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Recent investigations of wave-induced seismoacoustic noise in the ocean have involved a parallel 
study of the reflection coefficient of complex seabeds at very low frequencies. Because of the nature 
of the wave-wave interaction source responsible for the main peak in the ULF noise spectrum, it 
was necessary to examine the behavior of the reflection coefficient to both the homogenoeus and 
inhomogeneous components of the wave-induced noise field. The results of these studies have 
revealed aspects of the reflection loss process not previously recognized. This contribution discusses 
the reflection loss for a multilayered viscoelastic structure. Companion papers examine the effect of 
introducing porosity into the sedimentary layers. 

PACS numbers: 43.30.Ma, 43.30.Nb 

INTRODUCTION 

It is well known that the seafloor can significantly influ- 
ence the propagation of sound in the ocean. Studies aimed at 
understanding the effects of bottom interaction have been an 
important part of underwater acoustics for many years and an 
extensive literature testifies to this fact. A traditional measure 

of acoustic interaction with the ocean bottom is bottom loss, 
which is characterized by the plane-wave reflection coeffi- 
cient at the water-sediment interface, determined as a func- 

tion of frequency and incident angle. For applications involv- 
ing total energy processing in octave or third-octave bands 
this quantity has proved completely adequate. For other ap- 
plications, however, a more detailed characterization on the 
seafloor has been required and the geoacoustic profile de- 
scribing the depth dependence of key sediment properties 
has been invoked. 

Determination of the reflection coefficient is obviously 
more complicated when the sediment properties are strongly 
depth dependent. In typical studies this depth dependence is 
often approximated by modeling the sediments as a number 
of homogeneous layers of different properties. •'2 In other 
analyses this approximation has been avoided by modeling 
the sediments as a fluid, the properties of which vary con- 
tinuously with depth. 3-5 Developments in the late 1970s con- 
sidered a more realistic view of the sediment as a solid, 
capable of supporting shear-wave propagation. 6-9 These 
studies provided an understanding of the physical processes 
by which sediment shear waves influence bottom reflection 
loss. Compressional-wave conversion at the substrate inter- 
face was established as the major mechanism generating 
shear waves in the sediment, and shear-wave propagation in 
the seafloor as the major acoustical mechanism affecting the 
long-range, low-frequency displacement field near the top of 
the substrate. •ø 

While the influence of shear-wave excitation on low- 

frequency propagation was clearly demonstrated, unrealisti- 
cally large values of shear-wave velocity were required in 
models to produce the expected levels of attenuation in shal- 
low water environments. n-•3 One shear-wave related mecha- 

nism potentially capable of increasing propagation loss at 
low frequencies was identified as a gradient driven coupling 
between shear and compressional waves. Since the strength 
of this coupling decreases with increasing frequency, its im- 
portance, if significant at all, will be mainly manifest at low 
frequencies. Vidmar and Foreman 6 concluded that in deep- 
ocean sediments (clays and silts) the gradients of the geo- 
physical parameters are so small as to render coupling effects 
negligible above about 3 Hz. However, for sand sediments, 
found primarily in shallow-water areas, in which near- 
surface gradients can be large, n the influence of coupling at 
low frequencies was uncertain. •4'•5 It was concluded that fur- 
ther experimental and theoretical work was required to better 
understand the bottom interaction process in naturally occur- 
ring sediments. 

In similar studies Chapman also described methods for 
modeling bottom interaction at low frequencies and com- 
pared model results with loss data for various bottom 
enviroments. •6'•7 Other investigations of relevance have ex- 
ploited the concept of "effective depth" to obtain an ap- 
proximate description of normal mode propagation in vari- 
ous environments. •8'w The latest contribution based on this 

approach has incorporated energy loss into the reflection 
process. 2ø All these studies have contributed to our under- 
standing of the influence of the seabed on the acoustic field 
in the ocean, but all involve approximations of various sorts. 

