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a b s t r a c t

As a weakly nonlinear model equations system for gravity–capillary waves on the surface
of a potential fluid flow, a cubic-order truncationmodel is presented, which is derived from
the ordinary Taylor series expansion for the free boundary conditions of the Euler equations
with respect to the velocity potential and the surface elevation. We assert that this model
is the optimal reduced simplified model for weakly nonlinear gravity–capillary solitary
waves mainly because the generation mechanism of weakly nonlinear gravity–capillary
solitary waves from this model is consistent with that of the full Euler equations, both
quantitatively and qualitatively, up to the third order in amplitude.

In order to justify our assertion, we show that this weakly nonlinear model in deep
water allows gravity–capillary solitary wavepackets in the weakly nonlinear and narrow
bandwidth regime where the classical nonlinear Schrödinger (NLS) equation governs;
this NLS equation derived from the model is identical to the one directly derived from
the Euler equations. We verify that both quantitative and qualitative properties of the
gravity–capillary solitary waves of the model precisely agree with the counterparts of the
Euler equations near the bifurcation point by performing a numerical continuation to find
the steady profiles of weakly nonlinear gravity–capillary solitary waves of the primary
stable bifurcation branch. In addition, unsteady numerical simulations, in which those
solitary waves are used as initial conditions, are provided as supporting evidences.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Gravity–capillary solitary waves arise on the surface of an irrotational water flow at the finite length scale where the
surface tension balances the gravitational force. In contrast to thewell-knownKorteweg–deVries (KdV)-type solitarywaves,
of which steadywave profiles are expressed by sech2 in theweakly nonlinear and long-wave limit, gravity–capillary solitary
waves are known to bifurcated in the form of wavepackets with a nonzero carrier wavenumber, at which the linear phase
speed is minimized, below the minimum phase speed. The KdV-type solitary waves bifurcate only when B = 0 or B > 1

3 ;
B =

γ

ρgh2
is the Bond number, where γ is the surface tension coefficient, ρ is the fluid density, g is the gravitational

acceleration, and h is the fluid depth. On the other hand, gravity–capillary solitary waves are possible only when the Bond
number is less then 1

3 , including zero at infinite depth, in other words, in deep water.
The first discovery of gravity–capillary solitary waves is attributed to Longuet-Higgins [1] through his analytical result.

He observed that there exists a certain length scale regime for which a surface tension may play a significant role to balance
the gravitational acceleration even when the Bond number vanishes in the infinite-depth or small surface tension limit. In
that sense, gravity–capillary solitary waves are clearly distinguished from the pure gravity counterparts in deep water.
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After Longuet-Higgins [2] computed the numerical profiles of the stable depression branch of gravity–capillary
solitary waves from the full Euler equations, using a novel spectral method, thorough studies followed by other groups.
Vanden-Broeck and Dias [3] performed an extensive numerical computation to find the complete bifurcation diagram of
gravity–capillary solitary waves in deep water, using Cauchy’s integral formula that expresses solutions in terms of the
potential and stream functions. The generation mechanism of the gravity–capillary solitary waves in the form of weakly
nonlinear wavepackets of nonlinear Schrödinger (NLS) type was identified by Longuet-Higgins [4], by Akylas [5], and by
Dias and Iooss [6].

Afterward, more comprehensive numerical computations in arbitrary finite depths to compute the elevation and
depression branches, as well as the turning points of the bifurcation diagram, were conducted for surface gravity–capillary
solitary waves [7] and for interfacial gravity–capillary solitary waves [8]. The longitudinal stability, which is referred to as
a stability property under disturbances only in the direction of wave propagations, of the gravity–capillary solitary waves
was studied by Calvo and Akylas [9], along with the stability property of an associated forced problem. In their paper, they
showed that depression solitary waves are stable and the elevation ones unstable.

Experimental realizations of gravity–capillary solitary waves on the surface of potential flows were made by Zhang and
Longuet-Higgins. Zhang [10] observed solitary-like gravity–capillary waves in a wind wave tank, the depth of which is
essentially deep in comparisonwith the short surfacewavelength scale. Amore elaborate comparison between experimental
observations and earlier theoretical results on gravity–capillary solitarywaveswas done by Longuet-Higgins and Zhang [11].
In Zhang’s later experiment [12], three-dimensional surface gravity–capillary waves were observed; however, those were
thought of as nonlocal solitary waves rather than fully localized lump-type solitary waves.

It is more recent that three-dimensional fully locally confined solitarywaves, referred to as gravity–capillary lumps, have
been theoretically discovered by three different groups in the same physical condition. Pǎrǎu, Vanden-Broeck, and Cooker
computed the numerical profiles of steady gravity–capillary lumps from the full three-dimensional Euler equations, first in
deep water [13], and then in finite depth [14], through their consecutive studies that use the boundary integral method.
Milewski [15] also computed the numerical profiles of steady gravity–capillary lumps by using the Fourier spectral method,
where a sech-type wave profile was taken as an initial guess for his numerical continuation, the formulation of which
contains an extra virtual forcing parameter. It is important to notice that this discovery of fully localized gravity–capillary
lumps in deepwater does not conflict with Craig’s nonexistence of lump-type solitary-wave solutions for pure gravitywaves
on the surface of deep water [16], although the relative surface tension effect on the gravitational force vanishes because
the surface tension term has the highest order of derivatives in the dynamic boundary condition of the governing nonlinear
partial differential equations.

Independently from the former two groups, Kim and Akylas [17] identified the generation mechanism of the gravity–
capillary lumps in the weakly nonlinear limit. They verified that weakly nonlinear gravity–capillary solitary-wavepacket
lumps bifurcate below the minimum phase speed with a carrier wavenumber at which the phase speed is minimized,
in the same way as that of the weakly nonlinear plane gravity–capillary solitary-wave counterparts. In particular, they
distinguished the finite-depth case and the deep-water one. In finite depth, thoseweakly nonlinear gravity–capillary solitary
wavepackets are governed by the Benney–Roskes–Davey–Stewartson (BRDS) equations of elliptic–elliptic type, which were
derived by Djordjevic and Redekopp [18] (a typographical mistake there has been pointed out by Ablowitz and Segur [19]).
Those equations are simplified to the classical NLS equation in infinite depth.

