflection of an incident
plane wave. A perturbation method was used to compute analytically the solution of the basic equations up to the sixth order for capillary-gravity
waves in finite depth, and up to the ninth order for gravity waves in deep water. For the experiments, we developed a new video-optical tool to measure
the full three dimensional wave fieldη(x,y, t). A good agreement was found between theory and experiments. The spatio-temporal bi-orthogonal
decomposition technique was used to exhibit the periodic and progressive properties of the short-crested wave field. 1999 Éditions scientifiques et
médicales Elsevier SAS

1. Introduction

Most of the studies on the kinematics and dynamics of surface waves were focused for years on two-
dimensional wave fields and not many dealt with three-dimensional waves. To have a more realistic description
of the sea surface and a better understanding of oceanic phenomena, investigations of three-dimensional wave
fields are needed. Due to the complexity of the equations, it is presently not possible to solve the general
problem, concerning the interaction of an infinite number of wave trains of an arbitrary frequency distribution,
amplitude and wavelength. It thus appeared necessary to restrict the study of these three-dimensional fields
to simple patterns: for example, the nonlinear interaction between periodic plane wave trains of constant
amplitude could describe rather well the phenomena related to the presence of several swells coming from
distant depressions. A simple model is the nonlinear interaction of two similar uniform wave trains coming
from two different directions. The generated field is a short-crested wave field. It is a permanent flow, doubly-
periodic in two directions of the horizontal plane, and progressive in one of these directions.

Short-crested waves may occur in a number of important maritime situations. Swell being fully reflected
off a vertical sea-wall or jetty results in a short-crested wave field being found adjacent to the reflecting wall.
Waves propagating down a vertical-walled channel can assume a short-crested wave form when there is a cross-
channel variation of the flow pattern. These waves may also occur when a wave train is diffracted behind an
obstacle of finite width. These waves are known to have a very steep pyramidal shape that may cause serious
damage to vessels or off-shore structures.

The study of this particular type of wave field started at the beginning of the fifties. The first step to solve
the Laplace equations, with the two nonlinear boundary conditions was to use a perturbation method. Fuchs
[1] obtained a second order solution and Chappelear [2] a third order solution. Both solutions were written in
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dimensional form using an expansion parameter related to the ratio of the waveheight to the wavelength parallel
to the wall. This does not allow the standing wave limit to be calculated. Hsu et al. [3] calculated a third order
solution in non-dimensional form using an expansion parameter related to the ratio of the waveheight to the
wavelength of the incident wave, including the standing wave limit. Roberts [4] made a detailed investigation
of the infinite depth case. He computed solutions via a perturbation expansion up to the 27th order in wave
steepness and found that the phenomena of harmonic resonance occur at some angles causing the magnitude of
some higher coefficients to increase rapidly. The consequence is that the perturbation series has an everywhere
zero radius of convergence. Moreover it was possible to obtain convergent solutions nearly up to the maximum
wave steepness by using the Padé approximants. Furthermore, Roberts [4] showed that the singularities due to
the harmonic resonances are extremely weak and do not in any way affect the coefficients of a finite truncation
of the perturbation series. Marchant and Roberts [5] calculated a 35th order solution for waves propagating in
water of finite depth. Fenton [6] obtained a third order solution for the short-crested wave problem valid in deep
water to calculate the force exerted by the waves on the wall. One of his main findings was the non-intuitive
result that the maximum force per unit length was caused by obliquely incident waves rather than standing
waves. More recently, Ioualalen [7] determined an analytical solution, up to the fourth order, for the problem
of gravity short-crested waves in deep water, using an algebraic manipulator.

Proof of the existence of short-crested waves is a difficult task. However Reeder and Shinbrot [8] investigated
the general problem of capillary-gravity short-crested waves in water of finite depth to show that the problem
has usually a solution when the ratio of the amplitude to the wavelength is small enough. However, although
they can solve ‘generally’ the problem, they cannot always solve it. There is a set calledMd (the resonant
curves) of the space parameters (the square root Bond number

√
Bd and the incident wave angleθ ) for which the

solution is not unique. In particular, it is never possible to get a unique solution for the problem in the absence
of surface tension. For this reason Roberts [4] used the Padé approximants, to obtain a solution beyond the
singularities. Other methods were developed to compute these three-dimensional wave fields as well. Roberts
and Schwartz [9] used the numerical collocation method, for the calculation of symmetric waves in infinite
depth. Using the approach developed by Zakharov [10], Badulin et al. [11] calculated analytic solutions of
the Hamiltonian problem derived from the exact equations, and highlighted the good agreement which exists
between their results and the solutions calculated numerically according to the perturbation method developed
by Ioualalen [12]. This ‘temporal’ Hamiltonian structure is different from the ‘spatial’ Hamiltonian structure
of the wave problem (Benjamin [13] and Zufiria [14]). This latter formulation appears naturally for solutions
which are stationary in the reference frame moving with the velocity of the wave. Bridges et al. [15], using
the multi-symplectic formulation (a generalization of the temporal and spatial Hamiltonian) developed by
Bridges [16], found analytic solutions up to the third order of the problem of three-dimensional capillary-
gravity waves in finite depth.

All the studies mentioned previously are related by the forced interaction of two two-dimensional wave
trains. Another way to compute three-dimensional patterns is to investigate the bifurcation of Stokes waves.
Saffman and Yuen [17] considered the problem of the bifurcation of a uniform, two-dimensional wave train
into three-dimensional steady waves of permanent form. They obtained two types of solutions, described as
symmetric and skewed wave forms.

The symmetric form is progressive in one direction and standing in the perpendicular direction, like short-
crested waves. The skewed form is doubly-periodic in the direction of propagation and in a direction different
from the perpendicular direction. Ma [18] used a more general form of the Zakharov equation to calculate
the bifurcation of Stokes waves. Meiron et al. [19] used exact equations to calculate symmetric solutions and
compare with the weakly nonlinear theory. Martin [20] found symmetric and skewed solutions by solving the
nonlinear Schrödinger equations. Finally Bryant [21], on the basis of the full equation, used a Galerkin method
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to study the interaction of two periodic wave trains with different wavelengths. This technique, numerically
more effective than the collocation method, requires for high steepness, a number of discrete points less than the
collocation method. Moreover, its decomposition in Fourier space provides immediate complete information
about the spectral modes of the wave solutions. One important point of his study is the idea that the trajectory of
the fluid particles is three-dimensional, and that the average direction is different from the propagation direction
of the crests.

As was discussed previously, theoretical knowledge of short-crested waves progressed during the last fifty
years. On the other hand, to our knowledge, few experimental studies were carried out on the observation of
these waves in wave tanks. Su [22] and Su et al. [23], investigated symmetric and skewed three-dimensional
forms. The symmetric waves are the result of three-dimensional subharmonic bifurcation of two-dimensional
wave trains with steepness higher than 0.25. Other works coming from the study of reflection of oblique
swells on offshore constructions or on a jetty, referred to the observation of these specific wave fields. These
investigations were often combined with the study of dispersion or diffraction phenomena observed under
certain conditions (Perroud [24] and Chen [25] for solitary waves, Nielsen [26], Berger and Kohlhase [27] for
Stokes waves). However, in any case, these studies were about the permanent shape of short-crested waves.
The papers of Hammack et al. [28,29] referred to the forced interaction of two two-dimensional wave trains,
in shallow water. These authors investigated the interaction of two cnoïdal waves, propagating with a small
angle to each other. They observed hexagonal patterns, periodic in the direction of propagation and in the
perpendicular direction and explained the appearance of the crest oriented in the propagation direction, by the
resonant interaction of three waves. The third wave is called the Mach stem (Wiegel [30]) by analogy with
shock waves for gases. It was shown that these three-dimensional waves are stable even for high steepness.
Nevertheless these experiments did not concern the nonlinear interaction of two two-dimensional Stokes waves
propagating at different angles in infinite depth. Using a weakly-nonlinear slowly-varying averaged Lagrangian
theory (Whitham [31]) Marchant and Roberts [32] considered the reflection of nonlinear deep-water waves
incident onto a wedge of arbitrary angle. They found that the solution is comprised of two regions, within
which the wave properties are constant, separated by a wave jump causing the wave field to be modified. Using
the same approach Marchant and Roberts [33] extended the work of Peregrine [34] on the circular caustic
to include short-crested waves on deep-water due to reflection of the incident wavetrain from such a circular
caustic. Our study is mainly motivated by the lack of experimental results on short-crested waves in deep water.

