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On the rate of descent of overflows 
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Abstract. The path taken by dense turbulent outflows usually requires the numerical solution 
of along-flow equations for mass, tracers, and momentum and cannot easily be predicted. In- 
stead, we consider the consequences of two simple assumptions. First, there is a quadratic tur- 
bulent bottom drag. Second, the outflow is assumed to be approximately in local equilibrium 
so that a best fit formula from atmospheric and ocean surface layer observations plus large- 
eddy simulations, used by Zilitinkevich and Mironov [1996], can be used to predict the local 
thickness. (No energy budget for turbulent bottom layers is known, which is a constant diffi- 
culty for numerical models of such layers.) The equilibrium solution is approximately equiva- 
lent, for most oceanic conditions, to a constant bulk Richardson or Froude number. It is 
shown that dense turbulent overflows follow a simple trajectory, in which the rate of depth in- 
crease is a constant, until the level of turbulence drops sufficiently that the equilibrium solu- 
tion becomes invalid. This result is independent of the detailed thermodynamics, entrainment 
or detrainment, and the quadratic drag coefficient (but does depend on the assumption of 
quadratic drag). Trajectories for the major overflow regions give reasonable results when 
compared wi•¬ •¬e limilect available data. A_n_ argument is given as to why entrainment should 
only occur over limited regions, with detrainment elsewhere. 

1. Introduction 

Dense turbulent overflows occur downstream of many sills 
and straits which separate ocean basins. They form an 
cient way in which much of the hydraulically controlled water 
passing across the sill can make its way into the deep basin 
beyond, with far less mixing than would occur had the water 
passed directly into the interior of the basin by laminar advec- 
tion. Thus they form part of the intricate mechanism whereby 
water masses are formed and obtain their properties. 

Overflows were originally studied by simplified stream 
tube models [Smith, 1975; Killworth, 1977], recently updated 
to include realistic topography by Price and Baringer [1994]. 
Emms [1998] casts some doubt on the validity of stream tube 
models for two reasons. First, it has long been known that the 
derivation of the stream tube equations omits an extra pres- 
sure gradient term (see Alendal [1995] for a discussion). 
Emms showed that steady subcritical flows are unstable with 
the inclusion of this extra term. Second, his numerical simula- 
tions suggested that the flow could not be considered as uni- 
form laterally across the stream tube and that draining by Ek- 
man layers would play an important role (as in laboratory ex- 
periments by Lane-Sc•ffand Baines [2000]). 

Stream tube models, while extremely useful for under- 
standing mechanisms, are hard if not impossible to include in 
more complicated models of ocean circulation. These cannot 
easily "lose" or "gain" fluid from grid boxes, which is re- 
quired if the stream tube is either to be initiated at a sill, or to 
derrain at its buoyancy level. They also, by their nature, can 
only entrain and so cannot be suitable for global-scale models. 
On the laboratory scale at least, there is considerable evidence 
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that dense bottom flows are unstable and shed eddies, break- 

ing the slowly varying assumptions of stream tube theory [E- 
fling el ctl., 2000]. 

These and other considerations led to the production of 
more general models. notably the two-dimensional model of 
Jungclaus and Backhaus [1994], which permitted lateral vari- 
ation in the flow as well as splitting of the "tube" by topogra- 
phy [Jungclaus et at., 1995]. In turn, these models provided 
partial impetus to the recent developments in bottom boun- 
dary codes for ocean models [e.g., Beckmann and D•scher, 
1997; Killworth and Edwards, 1999; Song and Chao, 2000]. 
Such codes adopt partial or complete aspects of "slab" physics 
for a bottom boundary layer, and are now being actively ex- 
amined to ascertain what degrees of improvement such mod- 
els give to climate simulations [e.g., Dengg et al., 1999]. The 
"slab" approach is generally necessary since the ocean inter- 
ior, above the bottom layer, is described by rather coarse ver- 
tically resolved physics (typical grid spacings of 200 m or 
more), so that, rather as with atmospheric boundary layer 
studies, full progress is likely to be made only when resolu- 
tion of the boundary layer and its vicinity becomes affordable. 
Another disadvantage of the "slab" approach is that, unlike 
the surface boundary layer which can gain or lose turbulent 
energy due to forcing, no energy equation is available for the 
bottom boundary layer (all available terms act as turbulent en- 
ergy sources, so that the layer would apparently have to en- 
train everywhere). This has led to approaches varying from 
the layer having dynamics borrowed from the interior 
[Beckmann and D•'ischer, 1997] to the employment of an equi- 
librium turbulence solution from atmospheric, oceanic and 
large-eddy simulations to predict a slab depth [Killworth and 
Edwards, 1999]. This latter approach will be used here. 