In order to compute the numerical profiles of weakly nonlinear gravity–capillary solitary wavepackets, Kim and
Akylas [17] combined a perturbation method and a pseudo-spectral numerical method that uses rational Chebyshev
polynomials over the unbounded two-dimensional infinite domain. In that way, it was possible to effectively capture the
slowly decaying tails of solitary waves in the far field, which become significant owing to the nontrivial leading-order
meanflow effect, especially on the water of finite depth, as was asymptotically predicted by Akylas et al. [20].

In the same physical setting, it was shown that plane gravity–capillary solitary waves are unstable under long-wave
disturbances in the transverse direction to the dominant solitary-wave propagation [21], using a perturbation method that
is similar to the one used in the earlier studies by Kataoka and Tsutahara [22,23] and by Kataoka [24,25]. A similar result
in the weakly nonlinear long-wave model equation for interfacial gravity–capillary solitary waves was provided by Kim
and Akylas [26], and the generalized result for interfacial gravity–capillary solitary waves was provided by Kim [27]. The
commonly verified transverse instability criterion is consistent with an earlier result by Bridges [28] for general water-wave
problems.

Kim and Akylas [21] also asserted that the long-wave transverse instability of plane solitary waves must be related
to the existence of the associated lump-type solitary waves: the former serves as a dynamic generation mechanism of
gravity–capillary lumps. This statement was supported by the same authors’ analytical and numerical results on long-wave
interfacial gravity–capillary solitary waves based on the two-dimensional Benjamin (2-DB) equation [26].

In the context of the full Euler equations, however, the formation of gravity–capillary lumps via the long-wave transverse
instability of the associated plane gravity–capillary solitarywaves has not been truly justified yetwith satisfactory numerical
accuracy, although such a possibility was qualitatively indicated from some recent unsteady numerical computations for
the dynamics of gravity–capillary solitary waves by Akers and Milewski on the basis of two-dimensional model equations
[29,30]. In fact, highly accurate two-dimensional full Euler calculations of gravity–capillary solitarywaveswere only recently
achieved via a conformal mapping technique by Milewski et al. [31]. It is regarded that the fully nonlinear numerical
computation of the three-dimensional Euler equations, which is also suggested by Pǎrǎu et al. [32], is still overly expensive,
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considering that very precise numerical approximation at the singular point of the integral kernel is required. Accordingly,
it is definitely beneficial to work with a more precise and efficient model under additional minimal assumptions in order to
describe dynamics related with such dimension-breaking phenomena.

In principle, gravity–capillary solitary waves cannot be properly described by any long-wave models in a quantitatively
accurate way, because their bifurcation occurs at a nonzero wavenumber in the weakly nonlinear limit. Instead, it is
anticipated that some weakly nonlinear asymptotic models systematically derived from the original governing equations,
not necessarily under any long-wave assumptions, should be able to capture significant dynamic properties – quantitative
as well as qualitative – of gravity–capillary solitary waves.

In this study, therefore, the cubic-order truncation model of the Taylor series expansion of the free surface boundary
conditions in the three-dimensional full Euler equations is proposed as an appropriate reduced model equations system for
weakly nonlinear gravity–capillary solitary waves. This cubic-order weakly nonlinear truncation model, which is derived
from the Hamiltonian formulation in terms of Zakharov’s canonical variables with respect to the surface elevation and the
value of the potential function on the free surface (see [33]), was introduced by Dyachenko et al. [34] in the study of the
weak turbulent Kolmogorov spectrum of surface gravity waves.

When the free surface boundary conditions are represented in terms of Zakharov’s canonical variables, one of the most
important terms is the Dirichlet–Neumann operator (DNO). Generally speaking, the DNO gives a relation between the
boundary value and thenormal derivative of the harmonic function. This relation, in the Euler equations for potential flows, is
naturally expressed in terms of Cauchy-type singular integrals which are analytic with respect to theweak surface elevation
and the small variation of the domain geometry. In two spatial dimensions, the DNO is expressed by a uniformly convergent
Taylor series (see [35,36]). Craig and Sulem [37] computed the uniformly convergent Taylor series of the DNO, in three
dimensions, up to arbitrary orders, in their study of the dynamics of nonbreaking pure gravity waves on the surface of water
in arbitrary finite depths.

This surface integral formulation that uses the DNO has been widely applied for various surface-wave problems since
then. Nicholls [38] showed that this formulation can be effectively parallelized by implementing the numerical continuation
to find steady surface wave profiles with the pseudo-spectral method. This method was later used to compute hexagonal
periodic traveling surface wave structures [39,40]. Studies on variable bottom topographies with this formulation also have
followed [41–43].

It is important to notice that the analyticity of the DNO, with respect to the variations of arbitrary smooth domain
geometries, wasmostly studied by Nicholls and Reitich [44–47]. They also showed that the ordinary perturbation procedure
for the DNO, that is, the usual truncation of the Taylor series expansion,may be unstable and lose accuracy in high orders, but
the convergence of the perturbation series for theDNOcan bemuch enhanced by taking an alternative summation procedure
such as the use of a Padé approximant (see also [48] for the analyticity of the DNO on doubly perturbed domains). However,
such a numerical instability issue seems to be noticeable only when taking up to high-order perturbations, according to
the numerical experiments reported by Nicholls and Reitich [47,49]. The low-order truncations of the series expansions are
thought to be within a good approximation range as long as the wave amplitude is weak enough.