In Section 2 we use a perturbation method to get a sixth order solution for the exact equations of short-crested
capillary-gravity waves in water of finite depth. In Section 3, a new imaging wave-slope system is presented
and tested, allowing us to measure three-dimensional wave slopes, and then by a recursive integration scheme,
the surface topography. In Section 4, the experiments carried out are presented. The results are compared with
those given by the analytical model developed in Section 2. Finally, a spatio-temporal technique is used in the
last section to characterize the kinematic properties of these waves.

2. Analytical solutions

In order to compare the experimental measurements with the theoretical shape of the short-crested waves, we
have calculated analytical solutions of the hydrodynamic equations governing the short-crested wave motion.
In this section we present the equations governing the evolution of the short-crested capillary-gravity wave field
in water of arbitrary depth, and their solutions.
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(a) (b)

Figure 1. Definition sketch of short-crested waves produced by a sea-wall reflection.

2.1. Hypothesis and equations

The fluid is assumed inviscid, incompressible and the flow irrotational. The short-crested wave field results
from the nonlinear interaction of two similar two-dimensional wave train propagating in two different directions
(figure 1). The governing equations are:

• Laplace equation:

∇2φ = 0 for − d 6 z6 η(x, y, t). (1)

• Dynamic boundary condition:

gη+ φt + 1

2

∣∣∇φ2∣∣− T
ρ
τ(x, y)=−pa

ρ
+C on z= η(x, y, t)

with τ(x, y)= N(x, y)

(1+ η2
x + η2

y)
3/2

andN(x, y)= ηxx(1+ η2
y

)+ ηyy(1+ η2
x

)− 2ηxyηxηy.

(2)

C is a constant introduced to set the mean water level to zero. The subscripts denote partial differentiation.

• Kinematic boundary condition:

ηt + φxηx + φyηy − φz = 0 onz= η(x, y, t). (3)

• Bottom condition:

φz = 0 onz=−d. (4)

• Wall condition:

φy = 0 ony = 0, (5)
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whereφ(x, y, z, t) is the velocity potential,z = η(x, y, t) is the equation of the free surface,T is the surface
tension,g is the acceleration of gravity,pa is the atmospheric pressure andρ is the density.(x, y) are the
horizontal coordinates,z is the vertical coordinate andd is the depth.

The wave is assumed to propagate in thex-direction without change of shape. The wavelength of the incident
wave isλ. The frequency of the wave isω. To put all the equations into a non-dimensional form, we set
k = 2π/λ and scale all the variables with respect to the reference length 1/k and the reference time 1/

√
gk: x̃ = xk, ỹ = yk, z̃= zk,

t̃ = t√gk.
Because of the assumption that the wave is propagating without change of shape we may then find the two
functionsη(X,Y ) andφ(X,Y,Z), 2π periodic in theX andY directions, the new variablesX, Y, Z, being
defined by: 

X =mx̃ −ωt̃,
Y = nỹ,
Z = z̃,

with m andn, the non-dimensionalx- andy-direction wavenumbers:

m= sin(θ), n= cos(θ). (6)

2.2. Resolution: perturbation method

η, φ, ω andC are expanded as power series in the small arbitrary parameterε:

φ(X,Y,Z)=
∞∑
R=1

φR(X,Y,Z)ε
R,

η(X,Y )=
∞∑
R=1

ηR(X,Y )ε
R,

ω=
∞∑
R=1

ωRε
R,

C =
∞∑
R=1

CRε
R.

(7)

The dimensionless velocity potential at the free surface may be expressed in terms of the Taylor expansion at
Z = 0 instead ofZ=η:

φ(X,Y,Z = η)=
7∑

R=1

φR(X,Y,0)ε
R +

7∑
R=1

ηRε
R

7∑
R=1

∂φR

∂z
εR
∣∣∣∣
z=0

+· · · +
[

7∑
R=1

ηRε
R

]7 7∑
R=1

∂7φR

∂z7
εR
∣∣∣∣
z=0
+O

(
ε8). (8)
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The potentialφ(X,Y ,Z) can be written as

φ(X,Y,Z= η)=
7∑

R=1

aR(X,Y )ε
R +O

(
ε8), (9)

with aR(X,Y )= φR(X,Y,0)+ φ+R (X,Y,0). (10)

The curvatureτ (X,Y) may be developed in terms of a series expansion:

τ(X,Y )=N(x, y).
(

1− 3

2

(
m2η2

x + n2η2
y

)+ 15

8

(
m2η2

x + n2η2
y

)2)
, (11)

and can be written as τ(X,Y )=
7∑

R=1

τRε
R +O

(
ε8), (12)

with τR =m2ηR,XX + n2ηR,YY + τ+R . (13)

φ+R (X,Y,0) andτ+R are developed in Appendix A up to the fourth order. The higher order terms are too long
to be given here.ηR,XX andηR,YY are the second derivatives ofηR with respect toX andY respectively. The
steepness of the wave field is defined as:

h= 1

2

(
η(0,0)− η(π,0)), (14)

which is the half non-dimensional peak-to-trough height since the peak of the wave will be fixed at(X,Y )=
(0,0). After substitution into the equations and grouping like powers ofε, we get an infinite system of
equations. The equations (1)–(3) yield:

• Laplace equation

m2φR,XX + n2φR,YY + φR,ZZ = 0 for − d 6 z6 η(X,Y ). (15)

• Kinematic boundary condition

ω0ηR,X + φR,Z =AR onZ = 0, (16)

with AR =−φ+R,Z +
R−1∑
s=1

−ωR−sηs,X +m2aR−s,X ηs,X + n2aR−s,Y ηs,Y . (17)

• Dynamic boundary condition

ηR −ω0φR,X − κ(m2ηR,XX + n2ηR,YY
)= BR +CR onZ = 0, (18)

with BR =ω0φ
+
R,X + κτ+R

+
R−1∑
s=1

(
ωsaR−s,X +m2as,XaR−s,X + n2as,Y aR−s,Y + as,ZaR−s,Z). (19)

κ is the dimensionless capillary number defined byκ = T k2

ρg
. This parameter represents the reverse of the Bond

numberBd , and measures the ratio between capillarity and gravity effects.
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2.3. Solutions

We will merely outline the solutions and refer the reader to the work of Kimmoun [35] for all the details.

The first order solution can be written as

φ1 = ω0
cosh(Z+ d)

sinh(d)
sin(X)cos(Y ),

η1 = cos(X)cos(Y ),

ω2
0 = (1+ κ) tanh(d),

C1 = 0.

(20)

The form of this first order solution restricts theRth order solution having the form:
ηR =

R∑
p,q

aRpq cos(pX)cos(qY ), (21)

φR =
R∑
p,q

bRpq sin(pX)cos(qY )cosh
(
αpq(Z+ d)), whereα2

pq =m2p2+ n2q2. (22)

The right-hand side of the kinematic and dynamic boundary conditions are trigonometric products resulting
from previous orders, so it may be expressed in the form:

AR =
R∑
p,q

AdRpq sin(pX)cos(qY ),

BR +CR =
R∑
p,q

BdRpq cos(pX)cos(qY ).

(23)

For (p,q) given, equations (16) and (18) yield −ω0paRpq + αp,q sinh(αpqd)bRpq =AdRpq,
(1+ κα2

pq) aRpq −ω0p cosh(αpqd)bRpq =BdRpq.
(24)

So the solutions are 
aRpq = αpq tanh(αpqd)BdRpq +ω0pAdRpq

(1+ κ α2
pq)αpq tanh(αpqd)−ω2

0p
2
,

bRpq =
(1+ κ α2

pq)AdRpq +ω0pBdRpq

(1+ κ α2
pq)αpq sinh(αpqd)−ω2

0p
2 cosh(αpqd)

.