Other, non-slab, approaches are also being considered 
(Hallberg, personal communication, 2001), and process mod- 
els using three-dimensional numerical codes have been car- 

22,267 



22,268 KILLWORTH: RATE OF DESCENT OF OVERFLOWS 

ried out [Jiang and Garwood, 1995]. To evaluate the effects 
of such parameterisations requires a variety of comparisons 
with the sketchy data available. While making global tests of 
variations on a modification of the Killworth and Edwards 

formulation [Nurser et al., 2000], the path of the outflows be- 
came an object of study. Stream tube models predict the path, 
which is solved as one of a set of ordinary differential equa- 
tions for momentum, tracers, etc. The purpose of this paper is 
to show that under fairly general circumstances (which in- 
clude the local equilibrium formulation mentioned above for 
layer thickness, appearing as a constant Froude or Richardson 
number), the outflow path is simply described by the geom- 
etry of the topograpl•y and is otherwise independent of the 
physics of the outflow. This is derived (section 2) and briefly 
compared with data (section 3). A short discussion of en- 
trainment and detrainment follows (section 4). 

2. The Model 

When a turbulent bottom flow has passed through a sill, it 
initially falls rapidly before turning under the action of Co- 
riolis force. After approximately a deformation radius, the 
along-slope velocity has become almost exactly geostrophic 
[Price and Baringer, 1994; Erares, 1997]. At this stage the 
flow is almost along-slope and sinking at a small angle 0 to 
the depth contours. There are three components to the force 
balance for small Rossby number. Two of these would occur 
under any model assumptions: Coriolis, oriented almost up- 
slope and normal to the flow, and gravity, oriented down- 
slope. The third relates solely to bottom drag. Within the as- 
sumption of a slab-like flow the drag can only appear as a 
body force. We follow the normal practice of modeling this as 
a quadratic term, divided by the layer depth to turn it into a 
body force. 

Two balances can be obtained from the force balance. 

While formally valid only for stream tubes, they are suffi- 
ciently general to hold under much wider conditions (and cer- 
tainly apply to extant bottom boundary codes). The first, and 
more usual, is along-flow geostrophy, which, unusually, is not 
used directly here but noted for later. Resolving the forces 
normal to the flow gives the familiar [Nof, 1983; Condie, 
1995] along-flow geostrophic balance 

fu = g'lVDI 

where f is the Coriolis parameter, u is the (almost) along- 
slope velocity, g' is the reduced gravity given by 
g' = g(Pbottom- Pinterior)/P0, and D(x, y) is the topography 
depth. This relation will only hold after the outflow has 
moved a distance of about a deformation radius (i.e., so that 
geostrophy has had time to hold). 

The second balance is more relevant here. Resolving along 
the flow gives the frictional balance 

g' IvDI 0 - (2) 
h 

where Co is the quadratic drag coefficient and h is the layer 
thickness. Some evidence for the validity of this is given by 
the realistic stream tube results of Price and Baringer [1994], 
which use this balance. 