As inherent to the typical ‘‘boundary perturbation’’ method, classified by Nicholls [50], the issue about the uniform
convergence of the series expansions for the free boundary conditions arises in other recursive algorithms. One is proposed
byWest et al. [51], in which they approximate the vertical derivative of the potential function at the free surface in terms of
the series expansion with respect to the surface elevation. Another similar numerical model is developed by Dommermuth
and Yue [52] for surface gravity waves, as well. However, Craig and Sulem [37] pointed out that both approaches are not
known to be uniformly convergent for arbitrary wavenumbers. In fact, the former method is regarded to be consistent with
respect to the order of the weak nonlinearity.

As an additional critical requirement for the ideal model equations system of weakly nonlinear gravity–capillary solitary
waves, it is desired that the generation mechanism of gravity–capillary solitary-wave solutions should be quantitatively
equivalent to what can be derived from the original Euler equations. This means that suchmodel equations should allow the
weakly nonlinear wavepackets of BRDS type – NLS type in deep water or in one spatial dimension – in the weakly nonlinear
and narrow bandwidth limit, following exactly the same bifurcation mechanism from the original full Euler equations, not
only qualitatively but also quantitatively. In this respect, we assert that the cubic-order truncationmodel of the Taylor series
expansion for the free surface boundary conditions of the Euler equations should be the optimally efficientmodel for weakly
nonlinear gravity–capillary solitary waves.

In the following sections, we justify our main assertion by deriving the NLS equation from the cubic-order truncation
model, inwhich all of the coefficients in theNLS equation are identical to those directly derived from the full Euler equations.
Moreover, we show that the numerically computed steady profiles of stable weakly nonlinear gravity–capillary solitary
waves feature better quantitative agreement to the original ones from the full Euler equations than that from the NLS
approximation. All these unsteady numerical computations are supported by someunsteady numerical simulations of stable
solitary-wave propagations and their mutual interactions.

2. Weakly nonlinear cubic-order truncation model

Let us take
√

γ / (ρg) and

γ /


ρg3

1/4 as the length and time scales, respectively, where γ is the surface tension
coefficient, g is the gravitational acceleration, and ρ is the constant fluid density. The flow is assumed to be irrotational. Then
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the surface gravity–capillary waves in deep water are governed by the Euler equations for the velocity potential function
φ(x, y, z, t) and the surface elevation η(x, y, t) in the nondimensional form associated with the chosen length and time
scales as follows:

∇
2φ = 0 for − ∞ < z < η(x, y, t), (1)

where ∇
2

≡
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, with the kinematic boundary condition

ηt + ∇̄η · ∇̄φ = φz for z = η(x, y, t), (2)

where ∇̄ ≡


∂
∂x ,

∂
∂y


, and with the dynamic boundary condition

φt +
1
2

|∇φ|
2
+ η − ∇̄ ·

∇̄η
1 +

∇̄η
2 = 0, (3)

where ∇ ≡


∂
∂x ,

∂
∂y ,

∂
∂z


, and with the far-field condition specified by

∇φ → 0 as (|x|, |y|, |z|) → +∞. (4)
(As is customary, the subscript variables denote partial differentiations.)

The kinematic and dynamic boundary conditions are expressed in terms of the value of the potential function ζ (x, y, t) =

φ(x, y, η(x, y, t), t) on the free surface z = η(x, y, t), which are called Zakharov’s canonical variables. Defining the DNO by

G[η]{ζ } = φz − ∇̄η · ∇̄φ =


1 +

∇̄η
2 ∂φ

∂ n⃗


z=η(x,y,t)

, (5)

where n⃗ is the outward normal vector on the fluid surface, the kinematic and dynamic boundary conditions become
ηt = G[η]{ζ }, (6a)

ζt =
(G[η]{ζ })2 + 2


∇̄ζ · ∇̄η


G[η]{ζ } −


ζxηy − ζyηx

2
−

∇̄ζ
2

2

1 +

∇̄η
2 − η + ∇̄ ·

∇̄η
1 +

∇̄η
2 . (6b)

Under the assumption of the weak nonlinearity of Zakharov’s canonical variables, the cubic-order truncation model of
the Taylor series expansion of the free surface boundary conditions in the three-dimensional Euler equations is obtained by
naturally extending from the two-dimensional results, as provided by Craig and Sulem [37] (see also [53]) in the following
forms:

ηt − G0{ζ } = (G1 + G2) {ζ }, (7a)
ζt + η − ∇̄

2η

=
1
2


(G0{ζ })2 −

∇̄ζ
2 −


G0{ηG0{ζ }} + η∇̄

2ζ

G0{ζ } −

3
2

∇̄η
2 ∇̄

2η + ηxxη
2
y + ηyyη

2
x − 2ηxηyηxy, (7b)

where
G[η]{ζ } = G0{ζ } + G1{ζ } + G2{ζ } + · · · , (8a)

G0{f } =


+∞

−∞


+∞

−∞


k2 + l2 f̂ (k, l, t)ei(kx+ly−ωt)dkdl, (8b)

f̂ (k, l, t) =
1

(2π)2


+∞

−∞


+∞

−∞

f (x, y, t)e−i(kx+ly−ωt)dxdy, (8c)

G1{ζ } = −G0{ηG0{ζ }} − ∇̄ ·

η∇̄ζ


, (8d)

G2{ζ } =
1
2
∇̄

2 
η2G0{ζ }


+

1
2
G0{η

2
∇̄

2ζ } + G0{ηG0{ηG0{ζ }}}, (8e)

where ∇̄
2

=
∂2

∂x2
+

∂2

∂y2
.