(25)

The short-crested wave steepnessh, which is an input of the analytical model, is a polynomial function of
the small expansion parameterε: h= P(ε). The perturbation parameterε can be easily found by inverting the
polynomial series:ε = P−1(h).

The analytical solutions were calculated up to the ‘sixth order’ using XMAPLE and extend previous works
about short-crested waves to higher order. For pure gravity short-crested waves in water of finite depth and for
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capillary-gravity short-crested waves in deep water, the solutions were calculated up to the ‘seventh order’. For
pure gravity short-crested waves in deep water, this method allows us to calculate a solution up to the ‘ninth
order’. The second order solution and the frequency at the third order are given in the Appendix B. The sixth
order solution is a sum of thousands of different terms.

Figures 2and3 show the shape of typical analytical results of the short-crested wave field problem. The
picturefigure 2(a), corresponds to short wavelength and small depth. In this case, patterns exhibit hexagonal
shapes. The picturefigure 2(b)is specific to waves in water of finite depth with steep crests and flat troughs. The
picturefigure 3(a)is characteristic of capillary waves with round crests and the picturefigure 3(b)is specific to
steep short-crested gravity waves with the pyramidal shape described by Roberts [4].

3. Experimental technique

3.1. Introduction

The precise measurement of the spatial and time characteristics of a wave field is still an open problem, even
in a laboratory environment. Only optical methods allow the determination of the water surface topography
without disturbing the waves. Well known techniques are the ‘stereo-photography’ (Shemdin et al. [36]), the
‘scanning laser slope gauge’ (Bock and Hara [37]) and the ‘shape from shading’ (Jähne and Riemer [38])
methods. ‘Stereo-photography’ was mainly used in open field environment (Banner et al. [39]), but careful
analysis showed that the height resolution was achieved only for waves with wavelengths larger than 100 times
the camera horizontal resolution (Jähne and Schultz [40] and Branger et al. [41]). The ‘laser slope gauge’
gives precise results in the wavenumber and frequency domains. However, this device is not dedicated to
give instantaneous surface topography (Bock and Hara [37]). The ‘shape from shading’ technique was first
developed by Keller and Gotwols [42] and Jähne and Waas [43]. This method, based on the lights refraction
at the water surface, gives one component of the slopes of the waves over a rectangular area. Jähne and
Riemer [38] have improved the technique by measuring the two components of the slopes. Unfortunately these
two components were not measured simultaneously and the surface topography determination was not possible
(Keller et al. [44]). Recently Zhang and Cox [45] made a major improvement using a color screen with suitable
2-D color patterns. This apparatus was able to detect simultaneously the slope amplitude and direction. The
ultimate resolution was sufficient to study the waveform of capillary waves generated in a wind-wave tank
(Zhang [46]). The area of the water surface examined was about 20× 20 cm2.

Our application needed a larger area, typically 60× 60 cm2. A new imaging wave-slope system based on a
combination of the Jähne and Riemer [38] and Zhang and Cox [45] techniques, with a two-colored submarine
lighting box, a color camera and a RGB laser video-disk recorder was developed. Moreover, we developed a
de-noising integration procedure to obtain the 3-D water surface elevation over the full area. The time history
of the water surface was scanned by successive photographs taken at a rate of 25 frames per second.

3.2. Optical setup

The ‘shape from shading method’ is based on light propagation through a diffusive medium and light
refraction by the water surface. The water slope measurements by light refraction has been described in details
by Jähne and Riemer [38]. The source of the light is entirely from below the water surface. A lighting box
located on the floor of the tank contains an aqueous suspension of unisphere latex polystyrene particles. The
box is illuminated on one side by a row of bright lamps. The aqueous solution acts as a diffusive medium and
induces an exponential decay of the light. Images of the illuminated surface are acquired with a camera located
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(a)

(b)

Figure 2. Representation of the analytical surface shape for (a) capillary-gravity short-crested waves in water of finite depth:h= 0.25, θ = 30◦, κ =
2.92 (λ= 1 cm),d/2π = 0.2, (b) pure gravity short-crested waves in water of finite depth,h= 0.25, θ = 30◦, d/2π = 0.1.
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(a)

(b)

Figure 3. Representation of the analytical surface shape for (a) capillary-gravity short-crested waves in deep water:h = 0.30, θ = 30◦, κ = 2.92
(λ= 1 cm), (b) pure gravity short-crested waves in deep water,h= 0.3, θ = 30◦.
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on the top of the facility and looking vertically downward. When waves propagate, light rays coming from the
underwater screen box are deflected by the slope of the wavy surface. The gradient of light intensity is then
modulated by the waves. If the water-depth is large compared with the wave amplitude, then the component of
the wave slope in the direction of lighting,s, can be found, to first order approximation, with a simple geometric
law function of the brightness of the wavy surface imageI and the brightness of the surface at restI0 (Jähne
and Riemer [38]):

s = 1

α

I − I0
I0

, (26)

whereα depends on the water depth and the light intensity gradient of the diffusor box. If two floodlights are
used with two different monochromatic wavelengths in two different directions, then two components of the
wave-slope can be measured simultaneously. The water elevation is calculated by integrating the two-slope
components.

For our experiments, we used narrow-banded red and green lights which induced exponential decay of red
intensity in thex direction and green intensity in they direction. A schematic view of the lighting box is
displayed infigure 4. The dimensions of the box were 120× 120× 20 cm3. The box was illuminated by two
ramps of ten 100 W halogen lamps located beside each lateral screen wall. A diffusor medium was put in front
of the lamps to obtain an homogeneous lighting. The light intensity of each ramp was controlled by a voltage
variator. The screen on thex-side was covered with a monochromatic gelatin green filter (Kodak Wratten Filter
reference 29). The screen on they-side was covered with a monochromatic gelatin red filter (Kodak Wratten
Filter reference 58). We used these two narrow-band filters because their central color wavelengths were far
from each other and only 0.6% of the transmitted light energy overlaps (figure 5). The latex particles diffused
the light and induced an exponential decay of the red and green intensities.

A side view of the video experimental setup is shown infigure 6. The image acquisition apparatus consists
in (a) a three ‘charge coupled device’ color video camera, (b) a laser video-disk recorder, and (c) a Unix
workstation with a video acquisition card.

(a) The Sony DXC-930P color video camera produces high quality colored pictures thanks to the use of a
high performance three-chip Charge Coupled Device (CCD) having 752× 582 effective picture elements that
allowsseparated acquisitionsof the red, green and blue component of the light. The peaks of the CCD received
red and green light spectra were close to the peaks of the transmitted red and green filtered light spectra. The
total overlapping of the two colors was less than 4% (figure 5). The camera has a high sensitivity and a high
signal-to-noise ratio (56 dB). The shutter speed can be set manually to avoid fuzzy images of moving waves.
A Sony VCL-712 zoom lens with a varying focal length was mounted on the camera, so it was possible to
adjust the size of the observational field of view without moving the camera. The spatial resolution depended
on the focal length. Typically, the picture size was 110× 75 cm2, which gives an horizontal resolution of
0.15× 0.15 cm2 per pixel.

(b) The Sony 4000-P laser video-disk recorder (LVR) was connected to the camera through 4 cables (red,
green, blue and synchronization connections). The laser video-disc has a capacity of 76500 images with a
maximal recording rate of 25 video frames per second. The LVR is a very convenient system: each image is
referenced by a number and can be viewed directly, as long as required, without being altered.

(c) For digitization and numerical processing, the LVR was connected to an Indy Silicon Graphics
Workstation through an S-VHS video acquisition card. Color information (chrominance) and light intensity
(luminance) were acquired separately, which was of interest for our use. However, an RGB video card would
have been better to acquire separately the red and green components of the light. Unfortunately such a card was
not available on the workstation during the experiments.
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Figure 4. The light box seen from above, the water surface being at rest.