Our recent investigations of ULF(<i Hz) and VLF(<10 
Hz) seismoacoustic noise in the ocean 2•-25 have led us also 
into a theoretical study of the reflection coefficient of com- 
plex seabed structures at very low frequencies. Because of 
the nature of the nonlinear wave-wave interaction source 

responsible for the main peak in the ULF noise spectrum, it 
has been necessary to examine the behavior of the reflection 
coefficient for both the homogeneous and inhomogeneous 
components of the wave-induced noise field. In these studies 
the influence of a layered bottom structure on reflection loss 
has been examined without invoking approximations except 
that the interfaces have been assumed to be smooth and par- 
allel. The results of these studies have revealed aspects of the 
reflection process not previously recognized. 
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In these developments the bottom was first modeled as a 
number of homogeneous viscoelastic layers of different 
geoacoustical properties. (This approximation of the real en- 
vironment was adopted as a sensible first step in the devel- 
opment of a more general depth-dependent model, but was 
also considered reasonable in view of the conclusions related 

to gradient-induced coupling at frequencies below 10 Hz, 
reached by Vidmar et al. 6,14,15) This paper provides a system- 
atic presentation of these studies, and covers the behavior of 
the reflection coefficient with frequency and angle of inci- 
dence at the interface between a water-layer and a multilay- 
ered medium of increasing complexity. In a companion 
paper 26 we examine the behavior of the reflection coefficient 
when sediment porosity is introduced by way of the concepts 
inherent in the Biot-Stoll model. 27-38 

In the interests of a more coherent presentation of the 
overall material the formalism for the general case, involving 
medium porosity, is developed in this first contribution. We 
start in Sec. I with a short introduction of the dispersion 
equations for a porous visco-elastic medium. In Sec. II we 
develop the numerical procedures required to calculate the 
reflection coefficient for this most general case, recognizing 
that the calculations for the simpler viscoelastic medium can 
then be made by neglecting the slow wave of the Biot model. 
Using this simplification the character of the reflection coef- 
ficient for a viscoelastic medium of varying complexity is 
examined in Sec. III. Both the frequency and wave-number 
domains are considered and the physical significance of the 
main features of the plots are discussed. A short summary is 
provided in Sec. IV. 

I. THE DISPERSION EQUATIONS AND THE 
CONDITIONS GOVERNING BlOT WAVES IN POROUS 
MEDIA 

As Stoll has provided comprehensive reviews of the ex- 
tensive literature on the acoustics of porous media, only 
those contributions directly related to the development of 
this series of papers are referenced here. The reader is re- 
ferred to Stoll's recent publications for a more detailed 

32 38 
background. - 

According to Biot's theory, 27-31'38 two kinds of dilata- 
tional and one type of shear wave can be propagated in a 
fluid-saturated, isotropic, porous-elastic medium. They sat- 
isfy, respectively, two dispersive equations. The first , 

•lc2- W2p w2pi-•lc 2 

• 2 w2_11•llc2_i sgn. vFa• =0 (1) lc- rO2pf m kp 
applies to the two dilatational waves and the other to the 
shear wave' 

I. Z l s2 -- to 2 p p f to 2 

_ to2p f mto2_i sgn. vFto =0. (2) 
In the above, r/is the viscosity of the pore fluid, kp the 

permeability of the sediment, and F is a complex function of 
the parameter kv[ = a(sgn topf/r/)1/2], where a is the pore- 
size parameter; p is defined as a bulk density, 

p= ]•pf+(1- [•)Pr in which pf and Pr are the densities of 
the pore fluid and the skeletal frame, and/• is the porosity; 
m = apf/l•, where a is a real constant. The symbol sgn rep- 
resents the sign of the exponential term of the time factor 
exp(+i•ot) or exp(-i•ot). The other parameters [/, •, /fir, 
and g are frequency-dependent porous elastic moduli of the 
medium, which are defined by Stoll, 38 while k and •o are here 
and later used to specify the horizontal wave number and the 
angular frequency, •o-2 z'f. Derivations of the basic equa- 
tions governing wave propagation in unbounded porous me- 
dia are given by Biot 27-31 and Stoll. 38 In the literature deal- 
ing with this subject the symbols and definitions used are not 
consistent. To minimize confusion we will follow Stoll's 

conventions in this and related papers. 

II. NUMERICAL PROCEDURE FOR THE CALCULATION 
OF REFLECTION COEFFICIENTS FOR A 
MULTILAYERED MEDIUM OF GENERAL PROPERTIES 

We assume that a plane wave of unit amplitude 
(I)linc=e -i•'l(z+H1)+i(kx-tøt) is incident from water upon a 
seabed (z=-H 0 composed of parallel stratified layers of 
porous/visco-elastic layers overlying an elastic half-space. 
For convenience, however, all layers are modeled as porous. 
The redundant equations will be discarded by setting the 
amplitudes of the slow wave to zero in any layers that revert 
to a simple elastic form in the later analyses. 