3. Weakly nonlinear gravity–capillary solitary wavepackets

From (7), weakly nonlinear narrow-banded solitary wavepackets that bifurcate below the minimum phase speed are
derived in the following forms, correct up to O(ϵ3):

η(x, y, t) ≈ ϵS1(X, Y , T )E + ϵ2S0(X, Y , T ) + ϵ2S2(X, Y , T )E2
+ c.c., (9a)

ζ (x, y, t) ≈ ϵA1(X, Y , T )E + ϵA0(X, Y , T ) + ϵ2A2(X, Y , T )E2
+ c.c., (9b)
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with
Sn = S(0)

n + ϵS(1)
n + ϵ2S(2)

n + O(ϵ3) + · · · , (10a)

An = A(0)
n + ϵA(1)

n + ϵ2A(2)
n + O(ϵ3) + · · · , (10b)

for all nonnegative integers n, and with

E = ei(k0x+l0y−ω0t), (11a)

X = ϵ


x −

∂ω

∂k


0
t


, (11b)

Y = ϵ


y −

∂ω

∂ l


0
t


, (11c)

T = ϵ2t, (11d)

ω2
0 = κ0


1 + κ2

0


for κ0 =


k20 + l20, (11e)

ϵ ≪ 1, (11f)
where the phase speed is minimized at the wavenumber (k0, l0) = (1, 0). The leading-order meanflow of the potential
function is considered to be O(ϵ) but vanishes for gravity–capillary solitary waves in deep water. As a result, any coupling
between the wave envelope of the primary harmonics and the meanflow is ineffective, so the leading-order wave envelope
of the primary harmonics S1(X, Y , T ) satisfies the NLS equation in deep water; otherwise, in any finite depths, S1(X, Y , T )
and A1X (X, Y , T ) satisfy the BRDS equations, coupled together.

A standard NLS, or equivalently BRDS, derivation procedure for weakly nonlinear solitary wavepackets of these forms
described in (9)–(11) has been completely developed since the original contribution by Benney and Newell [54], in which
the NLS equation was claimed to be a proper model equation in the water-wave problem. Hasimoto and Ono [55] clearly
expressed the linear or nonlinear operators of multiple scales in terms of perturbation series in the derivation of the NLS
equation for plane gravity wavepackets. Davey and Stewartson [56] ‘‘closely followed’’ the analysis of Hasimoto and Ono
for the derivation of their two-dimensional model equation for three-dimensional surface gravity wavepackets, although
all necessary computations for deriving the Davey–Stewartson equation were already introduced earlier by Benney and
Roskes [57] in the discussion of wave instabilities for gravity waves (Davey and Stewartson extracted the single-equation
form). Rigorous convergence analysis is discussed by Craig et al. [58] for surface gravity waves, and by Craig et al. [59] for
surface gravity–capillary waves, respectively.

A key idea in the NLS derivation is that weakly nonlinear solitary-wave solutions are represented in terms of the Fourier
integral in order to express individual linear operators in terms of perturbation expansions from

f (x, y, t) = E


+∞

−∞


+∞

−∞

f̂ (k, l, t)ei{(k−k0)x+(l−l0)y−(ω−ω0)t}dkdl. (12)

As is described by Hogan’s analysis [60] for his derivation of a fourth-order envelope equation for three-dimensional
gravity–capillary wavepackets in deep water (a comprehensive review on this topic is found in [61]), we have

ω − ω0 =
∂ω

∂k


0
(k − k0) +

∂ω

∂ l


0
(l − l0) +

1
2

∂2ω

∂k2


0
(k − k0)2

+
1
2

∂2ω

∂ l2


0
(l − l0)2 +

∂2ω

∂k∂ l


0
(k − k0) (l − l0) + · · · . (13)

Under the assumption that the Fourier spectrum is narrow banded in the same magnitude of the weak nonlinearity around
the wavenumber (k0, l0), the following fast wavenumber variables are introduced by

K = ϵ−1 (k − k0) , L = ϵ−1 (l − l0) . (14)
Then we have the general expression of a slowly varying modulated wavepacket, which is weakly deviated from a
monochromatic traveling wave with the wavenumber k0 and the frequency ω0, regardless of any underlying physical
principles, by

F(X, Y , T ) ≈


+∞

−∞


+∞

−∞

F̂(K , L, T )ei(KX+LY−ΩT )dKdL, (15)

where

F̂(K , L, T ) = ϵ2 f̂

k0 + ϵK , l0 + ϵL,

T
ϵ2


, (16a)

Ω =
1
2

∂2ω

∂k2


0
K 2

+
1
2

∂2ω

∂ l2


0
L2 +

∂2ω

∂k∂ l


0
KL. (16b)
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Therefore we obtain the perturbation expansions of the linear operators, which are applied to wavepackets of the primary
harmonics, up to O(ϵ2):

∂

∂t
= −iω0 − ϵ


∂ω

∂k


0

∂

∂X
+

∂ω

∂ l


0

∂

∂Y


+ ϵ2 ∂

∂T
+ · · · , (17a)

G0 ≈


k20 + l20 −

iϵ
k20 + l20


k0

∂

∂X
+ l0

∂

∂Y


+

ϵ2

2

k20 + l20

 3
2


−l20

∂2

∂X2
− k20

∂2

∂Y 2
+ 2k0l0

∂2

∂X∂Y


, (17b)

∂

∂x
= ik0 + ϵ

∂

∂X
, (17c)

∂

∂y
= il0 + ϵ

∂

∂Y
. (17d)

For wavepackets multiplied by the other high-order harmonics, the perturbation series for the linear operators can be
defined in a similar way.

Since we derive a system of model equations for weakly nonlinear wavepackets at the third-order perturbations, per-
turbations to the linear operators at least up to second order are required in performing the perturbation procedure: fewer
orders of perturbation expansions to the linear operators may lead to quantitatively inaccurate results unless a perturba-
tion series stops at O(ϵ), although some qualitative properties may be captured in lower orders in a consistent manner.
As usual, the leading-order perturbation equation is the linear dispersion relation, and the second-order perturbation equa-
tion implies that wavepacketsmovewith the group velocity. Based on our particular choice of the ansatz here, both leading-
order and second-order perturbation equations are trivially satisfied. It is clearly seen that the linear operator parts for the
wavepackets of the primary harmonics, obtained by eliminating η from the dynamic boundary condition, first appear in
O


ϵ2


as follows:

∂2

∂t2
+


1 − ∇̄

2G0 ≈ −ϵ2ω0


2i

∂

∂T
+

∂2ω

∂k2


0

∂2

∂X2
+

∂2ω

∂ l2


0

∂2

∂Y 2
+ 2

∂2ω

∂k∂ l


0

∂2

∂X∂Y


. (18)