Figure 5. Kodak filter transmitted spectra and camera CCD received spectra.
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Figure 6. Side view of the video experimental apparatus.

3.3. Slope measurements

The distance between the water surface and the camera was 340 cm and the water depth above the underwater
light box was 67 cm. These values are high compared with the maximum wave-height of the short-crested
waves, (i.e. 2 cm). So the first order approximation of Eq. (26) can be used (Jähne and Riemer [38]). The
two-components of the wave-slopesx andsy are determined by:

sx = 1

αred

Ired− I0 red

I0 red
,

sy = 1

αgreen

Igreen− I0 green

I0 green
.

(27)

• I0 red andI0 greenare the red and green components of the brightness of the surface at rest.
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Figure 7. Integration scheme.

• Ired andIgreenare the red and green components of the brightness of the wavy surface.

• αred andαgreendepend on the red and green light intensity gradients and on the water depth at rest.

To reduce the background noise due to image digitization, we applied an adaptative two dimensional Wiener
filter based on statistical estimations from the local neighborhood of 5×5 pixels2 (ref. Matlab Image Processing
Toolbox). This filter acts as a low passband filter with a cutoff wavelength of 7.5 mm. Near the red source there
was a saturation of the light intensity, and far from the red and green sources, the camera was not sensitive
enough to measure a significant decay of light. The domain where the red and green light decayed exponentially,
within a relative error of 1%, was finally limited to a square area of 45× 45 cm2 (Kimmoun [35]).

3.4. Water elevation

The elevation wave fieldη(x, y) over the sample area may be obtained by integrating the measuredx andy
wave slopesηx(x, y) andηy(x, y). However, the residual noise of the measurements and the approximations
used to compute the slopes from the image lead to the ‘non integrability’ of the slopes wave field, i.e.:∫

x

ηx(x, y)dx 6=
∫
y

ηy(x, y)dy. (28)

As shown infigure 7, the water elevation at pixel (i + 1,j + 1) can be computed from water elevation at pixel
(i,j ) using two different paths :

ηi+1,j+1(path1)= ηi,j +
1x

2

(
ηx(i + 1, j)+ ηx(i, j))+ 1y2 (

ηy(i + 1, j + 1)+ ηy(i + 1, j)
)
,

ηi+1,j+1(path2)= ηi,j +
1x

2

(
ηx(i, j + 1)+ ηx(i + 1, j + 1)

)+ 1y
2

(
ηy(i, j)+ ηy(i, j + 1)

)
.

(29)

The shift due to non integrability of the surface,

1hi+1,j+1= ηi+1,j+1(path1)− ηi+1,j+1(path2) (30)
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Figure 8. Measured elevation of the frozen plastic wave, oriented at 0◦.

can be minimized by a factorγ , by correcting thex andy slopes at each pixel:
ηx,corrected(i, j) = ηx(i, j)− 1

γ

1h

1x
,

ηy,corrected(i, j) = ηy(i, j)+ 1

γ

1h

1y
.

(31)

By applying recursively this correction to every path over all the domain, the shift1hmay be minimized up to
a threshold value, thus giving a valuable water elevation wave field.

3.5. Assessment of the optical device

Jähne and Riemer [38] and Keller et al. [44] used a ‘frozen wave’ to calibrate their water slope measurements.
We used a similar technique to prove the availability of our new optical device to measure the water surface
topography. The precision of the optical setup was evaluated with a frozen wave built from a thin transparent
foil bent into the shape of a plane sinusoïdal wave by a surrounding frame. The rigid wave was put onto the
water in such a way that the space below the foil was filled with water. The sinusoidal frozen wave had a
wavelength ofλ= 10 cm with an peak-to-trough wave height of 3.7 cm. Due to the high slopes of the wave
(the maximum slope was 66◦), optical rays coming from the edge of the lighting box were deflected outside
the camera. So the measurement area was reduced to 22× 22 cm2. A 3D plot of the elevation using the new
integration method is shown infigure 8. This representation shows qualitatively the ability of the method to
reconstruct the water elevation wave field. The crest-to-trough and wavelength measured by the optical device
are compared with the actual values intable I, for two plastic wave directions. The errors, less than 4% for
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Table I. Measured amplitude (2aexp) and wavelength (λexp) for two directions of the calibration wave;
absolute and relative comparisons with the actual values.

θ 2aexp λexp e2a e2a% eλ eλ%

0◦ 3.65 cm 9.60 cm 0.05 cm 1.35% 0.4 cm 4%

90◦ 3.57 cm 9.70 cm 0.13 cm 3.4% 0.3 cm 3%

Table II. Angle (θexp) and wavelength (λexp) of the plastic wave computed from spectral analysis of the
measured data: comparisons with the actual valuesθactualandλactual.

θactual θexp eθ λactual λexp eλ eλ%

0◦ 0◦ 0◦ 10.0 cm 10.1 cm 0.1 cm 1%

25◦ 26◦6 1◦6 10.0 cm 9.90 cm 0.1 cm 1%

elevation and wavelength, give an idea of the relatively good estimation provided by the system, even for a
high steepness geometry. Measured wavelength and direction, calculated by two-dimensional spectral analysis,
for two other plastic wave configurations, are presented intable II. The results give errors less than 2◦ for the
direction and 1% for the wavelength.

In conclusion, we assess that this new two-colors shape for shading technique, combined with a new recursive
integration scheme, provides surface topography over the selected area within a precision of 4% for the
elevation, 1% for the wavelength and 2◦ for the direction.

4. Experiments

4.1. Experimental setup

The aim of the experiments was to measure three-dimensional properties in time and space of a short-crested
wave-field and to compare the results with the analytical development described in Section 2.

The experiments were conducted in the large IRPHE wind-wave tank. The facility (40 m long, 3 m wide
and 3 m high) is described in details by Coantic et al. [47]. For experimental convenience, the short-crested
wave-field was generated by the reflection of an incident wave train on a vertical wall. A schematic view of
the experimental setup is shown infigure 9. An electro-mechanical plunging wave-maker was installed on a
traveling support. The amplitudea, frequencyω, and direction of the initial wave-trainθ , were adjustable.
Transverse propagation of incident waves was limited by two side-walls (wharfs 1 and 3 infigure 9). Incident
waves were reflected along wharf 2. Interaction of incident and reflected plane waves produced the required
short-crested wave patterns which were measured with the imaging device described in Section 3. Wave
absorbers were put on the opposite sidewall to avoid backward wave reflection. A capacitance wire wave gauge
was located halfway between the wave-maker and the location of the lighting box. Elevation of the incident
waves were measured with a precision of 0.3 mm. The water surface was cleaned before each experiment by
blowing a light wind so that any surface film was collected on a filter at the end of the tank. For each run, a
time series of water elevation was acquired at a frequency of 100 Hz during two minutes. Spectral analysis
gave the dominant wave frequency,ω= 2π f . The wavelength,λ= 2π/k, was computed through the standard
dispersion relationship:

ω2= g k(1+ (ak)2)+ T
ρ
k3 (32)
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Figure 9. Schematic top view of the experimental setup.

which gives:

k =A1/3− g

3
(
ga2+ T

ρ

)
A1/3

(33)

with

A= ω2

2
(
ga2+ T

ρ

) + 1

18

√
4g3+ 27ω4

(
ga2+ T

ρ

)√
3(

ga2+ T
ρ

)3/2 . (34)

4.2. Experimental conditions

A first series of experiments was conducted to determine the experimental conditions for which it was
possible to generate a steadily propagating short-crested wave field in the facility.Figure 11is a camera view of
a high steepness generated short-crested wave field showing qualitatively the characteristic pyramidal form of
the crests. The range of the input parameters (amplitude, frequency and incidence angle of the wave-maker) was
limited by experimental constraints. Firstly the range of available amplitude and frequency values was reduced,
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Table III. Experimental conditions: incident wave characteristics.