By defining the displacement vector of the solid frame 
and that of the pore fluid relative to the frame (in the nth 
layer) as 

an = •7(I)nsnt- •7X•Itns , Vn = •7(I)nf + •7X•Itnf (3) 
where •ns= (k0 X n)XIrns with k0 and n being unit vectors in 
the direction of the horizontal wave-number vector (positive 
x direction in the present case) and the normal to the inter- 
faces (positive z direction here). We can write the displace- 
ment components as 

O•IJi) as O•ff as O•IJi) as O•ff as 
Unx: •X I •Z ' Unz-- •Z OX ' 

•fI)nf •qilnf •fI)nf •qilnf 
Vnx= Ox Oz' Vnz= OZ OX 

and the stress and pressure components as 

•Unx 
p nzz = •n On -- 2 lZn -•x -- • n •pn, 

(4) 

(5) 
O•U nx _.l_ O•U nz I Pnzx = ['•n aZ aX ]' Pfn=]•Inrpn--•nOn' 

According to Stoll, 38 moduli •r, •, and/0 can be ex- 
_ 

pressed through Kt,, the bulk modulus of the free-draining 
porous frame, Kf, the bulk modulus of the pore water and 
Kr, that of the solid frame as 

• = [ ( K r - •i• b ) 2 / ( D -- •i• b ) ] q- •i• b q- 41•/3, 

• = Kr( Kr - •i•b ) / ( D - •i•b ) , 

(6) 

(7) 

(8) 

where 
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FIG. 1. Three-dimensional presentation of the reflection loss from a six-layered structure with the K-model parameters. 

D = Kr[ l q- fi(Kr/K f- l ) ], (9) 

•pn = •7' fin(U n -- Un)• •7-Vn = •72(I)nf, 
On= V . Un= •72(I)ns, 

(10) 

(11) (I)ns -- (I)nsl q- (I)ns2' 
and •n defines the porosity of the medium. 

As was stated above, in the Biot/Stoll model three kinds 
of waves can propagate in a porous layer, the fast- and slow- 
compressional waves and the shear wave, with wave num- 
bers lcln, lc2n, and lsn , respectively. Each of the three waves 
has a different amplitude depending on whether it is propa- 
gating in the solid frame or the pore water. The ratios of the 
two amplitudes for the three waves, defined as 61n, 62n, and 
63n, are all functions of the medium constants, 

J•nlcln -- O•2pn J•nlc2n -- O•2pn 
: , •2n-- •ln •nlcln -- W2pf n •nlc2n -- W2pf n 

-•[n( lZnls51 •sn :pn l-oo2pn ] ß 
(12) 

Here, pf is the density of the pore fluid, 
Pn = •nPfn q- (1 - •n)Prn with Prn the density of the frame, 
all referred to the n th layer of the structure. 

TABLE I. Sediment and substrate geoacoustic parameters. 

n hn Pn (kg/m3) Otnr iI•nr Qan Qon 

1 1540 1500 

2 325 2200 1560 10 

3 850 2500 2000 1154 500 

4 1650 2500 3100 1789 500 

5 700 2500 3900 2251 500 

6 2500 4100 2367 500 

300 

300 

300 

300 

The displacement potentials in each layer can be ex- 
pressed as 

(I)nf--(I)nf 1 q- (I)nf2-- •ln(i)nsl q- •2n(i)ns2, (13) 

aYiln f= •3naYilns 

and 

I)ns I =Anl½-i7nl(Z+Hn-1) q- Bnl½i7nl(Z+Hn) I (I)ns2=-_An2½-i7n2(z+Hn-1)q-nn2½i7n2(z+Hn) ½ikx-iwt, 
- i 7n3(z + Hn-1) q- n • ns = A n3 e n3 ei Tn3 (z + Hn) 

(14) 

where 

Tnl = Vlc21n- k2, Tn2 = Vlc22n- k2, Tn3: 4ls2n -- k2' 

Denoting the potential in the water column as 

(I) 1 = [ e - i 71(z + H1) q- R bei 71(z + H1)] eikx- iwt 

with R0 defined as the reflection coefficient from the sea 
floor, the displacement vector and pressure field become 

02•I• 1 
Ui=•7(I)i, pw=--pl Ot 2 . (15) 

So, at z = -H1, 

Ulz = - i T1 ( 1 --Rb)e ikx-iøøt, 

pw= Pl W2( l +Ro)e ikx-iøøt. 
(16) 
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FIG. 2. The three-dimensional reflection loss over the homogeneous region of the presentation in Fig. 1. 