The expression on the right-hand side in (18) is obtained by computing the perturbation series of

1 − ∇̄

2

G0 from the

Taylor series of ω2 at (k0, l0) and then by collecting all of the O(ϵ2) terms. The terms correct up to O(ϵ) are cancelled out
with the terms from ∂2

∂t2
. In fact, this expression (18) is nothing but the linear operator for the NLS equation in the O(ϵ3)

terms for the weakly nonlinear wavepackets of which the magnitude is O(ϵ).
The perturbation procedure up to the third order is performed by collecting the zeroth and the second harmonic terms

up to O(ϵ2) and the primary harmonic terms up to O(ϵ3) from the kinematic and dynamic boundary conditions. Taking into
account all nonlinear terms, the coefficients precisely match the ones derived directly from the full Euler equations, without
any further scaling. The resulting NLS equation is obtained by

i
∂

∂T
+

1
2


∂2ω

∂k2


0

∂2

∂X2
+

∂2ω

∂ l2


0

∂2

∂Y 2
+ 2

∂2ω

∂k∂ l


0

∂2

∂X∂Y


S(0)
1

+


2κ2

0ω
3
0

ω2
2 − 4ω2

0
−


2ω2

0 −
3
2
κ3
0


κ2
0

2ω0

 S(0)
1

2 S(0)
1 = 0. (19)

It is noteworthy that the additional nonlinear term obtained from the cubic-order truncation over the quadratic-order

truncation of the Taylor series expansion of the free surface boundary conditions is

2ω2

0 −
3
2κ

3
0

 κ2
0

2ω0

S(0)
1

2 S(0)
1 . This means

that the nonlinear effect in the normal stress balance on the surface of fluid is not precisely explained only by the quadratic
truncation, because there is no contribution from the quadratic truncation to the nonlinear term of O(ϵ3) in the dynamic
boundary condition. This gives another reason why at least the third-order truncation terms are all required to describe the
dynamics of slowly varying weakly nonlinear narrow-banded solitary wavepackets on the free surface of a fluid flow in a
quantitatively proper way.

The NLS equation is particularly interesting at the phase speed minimizing wavenumber (k0, l0) = (1, 0), for which the
coefficients of NLS in (18) and (19) are computed by

∂ω

∂k


0

=
√
2,

∂ω

∂ l


0

= 0,
∂2ω

∂k2


0

=

√
2
2

,
∂2ω

∂ l2


0

=
√
2,

∂2ω

∂k∂ l


0

= 0. (20)

Therefore the NLS equation

iS(0)
1T +

√
2
4

S(0)
1XX +

√
2
2

S(0)
1YY +

11
8

√
2

S(0)
1

2 S(0)
1 = 0 (21)
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allows solitary-wavepacket solutions moving in the x-direction because the group velocity is equal to the phase velocity,
which is

√
2, at the critical wavenumber. In two dimensions with one spatial variable, all coefficients of this NLS equation

precisely agreewith the earlier results [4–6]. In three dimensionswith two spatial variables, this is consistent with the other
earlier results [18,19] as confirmed by Kim and Akylas in two dimensions [21] and in three dimensions [17] for a different
nondimensionalization with the same physical setting.

The coefficient of the cubic-order nonlinear term in (19) should be invariant either in two or three dimensions, even for
wavepackets moving in oblique directions. In general, the group velocity and the phase velocity have different directions to
each other. Even in such cases, solitary wavepackets arise when the projection of the group velocity onto the direction of
the phase velocity coincides with the phase velocity itself.

In two dimensions, spatially with the X-dependence only, there are well-known fully localized solitary wave solutions.
Letting

S(0)
1 (X, T ) = S(X)eiαT , (22)

where α is an arbitrary positive real number, we have

S(X) =


2α
µ

sech


α

β
X


(23)

for

− αS + β
∂2S
∂X2

+ µ |S|2 S = 0. (24)

Hence, from (21), we have

η(x, t) ≈ ϵ̃
2

11
4

√
11

sech

2

3
4 ϵ̃


x −

√
2t


cos


x −

√
2t − x0


, (25a)

ζ (x, t) ≈ ϵ̃
2

13
4

√
11

sech

2

3
4 ϵ̃


x −

√
2t


sin


x −

√
2t − x0


, (25b)

up to O(ϵ̃3), where ϵ̃ = ϵ
√

α and x0 is an arbitrary phase. Since α is arbitrary, the above expressions are valid as long as
ϵ̃ ≪ 1. It is important to mention that the gravity–capillary surface solitary waves are known to be stable for x0 = π
(depression) and unstable for x0 = 0 (elevation).

4. Weakly nonlinear gravity–capillary solitary waves

4.1. Steady computation

The solitary-wave solutions of the cubic-order truncation model are computed by numerical continuation that uses the
Moore–Penrose inverse with arc-length parameterization. The application of this method for the computation of steady
surface-wave solutions has been discussed earlier by Nicholls [38].

The bifurcation diagram for depression gravity–capillary solitarywaves is plotted in Fig. 1. The pseudo-spectralmethod is
used with a domain-stretching transformation, as was used by Kim and Akylas [17,21,26] for the numerical computation of
steady gravity–capillary solitary waves: for the stretching parameter, L = 16 is taken for the Euler equations, and L = 80 for
the cubic-order truncation model. For the number of discretization points, N = 512 is chosen. See [21] for the convergence
of the method with respect to the number of discretization points. The details on computing the gravity–capillary solitary
waves in deep water from the Euler equations based on this numerical method are summarized in the Appendix.

For the Euler equations, the (longitudinal) stability of gravity–capillary solitary waves was verified by Calvo and
Akylas [9]. Near the bifurcation point, the quantitative agreement between the cubic-order truncation model and the Euler
equations is fairly good.When the solitarywave speed is far below the bifurcationwave speed V0 =

√
2, however, the cubic-

order truncation model is no longer a good approximation to the Euler equations: the separation between the bifurcation
curves is apparent when the solitary wave speed is less than 1.35, approximately, particularly for the steepness of the
potential function on the surface (see Fig. 1). This gives the valid regime of the wave amplitude scale in which the weakly
nonlinear cubic-order truncation model works quantitatively close to the Euler equations.