Experiment Incidence Incident Incident Incident Incident

number angle f (Hz) 2a (cm) λ (cm) ak

1 3.71 1.10 12.45 0.28

2 45◦ 4.30 0.75 9.35 0.25

3 4.45 0.49 8.48 0.18

4 3.66 0.66 12.18 0.17

5 35◦ 4.05 0.54 10.06 0.17

6 4.64 0.44 7.83 0.18

due to electro-mechanical constraints and to the fixed triangular profile of the wave-maker section. Secondly
the generation of steep Stokes waves (incident wave steepness larger than 0.25) produces perturbations due to
three-dimensional instability (see Mc Lean et al. [48] and Mc Lean [49] for numerical investigations; Su [22]
and Su et al. [23] for experiments) and Benjamin–Feir type instability (Benjamin and Feir [50]). However in our
experimental configuration, Benjamin–Feir instabilities did not appeared because the measurements area was
always located at less than twenty-four dominant wavelengths away from the wave-maker (Lake and Yuen [51]
and Melville [52] have shown that, for the same conditions, these modulations need more than fifty wavelengths
to appear).

An other phenomenon arises when the incidence angleθ , is relatively large (i.e. greater than 60◦). The
singularity, due to the intersection between wharf 1 and wharf 2, causes the apparition of the ‘Mach stem’. An
example of the Mach reflection observed in the tank for an incidence angle of 60◦ is shown infigure 10. The
Mach stem phenomenon was described for the case of periodic water waves by Nielsen [26] and Berger and
Kohlhase [27]: when the incidence angle is large, a third wave (called the stem) is generated which intersects
the wall normally. The incident crest, the reflected crest, and the stem crest meet at a point some distance away
from the wall. The wave amplitude along the barrier, that is, the stem height, increases down-wave for a finite
distance and then levels off gradually. At any station this amplitude increases with the angle of incidence. The
width of the stem region, which generally increases with distance along the wall, is larger with larger incidence
angle and shorter incident wavelength.

Finally, for the present study, we selected six experimental conditions for which the Mach effect described
above was not observed. The incident wave characteristics measured by the wave gauge for each run are
summarized intable III. The incident wavelengthλ was computed from the measured frequencyf using
relations (32)–(34). All these experimental conditions are those of deep water (d/λ > 5). Stable experimental
conditions were obtained for experimentsn◦ 2 to 6, but slight instabilities were observed during experiment
n◦ 1 which corresponds to the highest incident wave steepness (ak = 0.28).

4.3. Results and comparisons

For the six experiments performed, the slopes were calculated in the two horizontal directions and the
topography of the water surface was computed with the method described in Section 3.4. The acquisition
duration for every experiment was about twenty seconds at a rate of twenty-five images per second. From these
thousands of images, hundreds of pictures were digitalized and numerically treated. For simplicity, we first
discuss in detail results from experimentn◦ 6. This case is typical of waves in the range of short-gravity waves
(Bd = ρg/T k2= 20.18). Results from the other experiments will be presented later.
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Figure 10.Overhead image showing Mach reflection. Incident waves (θ = 60◦) are coming from the top right of the picture; wharf 2 is on the left. The
white lines show the location of the wave fronts.

4.4. Experimentn◦ 6

Figure 12gives an example of the short-crested wave slopes,ηx(x, y) andηy(x, y), measured by the optical
device. Pyramidal waves appear to be very steep: wave slope values extend from−0.6 to+0.6. Contour lines
show regular forms or patterns in the two horizontal directions. The iso-slope lines appear to be slightly noisy
due to the experimental technique used (see Section 3.3). The noise intensity is higher far from the light source
(high values ofx andy). But even if the iso-slope contours seem to be irregular, the vector map of the 2D slope
field computed from theηx andηy values, plotted infigure 13, exhibits coherent patterns, where their structure
can be easily seen.Figure 14 represents the iso-elevation lines of the surface topographyη(x, y) computed
with the recursive integration scheme described in Section 3.4. The patterns are aligned along thex and y
directions, and troughs and crests are periodically spaced. Furthermore the crests have a rhombic form while
the troughs have an elliptic form. The crests seem to be sharper than the troughs. We can also note that the crests
are, in terms of absolute value, ‘higher’ than the troughs, i.e.ηmax>−ηmin. Figure 15 is a three dimensional
view of the measured topography. As mentioned previously, the crests have a sharp pyramidal-like form. This
pyramidal shape is in agreement with the camera view of the wave field shown infigure 11. Furthermore, the
measured patterns are qualitatively similar to the analytic gravity wave patterns infigure 3(b).
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Figure 11.Experimentn◦ 6: camera back view the short-crested wave field.

The directional spectral density of the wave slopes is shown infigure 16(a)in the (log(k), θ) plane. The
angular spreading of the energy at the dominant wavenumber is also shown (figure 16(b)). Clearly two peaks
can be observed. The location of the maximum energy defines (a) the wavelength (λpeak= 7.70 cm) and
(b) the angles for the incident (left peak,θi = +34◦) and the reflected (right peak,θr = −34◦) wave trains.
These measured values are in good agreement with the initial conditions imposed by the wavemaker for this
experiment, i.e.λi = 7.83 cm andθi = 35◦. The angular spectrum shows that no parasitic waves were present
in the flow. Moreover, incident and reflected waves have nearly the same energy.

Results from the other experiments and comparisons with analytical formulations presented in Section 2 are
given in the next section.

4.5. Water level comparisons

Figure 17gives an example of the surface topography measured for each of the six run experiments listed
in table III. Patterns present very regular forms in the two horizontal directions. Wave crests and wave troughs
are aligned along oblique directions.Figures 17(a), (b)and(c) correspond to 35◦ incident waves, andfigures
17(d), (e)and(f) to 45◦ incident waves. The size of the patterns clearly depends on the value of the incident
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(a)

(b)

Figure 12.Experimentn◦ 6: iso-slope contours (a) inx-direction (range interval[−0.42,0.44]), (b) in y-direction (range interval[−0.58,0.63]). Solid
lines for positive slopes and dashed lines for negative slopes.
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Figure 13.Experimentn◦ 6: vector map of the two-dimensional slope field.

wavelength (see for examplefigures 17(a)(λi = 12.45 cm) and17(f) (λi = 7.83 cm)). The rhombic form of the
crest and the elliptic form of the troughs appear clearly on those figures.

In order to compare these experimental measurements with the theoretical developments presented in
Section 2, a corresponding analytical surface was computed for each of the six experiments. The analytic
input parameters, i.e. incidence angleθi , wavelengthλi and incident steepness(ak)i , were adjusted to the
experimental incident wave conditions measured with the capacitance gauge between wharfs 1 and 3. The
analytical surface topography was then computed and compared with the measured surface topography. For
example, the short-crested wave field presented infigure 18 was calculated using the input conditions of
experimentn◦ 6. This figure, showing a theoretical surface, is very similar to the experimentaln◦ 6 measured
surface presented infigure 15. Only small deviations can be detected near the measured crests.

To present quantitative comparisons, we have computed the root mean square (RMS) difference between
analytical and experimental surfaces over a full short-crested wave pattern for each experiment. TheRMS
values were computed over a pattern centered on a crest and over a pattern centered on a trough. The input
values used for the analytical surface determination (angleθ , wavelengthλ and short-crested wave steepness
h) and the resultingRMSdifferences are listed intable IV. RMSerrors are relatively small: all the values are
less than 0.23 cm and lower than 10% of the crest-to-trough values. These results show the good accuracy of
the measurements from the new optical device compared with the analytical developments.

Examples of graphic comparisons are given infigures 19–22. We have plotted the iso-elevation contours of
the measured surface topography (solid lines), the corresponding analytical surface topography (dashed lines),
and the absolute difference between the two surfaces. These figures are convenient to visualize the location
where the errors are the highest. Three different classes of experiment may be noted.
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Figure 14. Experimentn◦ 6: surface topography; iso-elevation contours provided from the new integration method (contour interval in cm:
[−0.34,0.44]). Dashed lines represent the negative values and solid lines the positive values.

Table IV. RMS differences between experimental and analytical surface topographies. The input parameters
(θ, λ, andh) used for the analytical computations are indicated.