The boundary conditions at the water-sediment interface, 
z=-H1, require 

Ulz = l12z- g2z, --pw=P2zz, 
(17) 

0 =P2zx, Pw=P.t'2, 

while at the interface of two porous layers, z = -Hn, the 
requirements are 

llnz= lln+ l,z, llnx= lln+ l,x, 

llnz- gnz= lln+ l,z- gn+ l,z, (18) 

Pnzz=Pn+ 1,zz, Pnzx=Pn+ 1,zx, P fn =PLn+ 1' 

For a N-layer model, there are 6X(N-1) parameters in- 
volved for the adjacent layers plus R t, and 3 amplitudes in 
the basement, altogether 6N-2 unknowns, a number com- 
patible with the number of equations. 

In the case where one of the layers, say the (n + 1)th 
layer, is elastic, while both the nth and the (n + 2)th layers 
are porous, the boundary conditions at z--H n become 

llnz= lln+ l,z llnx= lln+ l,x 

llnz-- gnz=lln+l,z, (i.e.,Vnz=O) (19) 

Pnzz=Pn+ 1,zz, Pnzx=Pn+ 1,zx, 

and those at z- - H n + 1, become 

lln+ l,z= lln+ 2,z, lln+ l,x= lln+ 2,x, 

lln+ l,z= lln+ 2,z -- gn+ 2,z, (i.e.,Vn+ 2,z= O) (20) 

Pn + 1,zz =Pn + 2,zz, Pn + 1,zx =Pn + 2,zx' 

2968 J. Acoust. Soc. Am., Vol. 96, No. 5, Pt. 1, November 1994 

Solving this system of algebraic equations numerically, 
we can establish the reflection coefficient and the amplitudes 
of the "up- and down-" going components of the three Biot 
waves in each layer. This analysis represents an extension of 
the numerical procedures for viscoelastic layers developed 
by Schmidt and Jensen. 39 

III. THE FREQUENCY-WAVE-NUMBER SPECTRUM 
OF THE BO'R'OM LOSS FOR A VISCOELASTIC 
MEDIUM 

A. Preamble 

In the remainder of this paper we examine the behavior 
of the bottom interaction for a multilayered viscoelastic me- 
dium. For ease of comparison with earlier studies the analy- 
sis to follow is presented in terms of bottom reflection loss. 
(In the treatment of the porous case, presented as a compan- 
ion paper, it will be more appropriate to use the amplitude of 
the reflection coefficient.) An ocean bottom comprising six 
layers is considered. The codes developed for the present 
analysis have been tested against other published results. 

B. Reflection loss for the K model 

Figure 1 presents the reflection-loss of a six-layered 
geoacoustic structure which we designate as model K. De- 
tails of the structure, which is an approximate description of 
the environment in a recent New Zealand study, 21'22 are 
listed in Table I. The parameters hn, Dn, øfnr, •nr, Q an, and 
Q bn are, respectively, the thickness, density, the real parts of 
the complex velocities, and the Q values of the compres- 
sional and shear waves of the nth layer. 
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FIG. 3. Presentations of the wave-number dependence of the K-model reflection loss for the frequencies: (a) f=0.147 Hz, (b) f=0.158 Hz, (c) f=0.63 Hz, 
(d) f=l.0 Hz, and (e) f= 10.0 Hz. 

Figure 1 shows the general behavior of the reflection 
loss as a function of both the logarithmic frequency, 
logre(f), over the range -1.0 to 1.0 (0.1-10 Hz), and the 
relative horizontal wave number, u=ka•/to, over the range 
0.0 to 2.0. Since u relates to the incident angle, 0, through 
u=sin 0, the range 0<•u<•l.0 corresponds to a change in 0 
from 0 to ,r/2. In the above, a• is the sound velocity in sea- 
water, to=2z'f, the angular frequency, and k the horizontal 
wave number. The right-hand side of the plot is thus simply 
a presentation of the usual angle-frequency dependence of 
loss. The left-hand side, on the other hand, shows that part of 
the inhomogeneous wave region for which 1.0<•u<•2.0 (in 
the region u>2 the reflection loss for the present model 
gradually tends to a constant value, as examined below, and 
the picture is flat and without structure). To show more 
clearly the structure in the homogeneous region (incident 
expanded angle 0o-90 ø ) this region is plotted in expanded 
form in Fig. 2. 