The steady solitary-wave profiles are compared in Fig. 2 for V =
√
2 − 0.01, in Fig. 3 for V =

√
2 − 0.04, and in Fig. 4

for V = 1.35. In comparison of the numerical steady solitary-wave solution profiles, the cubic-order truncation model and
the Euler equations are seemingly indistinguishable each other.

The magnitudes of the Fourier spectra of weakly nonlinear gravity–capillary solitary waves are plotted in Fig. 5 for the
surface elevation and the derivative of the surface potential function, both ofwhich are even, from the cubic-order truncation
model. Near the bifurcation point when V =

√
2, the highest peak of the magnitudes of Fourier spectra is attained at the
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Fig. 1. The bifurcation diagram for the branch of depression solitary waves. The peak surface depression, η|ξ=0 , (left) and the steepness of the potential
function on the surface, dζ/dξ |ξ=0 , (right) for the NLS model (— · —), the Euler model (—), and the cubic-order truncation model (− −), where ξ = x− Vt .
The cubic-order truncationmodel becomes a very precise approximation to the Euler equations when the solitary wave speed, denoted by V , is sufficiently
close to the bifurcation point

√
2. Near the bifurcation point, moreover, the bifurcation curve of the cubic-order truncationmodel resolves the sharp change

of the Euler equations counterpart, whereas the NLSmodel does not. Below V = 1.35, the deviation of themodel equations for the steepness of the surface
potential function from the Euler equations is relatively greater than that of the peak surface depression.

Fig. 2. Comparison of gravity–capillary solitary wave solutions near the bifurcation point below the minimum of phase speed at the carrier wavenumber
k0 = 1 for the solitary wave speed V =

√
2−ϵ2 when ϵ = 0.1: NLSmodel (— · —), Eulermodel (—), and the cubic-order truncationmodel (− −) in the first

and the third figures; perturbation errors between the cubic-order truncation model and the Euler model (—) and between the NLS model and the Euler
model (— · —) in the second and the fourth figures, respectively. The cubic-order truncationmodel shows a better agreement with the Euler equations than
with the NLS model.

carrier wavenumber k0 = 1 of the primary harmonics of the solitary wavepacket and the second peak at the wavenumber
of the second harmonics. As expected, the Fourier spectra become more broadened as the solitary wave speed goes farther
away from the bifurcation wave speed. It is also interesting to note that the magnitudes of the peak Fourier coefficients are
similar regardless of the solitary wave speed.
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Fig. 3. Comparison of gravity–capillary solitary wave solutions near the bifurcation point below the minimum of phase speed at the carrier wavenumber
k0 = 1 for the solitary wave speed V =

√
2−ϵ2 when ϵ = 0.2: NLSmodel (— · —), Eulermodel (—), and the cubic-order truncationmodel (− −) in the first

and the third figures; perturbation errors between the cubic-order truncation model and the Euler model (—) and between the NLS model and the Euler
model (— · —) in the second and the fourth figures, respectively. The profiles of solitary waves have losing wavepacket properties, but the solitary-wave
profiles from the cubic-order truncation model still seem hardly distinguishable from the counterparts of the Euler equations. Quantitative discrepancies
between NLS and Euler are apparently noticeable.

4.2. Unsteady simulations

The unsteady numerical simulations are presented by combining the Fourier spectral method with the explicit
Runge–Kutta fourth-order method under the application of the integrating factor (see [62] for the implementation idea).
For the spatial discretization size, ∆x = 0.1 is used.

In Figs. 6–8, theweakly nonlinear gravity–capillary solitarywaves of the cubic-order truncationmode for V =
√
2−0.01,

V =
√
2 − 0.04, and V = 1.35 are taken as the initial conditions, respectively, for the common discretized time step

∆t = 0.005. Note that the shapes of the weakly nonlinear gravity–capillary solitary waves are stably maintained for
100 nondimensional time units for each case. However, when the solitary wave speed is less than 1.305, such that the
nonlinearity becomes stronger, the numerically computed steady profiles of weakly nonlinear gravity–capillary solitary
waves are not stable in the cubic-order truncation model.

In Fig. 9, a dynamic interaction between weakly nonlinear gravity–capillary solitary waves for V =
√
2 − (0.1)2 and

V =
√
2 − (0.2)2 is presented for 2000 nondimensional time units with ∆t = 0.001. The former gravity–capillary solitary

wave is smaller and faster, so it collides with the latter larger and slower one. After the interaction, each of them is separated
out again as another solitary wave. The larger one is slowed down, with the new approximate wave speed 1.3708, and its
amplitude becomes slightly higher; the smaller one becomes even smaller and faster. This features an inelastic solitary
wave collision because each shape is not maintained to be the initial one, which is typical to any nonintegrable dynamical
system.

5. Discussion and conclusion

In the sense of weak nonlinearity, this cubic-order truncation model equations system is regarded as a quantitatively
precise and optimally efficient reduced model for gravity–capillary waves for the following reasons. First, only the weak
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Fig. 4. Comparison of gravity–capillary solitary wave solutions below the minimum of phase speed at the carrier wavenumber k0 = 1 for the solitary
wave speed V = 1.35 (ϵ ≈ 0.253), where ξ = x − Vt: NLS model (— · —), Euler model (—), and the cubic-order truncation model (− −) in the first and
the third figures; perturbation errors between the cubic-order truncation model and the Euler model (—) and between the NLS model and the Euler model
(— · —) in the second and the fourth figures, respectively. The perturbation errors for both the cubic-order truncation model and NLS from Euler become
larger as the nonlinearity is stronger.

nonlinearity of Zakharov’s canonical variables is assumed. Second, the classical NLS equation, derived from them, takes
exactly the same form as the one derived from the full Euler equations, not requiring any further scaling. Third, more
qualitative and quantitative properties of the gravity–capillary solitary waves of the original full Euler equations are better
explained, such as the profiles of gravity–capillary solitary wave solutions, the bifurcation diagrams near the bifurcation
point, and the nonlinear effect of the normal stress balance on the surface.