Exp. θ λ (cm) h Area RMS Crest-to-

n◦ centered difference trough

on (cm) (cm)

1 44◦50 13.24 0.603 crest 0.229 2.54

1 44◦30 12.93 0.547 trough 0.207 2.25

2 45◦00 10.60 0.442 crest 0.137 1.49

2 45◦25 10.28 0.458 trough 0.119 1.50

3 45◦00 8.90 0.378 crest 0.054 1.07

3 44◦20 8.80 0.461 trough 0.070 1.29

4 35◦40 12.42 0.344 crest 0.082 1.36

4 36◦40 12.30 0.332 trough 0.085 1.30

5 31◦25 10.00 0.336 crest 0.116 1.07

5 32◦40 10.35 0.343 trough 0.111 1.13

6 32◦25 7.85 0.352 crest 0.042 0.88

6 33◦55 7.71 0.334 trough 0.041 0.82
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Figure 15.Experimentn◦ 6: three-dimensional view of the measured short-crested wave field.

The first class corresponds to the experiments with no deformation of the patterns in comparison with the
analytical model (experimentsn◦ 3, 4 and 6). Theoretical and experimental troughs and crests merge and the
RMSerrors are small, between 0.04 to 0.08 cm (cf.figure 19andtable IV).

The second class includes the experiments for which the measured patterns are turned left in comparison
with the model. Experimentsn◦ 1 and 2 belong to this class. An example of comparison for runn◦ 1 is
shown infigure 21. We can see clearly the differences near the four edges of the domain.RMSdifferences
are much greater, they are about 0.12 to 0.23 cm. This second class corresponds to high short-crested wave
steepness valuesh (seetable III). This deformation might be due to three-dimensional instabilities, like those
described by Su (1982) for an incident wave with steepness greater thanak = 0.25. There is another explanation
of this discrepancy. This deformation might be due to the refraction of the incident wavetrain through the
wave jump which occurs near the wall as described by Marchant and Roberts [32]. Due to the wave jump the
incident wavetrain turns left and propagates slightly more parallel to the wall. Furthermore, when the waves
are very steep, short-scale roughness or parasitic capillary waves appear along the waves (i.e.figure 11). This
phenomenon could be due to three-dimensional instabilities or to curvature effects at the crest. However the
image processing technique with the Wiener filter did not allow the measurement of these small scale structures.

The third class (experimentn◦ 5, figure 22), is characterized by experimental patterns having a diamond-
shaped form. In this case, the location of the crests and troughs are juxtaposed with the model but the analytic
and measured pyramidal forms are slightly different.RMSerrors are about 0.11 cm.

Numerous images were digitized and analyzed for each experiment.RMSdifferences were always very
small, i.e. less than 0.5 cm. Analytical and experimental potential energy per unit area were also compared.
Values differed by less than 10%, which is coherent with the small quadratic errors presented in this section.
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Figure 16.Experimentn◦ 6: (a) directional spectral density of the wave slope; (b) directional distribution atk = kpeak.

In the following paragraph, we investigate the kinematic properties of the short-crested wave train.

5. Spatio-temporal data analysis

5.1. Space-time diagrams

Images were acquired at a rate of 25 frames per second. Therefore, the measured surface elevation may
be considered as a function of three variablesη(x, y, t). For a fixed ordinate value,yfix , the spatio-temporal
cross-section

η(x, t){y=yfix} = η(x, yfix, t)

gives information on the evolution of the wave patterns along thex axis. Similarly, for a fixed abscissa value,
xfix , the cross-section

η(y, t){x=xfix} = η(xfix, y, t)

refers to the evolution of the patterns along the transverse direction. An example of such cross-sections is given
in figures 23(a)and(b) for experimentn◦ 6. Figure 23(a)represents theη(x, t){y=yfix} iso-elevation contours
at yfix = 12.6 cm. In this plot, the slopex/t is exactly thex-component of the phase velocity of the short-
crested wave patterns:cx = x/t ' 65.1 cm/s. The existence of straight lines in the(x, t) plane confirms the
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(a) (b)

(c) (d)

(e) (f)

Figure 17. Typical examples of water wave iso-elevation contours for experiments listed intable III; (solid lines: positive elevation; dashed lines:
negative elevation).
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Figure 18.Three-dimensional view of the theoretical short-crested wave field for the same conditions as experimentn◦ 6.

steadily propagation in thex-direction of the waves.Figure 23(b)is theη(y, t){x=xfix } iso-elevation contours at
xfix = 13.2 cm. The patterns are aligned parallel to the space directiony and in the time directiont . This means
that there is no transversal displacement of the patterns.

This analysis shows clearly that the short-crested wave patterns have a permanent form moving along the
wharf 2 in thex-direction with no transversal oscillations.

To a more mathematical point of view, in the next paragraph we investigate the spatio-temporal properties of
the short-crested wave field, using the so-called ‘bi-orthogonal decomposition’.

5.2. Bi-orthogonal decomposition

To obtain statistical information on spatio-temporal data, we used a new signal processing tool. This
technique is a two-dimensional generalization of the Karhumen–Loève procedure which states that a real space
and time dependent signal,u(x, t), may be uniquely decomposed in the form:

u(x, t)=∑
k

αkφk(x)ψk(t) (35)

with

αi > αj if i < j and lim
k→∞ αk = 0,

αk is the eigenvalue associated to the eigenvectorsφk(x) andψk(t). {φk(x)} and{ψk(t)} are both orthonormal
eigenfunction sets called respectively ‘topos’ and ‘chronos’. These eigenfunctions are generated by the signal
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(a)

(b)

Figure 19. Experimentn◦ 6: (a) comparison between experimental and analytical surface topography. The area is centered on the crest of a pattern.
Solid line: experimental data, dashed line: analytical data; (b) absolute difference (in cm).

itself. Topos and chronos are independent structures which compose the signal (for more details see Aubry et
al. [53]).

The bi-orthogonal decomposition (35) was applied to spatio-temporal sequences constructed from successive
digitized images. An example of the two first toposφ1(x) andφ2(x), and the two first chronosψ1(t) andψ2(t),

EUROPEAN JOURNAL OF MECHANICS – B/FLUIDS, VOL.18, N◦ 5, 1999



On short-crested waves 917

(a)

(b)

Figure 20.Experimentn◦ 6, domain centered on a trough (seefigure19for caption).
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(a)

(b)

Figure 21.Experimentn◦ 1, domain centered on a crest (seefigure19for caption).
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(a)

(b)

Figure 22.Experimentn◦ 5, domain centered on a crest (seefigure 19for caption).

computed from the signalη(x, t){y=12.6 cm}, are plotted onfigure 24. These functions seem to have a sinusoidal
form with low modulations. For this experiment, the first eigenvalues{αk} were:α1= 1338, α2= 1247, α3=
60, α4 = 4. The two first eigenvaluesα1 andα2 are much higher thanα3 andα4. They correspond to the
dominant modes.

From the bi-orthogonal decomposition, it is possible to determine the ‘progressive’ property of a two-
dimensional wave field. Aubry et al. [53] stated the following theorem: “A signalη(x, t) which has
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(a)

(b)

Figure 23. Experimentn◦ 6: spatio-temporal cross-sections of the water elevation (a)η(x, t){y=12.6 cm}, (b) η(y, t){x=13.2 cm} (solid lines: positive
values; dashed lines: negative values).
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(a)

(b)

Figure 24. Experimentn◦ 6: bi-orthogonal decomposition of the spatio-temporal signalη(x, t){y=12.6 cm} given in figure 23. (a) The two first topos
φ1(x) (solid line) andφ2(x) (dashed line); (b) the two first chronosψ1(t) (solid line) andψ2(t) (dashed line).
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Figure 25. Experimentn◦ 6: plot of the topos(φ1(x),φ2(x)) (dashed line) and the chronos(ψ1(t),ψ2(t)) trajectories corresponding to the signal
η(x, t){y=12.6 cm}.

two dominant modes, is a progressive wave if the trajectory(φ1(x),φ2(x)) merges with the trajectory
(ψ1(t),ψ2(t))”. To assess the progressive behavior of the short-crested waves, we have plotted infigure 25
the (φ1(x),φ2(x)) and the(ψ1(t),ψ2(t)) curves on the same graph. This plot shows clearly the very good
superposition of the two trajectories. Consequently, we may conclude that the short-crested wave field is
progressive in thex-direction.