In Fig. 3 selected cross sections at frequencies 0.147, 
0.158, 0.63, 1.0, and 10.0 Hz are presented to show more 
clearly the character of the hidden section on the left-hand 
side of the three-dimensional (3-D) presentation. This set of 
plots demonstrates strikingly how much the character of the 
reflection loss can change with very small changes in fre- 
quency. For example, the peak of 30 dB near u =0.5 (0= 30 ø) 
at f=0.63 Hz disappears at f-1.0 Hz. Comparable variabil- 
ity with frequency occurs in the region 1.0<•u<•2.0. 

This variability emphasizes the care that must be exer- 
cised in interpreting the ordinary 2-D plots based on fre- 
quency or angular dependence. A 3-D presentation, on the 
other hand, offers some hope of identifying those truly sig- 
nificant features which reflect meaningful physical processes. 
In Fig. 1 such features are the regularly distributed "moun- 
tain chains" in the region 0.6<•u<•l.0, the deep valley appar- 
ent at low frequencies around u• > 1.0, and the high ridge and 
steep scarp located on the inhomogeneous side of the bound- 
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FIG. 4. Reflection-loss presentation from the interface between two semi-infinite media with the parameters p1=P2=1000 kg m -3, ch=1500 m s -I, and 
Qla=Q2a=108 for the cases: (a) a2=1450 ms -1, (b) a2=1250 ms -1, (c) a2=1700 ms -1 and those with the parameters pl=1000, p2=2500 kgm -3, 
al=1500 ms -1, and Qla=108 for the cases: (d) a2=1450 ms -1, Q2a=108, (e) a2=4100 ms -1, Q2a=108, (f) a2=4100,/52=2367 ms -1, Q2a=500, 
Q 2o = 300. 

ary at u = 1.0. These interesting features are examined in de- 
tail in the following sections. 

C. The case of two contacting half-spaces 

We begin by considering the simplest possible model, 
comprising a water layer and a second layer that can be 
either a liquid or a solid half-space. 

Figure 4 presents the 3-D reflection loss for two liquid 
layers with slightly different parameters as indicated in the 
figure caption. As expected these plots show no frequency 
dependence in the reflection loss. For this simple model the 

n>l [see Fig. 4(a), (b), and (d)] 

0•<u<l LRt,>O 
l•<u<n LRt,=O (Rt, = 1) 

n<u LRt,>O 
u-• LRt,--> - 20 loglo[(m-1)/(m+ l)] 
u--->O LRt,--->-20 loglo[(rn-n)/(rn+n)] 

reflection coefficient, R b, takes the well known form 

m x/1-- u2-- x/rt2-- u 2 
Rb= 2, (21) m x/1-- u 2 + x/n 2-- u 

where m= p2/Pl, n= a•/a2. The loss, LRt, = -201og•01Rd, 
will assume different values in different cases. 

Here and in the companion paper 26 attenuation is in- 
duded through the imaginary part of the complex velocities 
a 1 ,a2,•2 , etc. For the ideal case when attenuation is ig- 
nored, the values of the reflection loss can be summarized as 
follows: 

n<l [see Fig. 4(c) and (e)] 

O•<u <n LRt,>O 
n•<u<l LRt,=O 

u>l LRt,>O 
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If p2=pl, as is the case in Fig. 4(a) and (b), the loss becomes 
infinite when u-•o•, but when p2•Pl remains bounded for 
u-•0 or o•. As an example we can consider version (d) of the 
model, for which rn- 2.5 and n = 1.035. In this case the limit 

value of LRt, is 7.36 as u-•o•, and 7.65 as u•0, values 
which agree with those shown in Fig. 4(d). The results for a 
water layer overlying a solid half-space are presented in Fig. 
4(f). In this situation the general expression for R t, is: 

Rb= 
rn x/1 - u214u 2 X/na 2- u 2 x/n}- u2+ (n}- u2) 2] - n• X/na 2- u 2 
m x/1 - u214u 2 X/na 2- u 2 x/n}- u 2 + (n}- 2u2) 2] + n• X/na 2- u 2' 

(22) 

where na=Otl/Ot2 and no = al//• 2. Again in the ideal case, it 
can be seen that when u = na - 0.3 6 6 and u - nt, = 0.6 3 4 
(a2=4100 m s -1,/32=2367 m s-l), IR01-- 1 and LRt,=O. In 
Fig. 4(f), this zero point is not very well defined because 
finite values have been assigned to Q2a and Q20. 