An energy balance is needed. As noted in the introduction, 
no useful energy budget for a slab bottom boundary layer has 
as yet been produced. In particular, detrainment cannot occur 

without a formulation for energy loss; a viable bottom boun- 
dary layer model must be able both to entrain and derrain. 
This forces the use of an alternative approach, and we follow 
Killworth and Edwards [1999] and use the local equilibrium 
solution of Zilitinkevich and Mironov [1996]. Those authors 
derived an expression predicting layer depth based on best fits 
to a wide variety of atmospheric and oceanic boundary layer 
observations, together with large eddy simulation numerical 
experiments. It is known [Killworth and Edwards, 1999] to fit 
the scant bottom boundary layer observations quite accurately, 
e.g., those of Armi and Millard [1976] and Baringer and 
Price [ 1997a]. 

We use here the slightly simplified form of the 
Zilitinkevich and Mironov [1996] local equilibrium solution, 
rewritten by Killworth and Edwards [1999] (see them for a 
discussion) as 

h )2 h + = (3) 
C,u. / f CoG, 2 lul = / g' 

where u. is the friction velocity, C,, = 0.5, and Ci = 20. (C,, 
and C, are best fit constants defined by Zilitinkevich and Mir- 
onov; under some circumstances they might have weak varia- 
tion with other aspects of the bottom boundary layer regime 
left unconsidered by Zilitinkevich and Mironov, e.g., bottom 
slope. They note that C,, in particular, could use more rigor- 
ous evaluation, and we shall permit it to vary slightly in what 
follows.) Appendix A shows that the second term in (3) dom- 
inates the first save over very strongly sloping topography and 
modifies the theory slightly in such cases. As we shall see, 
however, the changes at their largest are quite small and often 
negligible, so that (3) reduces to a Froude number criterion 

u 2 1 
= (4) 

g'h C,2Co ' 

Opinions vary as to which form of Froude number is likely to 
be more relevant. The lbrm (4) agrees both in form and nu- 
merically with Armi and Millard [1976], but Baringer and 
Price [1997a] prefer the velocity shear 6u rather than the bot- 
tom layer velocity u in the Froude number (in most parts of 
the ocean with weak deep flow, the differences are minor). 

If Co = 3 x 10 -3 , as used by Killworth and Edwards 
[ 1999], then u / x/r•'h) = 0.9 (rising to 1.1 if 
Co = 2 x 10-3), which is in good agreement with results 
from the early part of the Mediterranean outflow [Baringer 
and Price, 1997a], though the later part has rather smaller 
values, suggesting that the mixing has ceased so that the Zilin- 
tinkevich and Mironov formula would cease to hold, a case 

discussed below. For comparison, Johnson et al. [1994] find a 
ratio of the squares of u. and u (one measure of a drag co- 
efficient) to be 2.5 (+ 0.7) x 10 -3. 

Let s be an along-stream variable. Then the rate of vertical 
descent along the slope is 

dD 0 IVDI = 1 1 1 ds - g'h = CO c•co C• 400 (5) 
for the Zilitinkevich and Mironov values. It should be noted 

that this rate is independent of the drag coefficient (it is nu- 
merically similar to Co only if the Froude number of the layer 
is near unity, which would not be the case if Co were, for ex- 
ample, 10-3). It should be noted that the Zilitinkevich and 
Mironov theory, couched in terms of friction velocity, can be 
thought of as including a quadratic drag law, so that an argu- 
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ment could be made that Co "cancels out" within their theory. 
Certainly, such cancellation would not occur for any other 
drag law, although a quadratic is certainly the most realistic 
available. 

The descent rate is also independent of the remainder of the 
dynamics and thermodynamics. For example, the layer may 
be either entraining or detraining, but (5) continues to hold. 
As a result, the path of the descent of the (center of the) over- 
flow can be mapped without knowledge of other dynamics. In 
practice, if the overflow moves at an angle q5 to the eastward 
direction (x, with coordinates x east y north), 

dD 

ds 
- D, cos q5 + D, sin q5 - IVD cos(q5 - 5•) - 

c7 

(. ]) (6) q5 - • +__ cos -• c• IVD 
g! ' 

solution to (6) depends on hemisphere. 
The result (5) is the main result of this paper. Its inde- 

pendence of almost all quantities is surprising. Some theoret- 
ical confirmation is given by the plume studies of Price and 
Baringer [ 1994], in which they note that the trajectory of their 
plumes are unaffected by variations in initial conditions 
(though, of course, their dynamics did not include the Froude 
number criterion (4)). 