For the signalη(y, t){x=13.2 cm}, the first eigenvalues were:α1= 1148, α2= 93, α3= 45, α4= 7. Hereα1 is
much higher than all the other eigenvalues. There is only one dominant mode. This means that the wave field
was stationary along they-direction, which is coherent with the remarks made in Section 5.1, i.e. no transversal
oscillation alongy-axis.

From the bi-orthogonal decomposition, it is also possible to determine the ‘space and time periodicity’
properties of a two-dimensional wave field: “a signalη(x, t) is spatially (respectively temporally) periodic if
and only if, all the topos (respectively the chronos) are periodic” (Aubry et al. [53]). We analyzed only the
dominant modes, i.e. the two first modes of the signalη(x, t) and the first mode of the signalη(y, t). To exhibit
the periodicity, we calculate the Hilbert transform of the topos and chronos. We used the Hilbert transform,
because the monochromatic character of our signal was obvious.

Figure 26shows the Hilbert transforms ofφ1(x), φ2(x), andψ1(t), which are the dominant modes of the
spatio-temporalη(x, t) cross-section. The imaginary part of each mode is plotted as a function of the real part.
The trajectories observed on the plots are closed curves turning along the same path. These trajectories indicate
clearly that the dominant topos and chronos for theη(x, t) signal are periodic.Figure 27shows the Hilbert
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(a)

(b)

Figure 26. Experimentn◦ 6: Hilbert transform of the dominant modes of the bi-orthogonal decomposition of theη(x, t){y=12.6 cm} cross-section.
(a) Toposφ1(x) (solid line) andφ2(x) (dashed line); (b) chronosψ1(t).
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transforms ofφ1(y) andψ1(t), which are the dominant modes of theη(y, t) cross-section. Results are similar:
the closed curves prove that the dominant modes are periodic.

Consequently, from the analysis of the dominant modes, we may conclude that the experimentn◦ 6 short-
crested wave field is a periodic field of permanent form, progressive in thex-direction and stationary in the
y-direction. Similar results were obtained for the other experiments, except for experimentn◦ 1 where no
stable conditions were found. The short-crested wave steepnessh for that experiment was relatively high (see
table IV) and the waves were probably submitted to three-dimensional instabilities. Eigenvalues decrease very
slowly and no obvious dominant modes were found.

The bi-orthogonal decomposition analysis is an usual tool to compute the wave celerity. The wave celerity
is given byc = 1x/1t , where1x is the spatial shift between the two first topos and1t the temporal shift
between the two first chronos. The1t and1x values were computed using the intercorrelation functions.
Comparisons between experimental and analytic results are given infigure 28. We observe a very good
agreement. The accuracy is about 1% except for experimentn◦ 2 for which the difference is about 4%. The
celerity of experimentn◦ 1 is not shown, because no stable conditions were found.

6. Conclusions

This study concerns the investigation of short-crested wave fields generated by a sea-wall reflection of an
incident plane wave. First we have developed analytical solutions of the hydrodynamic equations governing
the three-dimensional wave motion using a perturbation method. These analytical expressions extend previous
studies on nonlinear short-crested waves up to the sixth order for capillary-gravity waves in finite depth, and up
to the ninth order for gravity waves in deep water.

Experiments were then conducted in a tank. The short-crested wave field was generated by sending oblique
incident paddle waves on a vertical wall. Different wavelengths, amplitudes and incidence angles were tested.
We built a new video-optical tool based on the ‘shape from shading’ principle, with two monochromatic
lights allowing the simultaneous measurement of theηx andηy wave slopes. We used a recursive integration
procedure to estimate the surface topographyη(x, y, t).

A very good agreement was found between the analytical and experimental investigations.RMSdifferences
of surface elevation differed by less than 10%. Spatio-temporal properties of the wave field were analyzed with
the ‘bi-orthogonal decomposition’ technique. We showed that short-crested wave patterns are traveling waves
of permanent form, progressive in the wall direction and stationary in the transverse direction. Because of the
very good agreement between analytical and experimental investigations, a direct extension of this study would
be to conduct similar experiments on short-crested waves in arbitrary depth and compare the results with the
theoretical developments obtained here when the surface tension effects are taken into account (seefigure 2(b)).

Nevertheless, some experiments corresponding to high incident wave steepness were affected by modula-
tional instabilities. Unfortunately, the measurements were limited in space and time, and it was not possible to
investigate their stability over large areas and long durations. However, from the basis of the study of Ioualalen
and Kharif [54] relative to the subharmonic stability of short-crested waves in deep water, we have calculated
the maximum instability growth rates for experiments conducted in the tank. These values, listed intable V,
correspond to subharmonic instabilities of classIb, i.e. to modulations both in the longitudinal and transversal
directions. These values showed that for experimentn◦ 1, the subharmonic instabilities were strong enough to
induce a rapid amplification of the perturbations. For that particular case, we effectively did not find a stable
behavior of the patterns. The following stage would be to study a wider three-dimensional wave field using two
oblique wavemakers. This is necessary to measure the evolution along different fetches and to understand the
stability of high steepness short-crested wavefields.

EUROPEAN JOURNAL OF MECHANICS – B/FLUIDS, VOL.18, N◦ 5, 1999



On short-crested waves 925

(a)

(b)

Figure 27. Experimentn◦ 6: Hilbert transform of the dominant modes of the bi-orthogonal decomposition of theη(y, t){x=13.2 cm} section.
(a) Toposφ1(y); (b) chronosψ1(t).
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Figure 28.Comparison between theoretical and experimental celerity.

Table V. Maximum growth rates for the so-calledclass Ibinstability.

Experiment Maximum growth rate

1 0.0139

2 0.0092

3 0.0092

4 0.0040

5 0.0034

6 0.0034

Appendix A. Analytic expressions

A.1.φ+R (X,Y,0) up to the fourth order

Expressions ofφ+R (X,Y,0) are presented herein up to fourth order, but were calculated up to the ninth order.

φ+1 (X,Y,0)= 0, (36)

φ+2 (X,Y,0)=
(
∂

∂Z
φ1(X,Y,0)

)∣∣∣∣
Z=0

η1, (37)

φ+3 (X,Y,0) =
(
∂

∂Z
φ2(X,Y,Z)

)∣∣∣∣
Z=0

η1+
(
∂

∂Z
φ1(X,Y,Z)

)∣∣∣∣
Z=0

η2

+ 1

2

(
∂2

∂Z2
φ1(X,Y,Z)

)∣∣∣∣
Z=0

η2
1,

(38)
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φ+4 (X,Y,0) =
(
∂

∂Z
φ1(X,Y,Z)

)∣∣∣∣
Z=0

η3+
(
∂

∂Z
φ2(X,Y,Z)

)∣∣∣∣
Z=0

η2

+
(
∂

∂Z
φ3(X,Y,Z)

)∣∣∣∣
Z=0

η1+ 1

6

(
∂3

∂Z3
φ1(X,Y,Z)

)∣∣∣∣
Z=0

η3
1

+ 1

2

(
∂2

∂Z2
φ2(X,Y,Z)

)∣∣∣∣
Z=0

η2
1+

(
∂2

∂Z2
φ1(X,Y,Z)

)∣∣∣∣
Z=0

η1η2.

(39)

A.2.τ+R (X,Y ) up to the fourth order

Expressions ofτ+R (X,Y ) are presented up to fourth order, but were calculated in our code up to the ninth
order.