Other important features apparent in Fig. 4(f) are the 
deep valley immediately beyond u-l.0 and the ridge be- 
tween na•<U<nb. In the valley LRt, is less than zero, which 
means R o is much greater than one. The significance of R o 
exceeding unity calls for comment, since this value seems to 
violate the laws of energy conservation. Understanding fol- 
lows from an examination of the physical processes in- 
volved. 

To establish a wave field the source must supply energy. 
In the steady state a balance is established between the 
source and the field. In the case of homogeneous waves 
(u•<l), energy flows in the propagation direction of the in- 
cident and reflected wavefront. From the standpoint of an 
observer on the source side of an interface, some energy 
passes through the boundary and some is reflected. Since 
there is no source on the underside of the boundary energy 
conservation requires that the reflected energy cannot exceed 
that incident, which means that R o• < 1. In the inhomoge- 
neous case however, energy flows parallel to the interface. 
As Frisk 4ø has pointed out, it is not possible in this situation 
to resolve the incident and reflected energy, as both compo- 
nents flow in the same direction. All that can be identified is 

the energy flow along both sides of the boundary. If we 
therefore retain the definition of Ro, it follows that I1 +R01 
will be proportional to the confined energy. 

At the value of u at which the Scholte interface wave is 

excited (say for u= 1/0.998 when t12= •f•/•2), more energy 
is drawn from the source to establish the new balance. When 

balance (steady state) is established the amplitude of the 
interface-wave can become very high so that R0>>l and 
LRt,---,,-o•. It is this situation that accounts for the deep 
valley apparent in Fig. 4(f) at around u• > 1. 

The ridge in the homogeneous region is simply a mani- 
festation of the feature always observed in the two- 
dimensional presentation of reflection-loss versus angle. It 
represents the energy loss between the two critical angles, 
Os and Op for the substrate, 7 and is attributed to the increased 
conversion of compressional to shear wave propagation in 
the basement. A plausible explanation for this is that within 
this range of angles the direction of the particle motion of the 
reflected compressional wave is very close to that of the 
shear wave in the basement. In fact from Fig. 5(a) we see 

that angle of incidence Opl and the angle of transmitted 
shear-wave 0s2, are related by 

sin 0s2 = x/n •, - sin 20p 1. 
An examination of the difference between 0s2 and 
A Ops, as a function of u/nt,(=k132/w) is shown in Fig. 5(b) 
for the ideal case of a2=4100 and/32=2367 m s -1. When 
u/nt,-0.844 ( 0p•=32.35, A Ops=O), the directions of par- 
ticle motion in both the reflected (compressional) and trans- 
mitted (shear) waves are parallel. At the lower end of this 
range where the value u/nt,=/32/a2=0.577, the compres- 
sional wave is totally reflected. 

Another striking feature of this set of plots is the steep 
scarp seen clearly in Fig. 4(e). It is not difficult to show that 

(•) 

(b) 

0.1 - 

0.0 I , i , 
0.0 0.2 0.4 0.6 0.8 

RELAT1VE WAVE NUMBER 

FIG. 5. Presentations of (a) the wave coupling at a liquid-solid interface 
and (b) the angular difference between the reflected compressional and the 
transmitted sl,ear wave. 
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FIG. 6. Reflection loss from a three-layered structure with a middle layer consisting of (a) silt, (b) clay, and (c) sand. 

this sharp increase in the reflection loss corresponds to the 
onset of total transmission. From Eq. (21) it can be seen that 
when u takes the value x/(rn2-n2)/(rn 2-1), about 1.08, 
R b becomes zero and thus L Rt, tends to infinity. The same 
happens in the case of Fig. 4(d) where the total transmission 
appears at u=0.993. 