The rate of descent predicted by (5) is an upper bound. If 
the turbulence level of the bottom layer decreases, both u and 
h decrease, and eventually the Froude number (4) predicts a 
very small thickness /'or the layer. In the Killworth and Ed- 
wards [1999] code the depth h has a minimum depth h0 of 10 
m, to which it is reset if it becomes lower. This is immediately 
equivalent to reducing the Froude number below its constant 
value. In this case, (2) predicts 

IVD[ 0 - 
C DI•I 2 

and 

so that 

h 0 > 
C•CDz• 2 

! 

1 

ds C,: 

showing that the rate of descent slows when the flow is less 
active. However, Ekman drainage could then take place, 
which would instead increase the rate of descent. 

3. Results 

The simple formula for rate of descent can be applied to the 
four main overflows in the Atlantic: the Gibraltar outflow, the 
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Figure 1. Predicted path of the Mediterranean outflow for descent rates 1/400 (thick solid line), 1/450 (long- 
dashed line), and 1/500 (short-dashed line). The topography contour interval is 200 m. 
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Denmark Strait, the Faroe Bank Channel, and the Filchner Ice 
Shelf in the Weddell Sea, as discussed in much greater detail 
by Price and Baringer [1994]. The ETOPO5 topography [Na- 
tional Geophysical Data Center, 1988] was used, sometimes 
with smoothing on various length scales. Various choices 
were made for Ci and hence for the rate of descent. From a 
chosen starting location, (6) provided the angle the trajectory 
made with the eastward direction (the calculation used spher- 
ical coordinates for accuracy), with a right or left choice de- 
pending on the sign of the Coriolis parameter. This was then 
expressed as the rate of change of longitude and latitude with 
along-stream distance, and these equations were integrated us- 
ing an Adams method. In cases in which the local slope was 
smaller than the rate predicted by (5), the layer is assumed to 
descend along the maximum downward slope until the slope 
increased. In flatter topography, it can happen that a "bowl" is 
entered, from which the trajectory cannot escape; in such 
cases the trajectory is terminated. In such cases, the Froude 
number would earlier have fallen below its critical value, and 
such locations probably not reached. In addition, the extended 
formula for the rate of descent, valid when slopes become 
large, was also run; when this had a nonnegligible effect, this 
will be noted in what follows. 

3.1. Gibraltar Outflow 

Figure 1 shows the predicted path for the outflow, starting 
at the same location as used by Price and Baringer's [1994] 
stream tube model, using as rates of descent 1/400, 1/450, and 
1/500. The three trajectories have very similar spatial loca- 
tions, but of course, their depths vary. The trajectory agrees 
well with the stream tube model, to the extent of rounding 
Cape St. Vincent in a similar manner (although the outflow 

dynamics would probably have ceased by that time). The path 
predicted by using the full formula for descent rate (equation 
(A2)) with parameters equivalent to the 1/400 rate is fraction- 
ally deeper, as it must be, but its position is no farther from 
the unmodified result than are the differences between the 
1/400 and 1/450 results. 
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Figure 2. Predicted Mediterranean outflow depths as a func- 
tion of along-outflow distance s using a constant descent rate 
of 1/400 (dashed line), compared with the on-shore and off- 
shore depths observed by Baringer and Price [1997a]. Also 
shown (long- and short-dashed line) is the change made by us- 
ing the full formula in Appendix A. 

The predicted depth (for a descent rate of 1/400) is shown 
against Baringer and Price's [1997a] observations of on- 
shore and offshore depths of the outflow (their figure 8c) in 
Figure 2, and lies approximately halfway between the two 
bounds. (There appears to be some confusion as to precise lo- 
cations and depths in the work of Baringer and Price [1997a, 
1997b]. The distances between their sections in Baringer and 
Price [1997a, Figures 1 and 8] does not match that in Baring- 
er and Price [1997b, Table 2]. Similarly, the depths shown in 
Baringer and Price's [1997a, Figures 1, 8 and 14] show dif- 
ferences. Defining these quantities, as they note, is far from 
easy. For consistency, their Figure 8 data have been used 
here.) 