τ+2 = 0, (40)

τ+3 = −2n2m2
(

∂2

∂X∂Y
η1(X,Y )

)(
∂

∂X
η1(X,Y )

)
∂

∂Y
η1(X,Y )

−
(

3m4 ∂
∂X
η1(X,Y )

2

2
+ n

2m2 ∂
∂Y
η1(X,Y )

2

2

)
∂2

∂X2
η1(X,Y )

−
(

3n4 ∂
∂Y
η1(X,Y )

2

2
+ n

2m2 ∂
∂X
η1(X,Y )

2

2

)
∂2

∂Y 2
η1(X,Y ),

(41)

τ+4 = −
3m4

(
∂2

∂X2η2(X,Y )
)
∂
∂X
η1(X,Y )

2

2
− n

2m2
(
∂2

∂X2η2(X,Y )
)
∂
∂Y
η1(X,Y )

2

2

− n
2m2

(
∂2

∂Y 2η2(X,Y )
)
∂
∂X
η1(X,Y )

2

2
− 3n4

(
∂2

∂Y 2η2(X,Y )
)
∂
∂Y
η1(X,Y )

2

2

−2n2m2
(

∂2

∂X∂Y
η1(X,Y )

)(
∂

∂X
η1(X,Y )

)
∂

∂Y
η2(X,Y )

−2n2m2
(

∂2

∂X∂Y
η1(X,Y )

)(
∂

∂X
η2(X,Y )

)
∂

∂Y
η1(X,Y )

−2n2m2
(

∂2

∂X∂Y
η2(X,Y )

)(
∂

∂X
η1(X,Y )

)
∂

∂Y
η1(X,Y )

+
(
− 3n4

(
∂

∂Y
η1(X,Y )

)
∂

∂Y
η2(X,Y )− n2m2

(
∂

∂X
η1(X,Y )

)
∂

∂X
η2(X,Y )

)
∂2

∂Y 2
η1(X,Y )

+
(
− 3m4

(
∂

∂X
η1(X,Y )

)
∂

∂X
η2(X,Y )− n2m2

(
∂

∂Y
η1(X,Y )

)
∂

∂Y
η2(X,Y )

)
∂2

∂X2
η1(X,Y ).

(42)

Apendix B. Expressions ofη2(X,Y ), φ2(X,Y,Z) and ω2 η2= a2,20cos(2X)+ a2,22cos(2X)cos(2Y )+ a2,02cos(2Y )+ a2,00,

φ2= a2,20sin(2X)cosh
(
α20(Z+ d))+ a2,22sin(2X)cos(2Y )cosh

(
α22(Z+ d)), (43)

a2,20= (−3ω2
Mω

4
0+ (2mω4

M + 2m(1+ κ)2)ω2
0+ (−1+ 2m2)(1+ κ)2ω2

M)m(1+ κ)
(8(ω4

M + (1+ κ)2)ω2
0− 8mω2

M(1+ κ)(1+ 4κ m2))ω2
0

, (44)

EUROPEAN JOURNAL OF MECHANICS – B/FLUIDS, VOL.18, N◦ 5, 1999



928 O. Kimmoun et al.

a2,22=−(−ω
4
0+ 3(1+ κ)2)(1+ κ)

8ω2
0(3κ (1+ κ)−ω4

0)
, (45)

a2,00= ω
2
0

8
− (1+ κ)

2

8ω2
0
, (46)

a2,02=− ω2
0

−8− 32κ + 32κ m2
+ (−1+ 2m2)(1+ κ)2
(−8− 32κ + 32κ m2)ω2

0
, (47)

b2,20= (−ω
4
M + (1+ κ)2)(−3ω4

0+ (−1+ 2m)(1+ 2m)(1+ κ)(2κ m2+ κ + 1))

16ω0((ω
4
M + (1+ κ)2)ω2

0−mω2
M(1+ κ)(1+ 4κ m2))

, (48)

b2,22=−(3(1+ κ)
2− 3ω4

0)(−ω4
0+ (1+ κ)(3κ + 1))

16ω3
0(3κ (1+ κ)−ω4

0)
, (49)

ω2= nω2/dω2, (50)

nω2= ((16κ ω4
M + 16κ (1+ κ)2)m2+ (−16κ − 6)ω4

M − 2(8κ + 3)(1+ κ)2)ω14
0

+ (−64(1+ κ)κ2ω2
Mm

5+ 64κ (κ − 1)(1+ κ)ω2
Mm

3+ 8(1+ κ)(11κ + 3)ω2
Mm)ω

12
0

+ ((64κ2ω4
M + 64κ2(1+ κ)2)m6+ (−16κ (3+ 10κ)ω4

M − 16κ (3+ 10κ)(1+ κ)2)m4

+ ((16+ 24κ2+ 36κ − 80κ3)ω4
M − 4(−4− 6κ2− 9κ + 20κ3)(1+ κ)2)m2+ (80κ3

+5+ 54κ + 102κ2)ω4
M + (80κ3+ 5+ 54κ + 102κ2)(1+ κ)2)ω10

0 +
(−256κ3(1+ κ)

×ω2
Mm

9+ 512κ2(1+ κ)(2κ + 1)ω2
Mm

7+ 16κ (1+ κ)(20κ3− 24κ2− 11κ + 5)ω2
Mm

5

−16(1+ κ)(20κ4+ 16κ3+ 27κ2+ 23κ + 4)ω2
Mm

3− (1+ κ)(248κ3+ 264κ2+ 36κ

−7)ω2
Mm

)
ω8

0+
(
(−128κ2(1+ κ)2ω4

M − 128κ2(1+ κ)4)m8+ (−64κ (1+ κ)(2κ2+ 1)

×ω4
M − 64κ (2κ2+ 1)(1+ κ)3)m6+ (8(1+ κ)(71κ3+ 45κ2+ 18κ + 2)ω4

M + 8(71κ3

+45κ2+ 18κ + 2)(1+ κ)3)m4+ (4κ (1+ κ)(28κ3− 41κ2− 10κ − 4)ω4
M + 4κ (28κ3

−41κ2− 10κ − 4)(1+ κ)3)m2− (1+ κ)(112κ4+ 190κ3+ 249κ2+ 106κ + 16)ω4
M

− (112κ4+ 190κ3+ 249κ2+ 106κ + 16)(1+ κ)3)ω6
0+

(
768κ4(1+ κ)2ω2

Mm
9− 1536κ3

× (2κ + 1)(1+ κ)2ω2
Mm

7− 16(28κ5− 91κ4− 11κ3+ 20κ2− 5κ − 1)(1+ κ)2ω2
Mm

5

+16(28κ5+ 65κ4+ 139κ3+ 74κ2+ 7κ − 1)(1+ κ)2ω2
Mm

3− 3(8κ4+ 36κ3

−21κ2− 28κ − 6)(1+ κ)2ω2
Mm

)
ω4

0+
(
(384κ3(1+ κ)3ω4

M + 384κ3(1+ κ)5)m8

+ (−192κ2(κ − 1)(1+ κ)3ω4
M − 192κ2(κ − 1)(1+ κ)5)m6+ (−24κ (11κ2+ 16κ + 2)

× (1+ κ)3ω4
M − 24κ (11κ2+ 16κ + 2)(1+ κ)5)m4+ (−12κ (4κ2+ 5κ + 3)(1+ κ)4

×ω4
M − 12κ(4κ2+ 5κ + 3)(1+ κ)6)m2+ 3(16κ3+ 50κ2+ 25κ + 3)(1+ κ)4ω4

M

+3(16κ3+ 50κ2+ 25κ + 3)(1+ κ)6)ω2
0+ 48κ (4κ3+ 9κ2− 1)(1+ κ)5ω2

Mm
5

−48κ (4κ3+ 9κ2− 1)(1+ κ)5ω2
Mm

3− 9(8κ3+ 20κ2+ 9κ + 1)(1+ κ)5ω2
Mm, (51)
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dω2= 64ω3
0(−1− 4κ + 4κ m2)(3κ + 3κ2−ω4

0),

(ω2
0((1+ κ)2+ω4

M)−mω2
M(1+ κ)(1+ 4m2κ))(1+ κ) (52)

with ω2
M = (1+ κ) tanh(md)
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