D. The three-layer model 

1. Where the middle layer is a low rigidity sediment 

We now increase the complexity of the model by insert- 
ing a sediment with low rigidity and modest attenuation in 
between the water layer and the solid basement. The 
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FIG. 7. Reflection loss from a three-layered structure with a middle layer consisting of (a) Maui sediment of thickness 325 m and (b) Maui sediment of 
thickness 3250 m. 

reflection-loss plots for four different sedimentary materials 
are presented; in Fig. 6--for (a) silt; (b) clay; (c) sand; and 
in Fig. 7(a) a material characteristic of the Maui region and 
described by Kibblewhite. 22 In each case the middle layer is 
325 m thick. Values of the relevant parameters are listed in 
Table I for Fig. 7(a) and in Table II for Fig. 6(a)-(c). 

Comparison with Fig. 4(f), the case without the middle 
sedimentary layer, shows that two new characteristics have 
developed. The first is an apparently periodic structure at 
high frequencies, which contrasts with the unchanged picture 
at low frequencies. The second is the steep scarp at high 

TABLE II. Sediment and substrate geoacoustic parameters. 

ot • t 9 Qa Qo 

Water 1540 1000 

Clay 1550 1270 150 
Silt 1538 1700 120 

Sand 1753 2050 320 

Basement 5700 2700 2600 2000 250 

frequencies in the inhomogeneous region of the plot. Both 
features can be explained satisfactorily by a comparison with 
previous examples. 

The periodic structure develops as the result of interfer- 
ence between the incident and reflected wave energy associ- 
ated with the middle layer. Reflection loss peaks are ex- 
pected when 

2 x/l- u. fn= [«(n+ 1)-qb/(2,r)](a2/h), 

where qb is the sum of the phase changes produced by reflec- 
tion at the upper and lower boundaries of the middle layer. 
As a rough estimate of the peak frequencies involved we can 
set qb=0 and un=O (normal incidence), which leads to 
log•o(fo)=0.37, log•o(f0=0.675, loglo(f2)=0.85, and 
logre(f4)=0.976, values which coincide closely with the 
peaks of the structure apparent in Figs. 6 and 7(a). Further- 
more the increase in fn with relative wave number Un, pre- 
dicted by the above formula, is also confirmed by the trends 
of the peaks in Figs. 6 and 7(a). 
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FIG. 8. Reflection loss from a three-layered structure in which the solid middle layer has the properties a2 = 2000, /•2=1154 m s -] for the cases: (a) 
Q2a=Q3a=500, Q2t,=Q3t,=300 ß (b) Q2a=Q3a=Q2b=Q3b=108; (c) Q2a=Q2b = 108, Q3a=Q3b=500. 

The behavior in the inhomogeneous region appears to 
reflect a mixture of the effects apparent in the two-layer 
model--see Fig. 4(e) and (f). For instance, at low frequen- 
cies the situation in Figs. 6 and 7(a) has changed little from 
that depicted in Fig. 4(f). This is to be expected given that 
the wavelength at these frequencies is much greater than the 
thickness of the middle layer of the three-layer model. At 
these frequencies the inhomogeneous wave decays little from 

the top to the bottom of the layer, which can thus be regarded 
as thin and transparent to these frequencies. The reflection- 
loss structure at low frequencies is not therefore expected to 
differ significantly from that of the simpler model in which 
the sedimentary layer is absent--see Fig. 4(f). At high fre- 
quencies on the other hand, the thickness of the layer (325 
m) is equivalent to nearly two wavelengths, so that the lower 
boundary is outside the effective range of influence of the 
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FIG. 9. Reflection loss from a three-layer structure with a solid middle layer having the properties Q2a=Q3a=Q2b=Q3b=108 for the cases: (a) a2=2000, 
/•2=1800 m s -•, (b) a2=2500,/32=2000 m s -•, (c) h2=3250 m, a2=2000,/•2=1154 m s -•. 

inhomogeneous field generated at the upper boundary. The 
layer is thus physically thick and impenetrable at those fre- 
quencies, and at about u=l.01 Rb tends to zero and LRt, to 
very high values. Figure 7(b) presents the extreme situation 
when the thickness of the middle layer is increased by a 
factor of 10. It dearly shows that in the high-frequency re- 
gion the overall behavior of the reflection loss is character- 

istic of the model involving the two liquid layers; i.e., the 
solid basement is now effectively located below the 
"hidden-depth, "4• and the environment is adequately de- 
scribed by a model involving only two liquid layers. 

A transition region between these two extremes com- 
pletes the picture and all the characteristics of Figs. 6 and 
7(a) are accounted for. 
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FIG. 10. Ray path representation of the reflection from various bottom structures with a low shear-wave velocity layer in between the water and solid 
basement half-spaces. 