This is not a stringent test since (1) the mass-weighted 
transport is not necessarily halfway between the on-shore and 
offshore depths and (2) when the outflow width reaches 
around 50 km, for realistic bottom slopes this corresponds to a 
range of depths of several hundred meters. The only other 
easy comparison is with the Price and Baringer [1994] stream 
tube trajectory (their Figure 4), which is indistinguishable 
from that in Figure 1. At the simple level of this paper, the 
prediction of constant rate of fall is clearly working well. A 
further test is given by the long- and short-dashed line in Fig- 
ure 2, which shows the changes made by using the full (A2) 
formula. This predicts a slightly deeper trajectory (as it must). 
Over the range shown, the two lines are almost parallel, -- 100 
m apart. There is little divergence between the two, probably 
because the majority of the effects of the full formula oc- 
curred in steeper topography near the start of the trajectory. 

3.2. Denmark Strait 

Figure 3 shows trajectories for rates of descent 1/400, 1/ 
450, and 1/500 for a starting point at 65.8øN, 28.5øW. The to- 
pography here has been slightly smoothed from the original 
ETOPO5 data. The more rapid descent rates in this set have 
trajectories which leave the main slope at -- 39 ø W and turn 
southward, eventually ending their trajectories in flatter ba- 
sins; the slower descent trajectories are similar to the stream 
tube paths of Price and Baringer's [1994] Figure 8. 

Comparison with data is less easy than for the Mediterra- 
nean since there are less surveys. Saunders' [2000; Figure 4] 
survey shows a summary of paths of both Denmark Strait and 
Faroe Bank Channel overflows. The slower rate of descent 

trajectories (1/500 and 1/600; the latter is not shown) appear 
to fit his data better than the faster descent trajectories. This is 
especially true in the vicinity of Cape Farewell, where 
Saunders indicates a depth of-- 2500 m: all trajectories are 
somewhat lower than this. However, other data suggest the 
outflow to be lower. Discovery Cruise 230 (S. Bacon, per- 
sonal communication, 2000), part of which formed WOCE 
section A25, shows a depth of the core of the outflow at -- 
2500 m somewhat earlier, -- 62øN, and between 2500 and 
3000 m southeast of Cape Farewell, at -- 42øW (Saunders 
[2000] shows this section; see his Figure 11). The natural var- 
iability inherent in outflow paths makes direct comparison dif- 
ficult, but the suggestion here is that the faster rates of descent 
(around 1/400) again fit at least some of the data. In such 
cases the continuation of the trajectories becomes unrealistic, 
so that turbulence levels would have to have dropped to low 
values south of-- 62øN. 

A useful set of measurements for comparison are given by 
Dickson and Brown [1994], who estimate both depth of the 
outflow and its angle with the isobaths (0) at three arrays 
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Figure 3. Predicted path of the Denmark Strait outflow, for descent rates 1/400 (thick solid line), 1/450 
(long-dashed line), and 1/500 (short-dashed line). The topography has been slightly smoothed' contour inter- 
val is 250 m. 

(Dohrn Bank, the Transient Tracers in the Ocean array, and 
Angmagssalik) as well as positioning the start of the outflow 
from 1973 data. The agreement with these data is shown in 
Figure 4. This shows the predicted depth of the outflow 
against Dickson and Brown's estimates (their Figure 12, in- 
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Figure 4. The depth of the Denmark Strait outflow (firm line, 
m) and the angle the flow makes with the isobath (degrees) 
for the 1/400 case in Figure 3. Solid circles show the estimates 
of core current depths from Dickson and Brown [1994]. 