The quantitatively consistent skew-symmetric property of the associated linearized operators can be shown in the order
of the wave amplitudes under the assumption of weak nonlinearity, from which the long-wave transverse instability of
weakly nonlinear gravity–capillary solitary waves can be directly derived [63]. This indicates that it will be possible to
perform accurate numerical computations for the steady profiles of weakly nonlinear gravity–capillary lumps and the
dynamic generation of such lump-type solitary waves via the long-wave transverse instability of the weakly nonlinear
gravity–capillary solitary waves, similarly as observed in the numerical simulations of the earlier studies [17,21,26].
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Appendix A. Cauchy’s integral formula for the two-dimensional potential flow in infinite depth

In this Appendix, a formulation is presented to compute surface gravity–capillary solitary-wave solutions in two spatial
dimensions from the potential flow assumption, which uses Cauchy’s integral formula with respect to the potential and
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Fig. 5. The magnitudes of the Fourier spectral of gravity–capillary solitary waves from the cubic-order truncation model at the solitary wave speed
V =

√
2 − 0.01,

√
2 − 0.04, and 1.35: |F {η(ξ)} (k)| (—) and |F {ζ (ξ)} (k)| (— · —), where ξ = x − Vt . As the solitary waves appear farther away

from the bifurcation point, the associated Fourier spectra are broadened.

stream functions, originally developed by Vanden-Broeck and Dias [3]. The same formulation was used in later studies
to compute surface gravity–capillary solitary waves in arbitrary finite depth [7] and interfacial gravity–capillary solitary
waves [8]. The same method was used to reproduce the earlier results by Calvo and Akylas [9,64] and by Kim and
Akylas [21]. This formulationwas recently implemented byMilewski et al. [31] to compute the initial conditions for dynamic
computations of plane gravity–capillary waves.

Particularly in this study, the computation of various conserved quantities for gravity–capillary solitary waves is
highlighted. See [65,66] for similar discussions in terms of the potential and stream functions, which was also addressed
by Kim and Akylas [21].

Let us consider gravity–capillary solitary waves from the following water-wave problem in deep water, which is
described by the full Euler equations in two spatial dimensions:

∂2φ̄

∂ξ 2
+

∂2φ̄

∂z2
= 0 for − ∞ < z < η̄(ξ), −∞ < ξ < +∞ (A.1)

for solitary-wave solutions, φ̄(ξ , z), and η̄(ξ), where ξ = x − Vt , with the boundary conditions

0 =

−V + φ̄ξ


η̄ξ − φ̄z, (A.2a)

0 =
1
2


−V + φ̄ξ

2
+ φ̄2

z − V 2


+ η̄ −
η̄ξξ

1 + η̄2
ξ

 3
2

(A.2b)

at the free surface z = η̄(ξ). (A.2a) is the kinematic boundary condition, which explains that the deformation of the free
surface is exactly owing to the normal velocity component of fluid particles on the free surface. (A.2b) is the dynamic
boundary condition, explaining the normal stress balance, meaning that the momentum of the fluid is driven by the
gravitational acceleration and the surface tension on the free surface.
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Fig. 6. The unsteady numerical computation of the cubic-order truncation model, with the weakly nonlinear gravity–capillary solitary waves η(x, t) (—)
and ζ (x, t) (− −) for V =

√
2 − 0.01, computed in Fig. 2, as the initial condition. The explicit fourth-order Runge–Kutta method is used on the basis of

Fourier spectral method with the discretization parameters ∆t = 0.005 and ∆x = 0.1. The solitary-wave profiles are stably maintained.

Let us define

Φ(ξ , z) ≡ Vξ − φ̄(ξ , z), (A.3)

and Ψ (ξ , z) as a harmonic conjugate of Φ(ξ , z) such that Φ + iΨ is analytic with respect to ξ + iz. Then, the following
Cauchy–Riemann equations should be satisfied:

Φξ = V − φ̄ξ = Ψz, Ψξ = −Φz = φ̄z . (A.4)

Along the free surface, we have z = η̄(ξ), Ψ ≡ const. = Ψ0, because

dΨ

dξ


z=η̄(ξ)

= Ψξ + η̄ξΨz = φ̄z +

V − φ̄ξ


η̄ξ = 0. (A.5)

Since Φ + iΨ is analytic with respect to ξ + iz, ξ + iz is analytic, as its inverse, with respect to Φ + iΨ , and so is
ξΦ −

1
V


+ izΦ . Therefore, from Cauchy’s integral formula, we have

ξΦ −
1
V


+ izΦ =

i
π


+∞

−∞


ξs −

1
V


+ izs

s − Φ
ds. (A.6)

The factor on the right-hand side of (A.6) is 1
π i , rather than

1
2π i , because it is evaluated on the boundary of the domain. The

negative sign comes out of the orientation of the contour integration. Accordingly, we have the following Hilbert transform
pair:
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Fig. 7. The unsteady numerical computation of the cubic-order truncation model, with the weakly nonlinear gravity–capillary solitary waves η(x, t) (—)
and ζ (x, t) (− −) for V =

√
2 − 0.04, computed in Fig. 3, as the initial condition. The same method and parameters are used as in Fig. 6.

ξΦ −
1
V

=
1
π


+∞

−∞

zs
Φ − s

ds = H {zΦ} = Ḡ0 {z} , (A.7a)

zΦ = −
1
π


+∞

−∞

ξs −
1
V

Φ − s
ds = −H {ξΦ} = −Ḡ0 {ξ} , (A.7b)

where Ḡ0 is the one-dimensional counterpart of the operator G, as defined in (8), which corresponds to the derivative of the
Hilbert transformation.