dicated here by solid dircles). The disagreement in the east- 
ernmost value is purely due to the slight differences in the to- 
pography used in our calculations. As the plume moves west- 
ward, it deepens at a roughly constant rate with longitude. 
This is clearly too shallow a descent between 34 ø and 30øW, 
but the depth at Angmagssalik (36.5øW) is well produced by 
the simple model. The dashed lines in Figure 4 show the angle 
of flow across the isobath in the model (which depends, of 
course, on the local topography). These can be compared with 
Dickson and Brown's [1994] estimates of mean values 
between the solid circles, which are (reading westward, i.e., 
from right to left in the diagram) 18 ø, 5 ø, and 4 ø. The model 
shows high values, up to 12 ø, near the initial outflow, drop- 
ping to around 5 ø, between the rightmost two circles, in rough 
agreement with but not as high as the 18 ø cited by Dickson 
and Brown. Interestingly, they suggest that this high angle is 
produced by entrainment, which is certainly taking place in 
reality in this area, whereas the simple model here can achieve 
high angles without requiring entrainment or detrainment to 
be occurring. Westward of this area, apart from a temporary 
increase to 10 ø near 34øW, values of 0 lie around 5 ø, in good 
agreement with Dickson and Brown. Thus the model is ca- 
pable of reproducing much of the observed behavior in the 
Denmark Strait overflow. Including the full (A2) formula 
produced no discernible changes to the simple 1/400 solution 
because the topography gradients are weak. 
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NE Atlantic 

Longitude 

Figure 5. Predicted path of the Faroe Bank outflow, for descent rates 1/400 (thick solid line), 1/500 (long- 
dashed line), and 1/600 (short-dashed line). The topography has been slightly smoothed; contour interval is 
250 m. 

3.3. Faroe Bank Channel 

Saunders [2000] also shows one section at --, 15ø-17øW to 
indicate the path of the Faroe Bank Channel outflow, in- 
dicating a depth of the core of- 1400 m at a longitude of- 
17 ø W. The trajectories in Figure 5 (for descent rates of 1/400, 
1/500, and 1/600) suggest that the more rapid descent (1/400) 
is here not a good fit to the admittedly sparse data and that a 
slower rate, around 1 / 500, might be preferred. Indeed, all the 
trajectories fall somewhat below the stream tube predictions 
of Price and Baringer [1994, Figure 11]. However, the spar- 
sity of data makes firm conclusions difficult. Again, including 
the full (A2) formula produced no noticeable changes to the 
simple 1/400 solution. 

3.4. Filchner Ice Shelf 

Offshore from the Filchner Depression is the main southern 
source of deep water. Measurements in this region are diffi- 
cult due to ice, and the difficulties in retrieving current meter 
data can be summed up by noting that Baines and Condie's 
[1998] review of downslope flows only discusses 
conductivity-temperature-depth (CTD) data. Interpretation of 
such data is also not easy: Foster and Carmack's [1976] data 
shows bottom water at 3000 m as far east as 40øW. 

Price and Baringer [1994] are again followed for a choice 
of starting point, which is here somewhat arbitrary. The initial 

depth of the starting point is sensitive as to latitude because 
the slope is steep, as they note. However, the trajectories are 
again insensitive to initial details. Figure 6 shows trajectories 
for descent rates of 1/400, 1/450, and 1/500; at this scale they 
are almost indistinguishable. The trajectories are similar to 
that shown by Price and Baringer save that it reaches a depth 
of 3000 m somewhat earlier (Price and Baringer's trajectory 
having tended to follow depth contours in its later stages). No 
comparison with data can be made about which descent value 
is more accurate. Once more, including the full (A2) formula 
produced no discernible changes to the simple 1/400 solution. 

4. Entrainment And Detrainment 

The simple result above is independent of thermodynamics, 
which depend on whether the outflow is entraining or de- 
training and on how the reduced gravity g' changes along the 
trajectory. It is enlightening to extend slightly the arguments 
above to examine these effects. We neglect cabelling and oth- 
er equation of state issues, which may be relevant in the 
Southern Ocean [Killworth, 1977]. 

Entrainment and detrainment are handled in the Killworth 

and Edwards [1999] scheme by time stepping the equation for 
the layer depth h, velocity u (in fact both components, but we 
follow Price and Baringer [1994] here and ignore the small 
cross-stream component) and density p and then comparing 
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Figure 6. Predicted path of the Weddell Sea outflow, for descent rates 1/400 (thick solid line), 1/450 (long- 
dashed line), and 1/500 (short-dashed line). The topography has been slightly smoothed' contour interval is 
250 m. 

o 

the predicted depth with the equilibrium solution given by (4). 
(The reader is reminded that no energy balance equation is 
known for a bottom boundary layer, implying an approach 
such as this.) If the predicted depth from the dynamical equa- 
tions is larger than the equilibrium solution (tl t > 0), de- 
trainment occurs as the depth is then reduced to its equilibri- 
um depth; if the predicted depth is smaller than equilibrium 
(ht < 0), entrainment occurs (and in this case interior fluid is 
mixed into the bottom layer, changing its properties). Note 
that the predicted changes are in the opposite direction to the 
physical description (i.e., in detrainment, ht must be positive). 
If the flow is steady, then we can derive features of the solu- 
tion very simply. 

The depth and density satisfy conservation equations 

/•, + (h.)., = 0 (8) 

(hp), + (hup),, = 0. (9) 

From these we may derive 

Pt + up,, = O. (10) 

We now consider the cases of detrainment and entrainment 

separately. 

4.1. Detrainment 

In this case, (8) implies that the prediction for h t is positive 
(so that h must be reduced to fit the local equilibrium solu- 
tion). Thus, for detrainment, 

(h.)., < O. (11) 

Since detrainment does not alter the layer values, requiring a 
steady state means that (1 O) implies 

p,, = o (•2) 

so that the layer density is not altered as the layer descends the 
slope. It therefore follows that the reduced gravity satisfies 

g'• : •ss (P- p') = 
g dp• g dp•dz. N 2 (D) 

= = (13) 
Po ds Po dz ds C, 2 

where p• is the undisturbed fluid density, the subscript I re- 
ferring to interior, and N is the buoyancy frequency. 

For consistency, (11) must be satisfied. By (1) and (4), 

C,2 C z)" • C,• C z) ,2 
uh = g' = • g IVDI 3 (14) 
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which must decrease along the trajectory. We have just seen 
that g' decreases monotonically. Under most conditions, dense 
outflows follow topography which, being concave, has a slope 
which decreases as the outflow falls downward. Thus both 

terms in (14) decrease along the trajectory and the assumption 
of detrainment is consistent. Only in regions in which the 
slope increases downwards will detrainment cease. 

4.2. Entrainment 

The prediction from (8) is now that ht be negative, or 

(•u).,. > 0. (•5) 

Now, however, when local adjustment occurs, interior fluid is 
entrained; the net result is no temporal change of depth or 
density. The initial changes due to advection, then, satisfy 

6h = -at (hu)., (! 6) 

ap = -atup,, (! 7) 

where the latter equation holds in any case. Mixing then oc- 
curs with the interior to remove the ah increment again, so 
that 

(h + ah)(p + ap) + p•(-ah) = Oh (•8) 

since the latter is the original undisturbed value. Thus 

pah + hap- p•ah = O, 

so that, after a little algebra, 

(uhp)., = Pt (uh).,, (19) 

which is the standard entrainment algorithm, or using the def- 
inition of g', 

(uhg')., = -uh N: (-D) c' • . (20) 
Using the definitions of u (1) and h (from (4)), this can be 
written entirely in terms of g' as 

N: 
(g'-• IVDI3),, = -g': IVDI '•/2 -- (2 ]) 

C,:' 

Requiring (uh)., to be positive implies 

(g':lVDI3)., > 0. (22) 
It is clear that (21) implies that (g,3 iVDi 3) decreases along the 
centerline of the fall, so that whether (g': IVDI 3) can increase 
will depend on whether IVDI can increase sufficiently rapidly 
to counteract the rapid decrease of g' caused by entrainment. 
Under most circumstances one would have, for topography 
smoothed at least on the width of a typical outflow, 

IVDI., << I• (23) 
IVDI 

on simple geometric grounds, the simplest example of which 
would be constant slopes. If (23) is satisfied, (uh),,. cannot be 
positive, and so entrainment cannot occur. 