It is required that both ξΦ −
1
V and z are smooth and vanish as |Φ| goes to infinity. The kinematic boundary condition has

been used in (A.5) in order to derive the Cauchy integral expression up to this point. In fact, the two expressions in (A.7a)
and in (A.7b) are equivalent, although not in general, because they are also the harmonic conjugates of each other. That is,

ξΦ −
1
V

= −H {H {ξΦ}} or z = −H {H {z}} (A.8)

does not give any additional information: it only states that ξ and z satisfy Laplace’s equation with respect to (Φ, Ψ ) in the
lower half infinite plane for −∞ < Φ < +∞ and −∞ < Ψ < 0. The description of the full Euler equations is completed
together with the dynamic boundary condition.

Now we want to express the dynamic boundary condition in terms of ξ and z, replacing the original variables, η̄ and φ̄,
at the free surface z = η̄(ξ). From analyticity, it is evident that

Φξ + iΨξ =
1

ξΦ + izΦ
=

ξΦ − izΦ
ξ 2
Φ + z2Φ

, (A.9)
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Fig. 8. The unsteady numerical computation of the cubic-order truncationmodel, with the weakly nonlinear gravity–capillary solitary wave for V = 1.35,
computed in Fig. 4, as the initial condition. The same method and parameters are used as in Figs. 6 and 7.

thus,

V − φ̄ξ = Φξ =
ξΦ

ξ 2
Φ + z2Φ

, φ̄z = Ψξ = −
zΦ

ξ 2
Φ + z2Φ

. (A.10)

Alternative expressions are introduced for the left-hand sides in (A.7a) in terms of η̄ and φ̄. Using the chain rule, we have
Φz Ψz
Ψz −Φz

 
zΦ
zΨ


=


1
0


. (A.11)

Hence,

zΦ =
Φz

Φ2
z + Ψ 2

z
=

−φ̄z

φ̄2
z +


V − φ̄ξ

2 =
−Ψξ

Φ2
ξ + Ψ 2

ξ

= −ξΨ , (A.12a)

zΨ =
Ψz

Φ2
z + Ψ 2

z
=

V − φ̄ξ

φ̄2
z +


V − φ̄ξ

2 =
Φξ

Φ2
ξ + Ψ 2

ξ

= ξΦ . (A.12b)

Using the above properties, along the free surface z = η̄(ξ), we have

η̄ξ =
zΦ
ξΦ


z=η̄(ξ)

, η̄ξξ =
zΦΦξΦ − ξΦΦzΦ

ξΦ
3 . (A.13)

Therefore the surface tension term can be expressed by
η̄ξξ

1 + η̄2
ξ

 3
2

=
zΦΦξΦ − ξΦΦzΦ

ξΦ
3 ·

1
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
zΦ
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2
 3

2
=

zΦΦξΦ − ξΦΦzΦ
ξΦ

2
+ zΦ2

 3
2

. (A.14)
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Fig. 9. An interaction between two solitary waves, computed in Figs. 6 and 7, of which wave speeds are V =
√
2 − 0.01 ≈ 1.4042 (left) and V =√

2− 0.04 ≈ 1.3742 (right), respectively (the surface elevation only). The samemethod is used with a smaller time step ∆t = 0.001 and the same spatial
discretization size and∆x = 0.1 for t = 2000. The smaller solitary wave catches up with the larger one and passes through it. After the collision, the larger
one becomes slightly larger and is slowed down to V ≈ 1.3708 and the smaller one spreads out.

Finally, the dynamic boundary condition is given by

0 =
1
2


1

ξΦ
2
+ zΦ2

− V 2


+ z −
zΦΦξΦ − ξΦΦzΦ
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2
+ zΦ2

 3
2

. (A.15)

For numerical implementation, it is convenient to introduce χ = ξΦ −
1
V because it decays to zero at infinity:

0 = −
Vχ +

1
2V

2

χ2

+ zΦ2


χ +
1
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+ zΦ2

+ z −


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1
V


zΦΦ − χΦzΦ

χ +
1
V

2
+ zΦ2

 3
2

. (A.16)

Equivalently, a single nonlinear integro–differential equation is reached for z(Φ):

0 =
1
2


H {zΦ} +

1
V

2

+ zΦ2 +


z −

1
2
V 2

 
H {zΦ} +

1
V

2

+ zΦ2

 3
2

−


H {zΦ} +

1
V


zΦΦ + H {zΦΦ} zΦ (A.17)

for −∞ < Φ < +∞, where |z(Φ)| → 0 as |Φ| → +∞.
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Appendix B. Spectrally accurate numerical conversion to the functions of spatial variables (Φ, Ψ ) −→ (ξ, z)

When solitary-wave solutions are computed as the functions of Φ for −∞ < Φ < +∞ at the free surface z = η̄ (at
Ψ = 0), it is natural to convert the solutions as the functions of ξ for −∞ < ξ < +∞.

The main idea is to identify the values of the solutions at a given spatial discretization point ξj for 1 ≤ j ≤ N . To this end,
the initial value problem of the following first-order ordinary differential equation is solved:

dφ̄
dξ


z=η̄

=
Vχ(Φ)

χ(Φ) +
1
V


z=η̄

=
Vχ(Vξ − φ̄)

χ(Vξ − φ̄) +
1
V


z=η̄

(B.1)

for φ̄

(ξ ,z)=(0,η̄)

= 0. And then, φ̄j for 1 ≤ j ≤ N can be computed for arbitrary discretization points for ξ . Therefore
solitary-wave solutions in terms of ξ along the free surface z = η̄ are simply recovered by

η̄|Φ=Vξj−φ̄j
, χ̄ |Φ=Vξj−φ̄j

for 1 ≤ j ≤ N (B.2)

along the free surface Ψ ≡ 0.
Once the boundary values are converted, in the bulk of fluid flow, for −∞ < Φ < +∞ and −∞ < Ψ < 0, χ and zΦ are

obtained by solving the Dirichlet problem of Laplace’s equation, respectively.
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