This goes partway toward answering the question posed by 
Price and Baringer [1994], who wondered why entrainment 
was confined to relatively small areas in their integrations. To 
the extent to which the simple dynamics considered here 
holds, entrainment requires simultaneously rapid changes in 
topography and weak changes in reduced gravity; yet en- 
trainment acts to ensure rapid changes in reduced gravity, 

which is a partial contradiction. Thus this (slightly handwav- 
ing) argument confirms that entrainment is confined to small 
regions; under these dynamics, the majority of the flow is de- 
training, however slightly. 

5. Conclusion 

We have shown one simple result: that the rate of descent 
of a dense slab-like overflow which is in local turbulent equi- 
librium with its surroundings will fall at a constant rate, inde- 
pendent of almost all environmental values (in particular, of 
bottom drag), for both entraining and detraining flows. The 
predicted pathways of dense flows all seem plausible and in 
most cases consistent with a descent rate of around 1/400. 

This rate is also consistent with the dynamics used in the bot- 
tom boundary code of Killworth and Edwards [1999]. Data 
are frequently sparse, variable, or otherwise hard to interpret, 
and outflows can become quite wide and so occupy a large 
lateral extent; thus it is not easy to validate or disprove this 
simple result. However, there is good qualitative and quantita- 
tive agreement with observations in the Mediterranean out- 
flow and west of Denmark Strait. The result cannot hold for- 

ever, and the outflow's rate of descent will probably slow 
when the local turbulence level drops below some minimum 
level. 

Appendix A 

We here show that for outflows, the second term in (3) 
dominates the first except in regions of strongly sloping to- 
pography and further show how to include it in such cases. 
Substituting u,: - CDU: and defining h from (2), (3) becomes 

CDU2f 2 1 
C,•g '2 IV/I 2 02 + Iv/I oc7 = 

or, multiplying by IVDI 0 and using. 1), 

• CøIVDI2 (A1) Ivwl 0: c7 + Ivwl 0' 
where the terms are deliberately left in terms of the required 
quantity [VD[ 0. If the first term on the right-hand-side of (A1) 
dominates we have the solution in the text. If the second term 

dominates, this would predict IVD[ 0 = C}• 2 ]VDI/C,. The ra- 
tio of this term to the original solution is 

c)•: IVDI c, • 
CI1 

• 44 IVDI, 

which is small for most topographic slopes although it could 
be important on some continental slopes. To include this term 
in calculations is trivial. (A1) is a quadratic for the rate of de- 
scent IVDI 0, with solution 

1 

Ivol 0 = 5-07 + 4(1 + 4/x IVDI 2}, (A2) 
where/x = CDC, 4 /C, 2. (This reduces to the original formula 
when 44 Iv/I is small.) The change from the simple l/C, 2 for- 
mula is monotonic, making the angle of fall slightly larger. 
However, tests in this paper show that the effects of this addi- 
tion are negligible for the Denmark Strait and Faroe and 
Weddell Sea outflows and amount to a small offset for the 

majority of the Mediterranean outflow. 
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Notation 

0 angle of fall of outflow to depth contours. 
f Coriolis parameter. 
u along-slope velocity. 
g' reduced gravity. 

D topography depth. 
Co quadratic drag coefficient. 
h layer thickness. 

It, friction velocity. 

C,,, C, universal constants defined by Ziliti•&evich a•d 
Miro•ov [1996] (0.5, 20). 

s along-stream variable. 

q5 angle of flow to eastwards direction. 
x, 3, axes east; north. 

2 angle VD makes with the x axis. 
p density. 
t time. 

N buoyancy frequency. 

• nondimensional quantity (COG, 4 /C,•). 
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