2. Where the middle layer is a solid sediment 

We now change the middle layer of the three-layer 
model from a liquid to a solid, and assume in the first in- 
stance that the shear-wave velocity in the layer is less than 
both the sound velocity in water and in the basement. The 
reflection-loss contours in the inhomogeneous region are 
now seen to be changed significantly--see Figs. 8(a)-(c) and 
9(a). In all these cases the basement is considered to be that 
of the K model, the parameters for which are listed in Table 
I. 

Figure 8(a) depicts the situation when the shear-wave 
velocity of the middle layer is less than the velocities in the 
adjacent layers (a particular property of the K model), while 
Figs. 8(b)-(c) and 9(a) and (b) indicate the consequences of 
modifying the parameters of the middle layer. 

From a comparison with Fig. 6(a) it is apparent that in 
Fig. 8(a) and (b) some additional structure has developed at 
high frequencies in the inhomogeneous region near u=l. 
Further, in the homogeneous region the periodic structure so 
obvious in Fig. 6(a) persists in Figs. 8 and 9(a) but is less 
pronounced. 

The development of the structure in the inhomogeneous 
region can be explained in terms of mode effects in the 
"low-velocity" middle layer. The general situation in respect 
of one such model is depicted in Fig. 10(e). Because the 
shear-wave velocity/32 is assumed to be less than the sound 
velocity in water, a•, and those in the basement, a3, and 
/33, the eigenray will experience total reflection at both the 
upper and lower boundaries. In the interest of simplicity we 
approximate this layer as a perfect waveguide with velocity 
/32. Each mode should then satisfy the eigenequation 
Tn h = 7rn, where 

_ 2 Tn = (to/o•l) 4nb22 Un=(OO/•l)SinO n 
It follows that 

and rib2 = a 1/]•2. 

nc• 1 nc• 1 

fn-2x/n•2-u2 h-2h sin On (23) n 

or 

•/ n2c•12 Un= n•2 ••n 2. (24) 
It is now appropriate to consider three distinct regions. 

In the region O•<u<a•/a3=0.366 [Fig. 10(a)] some 
of the energy incident on the layer will penetrate to the base- 
ment and some will suffer partial reflection. Of this energy 
some will return to the water and some remain within the 

layer. [In an elastic medium a train of either compression- 
al(P) or shear(S) wave incident upon the boundary generates 
both a reflected shear and compressional wave, P-S and P-P, 
or S-S and S-P. To keep the figures simple, however, we have 
deliberately drawn only the S-S or P-P components.] Inter- 
ference between the incident and reflected energy within the 
layer then leads to "leaking modes" (mainly compressional) 
being established in the layer and accounts for the periodic 
structure evident in the plots at low relative wave numbers. 
At larger values of u, where a•/a3<U<a 1//•3 [Fig. 10(b)], 
the compressional-wave component within the layer will be 
"totally" reflected by the lower boundary (part of the 
compressional-wave energy converts to shear waves that 
penetrate into the basement). In this region the shear-wave 
component can still penetrate to the basement, but when 
Ot l/•3<u•<l [Fig. 10(c) and (d)] both the compressional 
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40 • and shear-wave components are totally reflected by the lower 
boundary. However since the layer has been attributed with a 
lower attenuation than the sediment layer discussed in Figs. 
6 and 7, less energy is absorbed (by leaking modes) and the 
periodic structure in the reflection loss is much less pro- 
nounced. 

Finally, when u is such that l•<u<nt,2(=l.3) [Fig. 
10(e)], only modes of the shear-wave component can be ex- 
cited within the layer, generation of the ordinary 
compressional-wave modes now being absent by virtue of 
the fact that a2> a l. This shear-wave energy is now con- 
strained as "trapped modes" (rather than leaking modes), 
since total reflection occurs at both boundaries of the layer. 
This leads to a high reflection loss as this energy is now not 
leaking back to the water. 

In addition to the effects described above another reso- 

nance mechanism can occur. This involves the excitation of 

an interface wave on the lower boundary of the layer. At low 
frequencies the inhomogeneous wave can still have sufficient 
amplitude at the depth of the lower boundary to excite an 
interface wave in this boundary. At high frequencies on the 
other hand this cannot occur and the mode effects become 

dominant. This selective behavior is demonstrated clearly in 
the reflection loss plots of Figs. 8 and 9. The deep valley 
associated with the interface wave at low frequencies gradu- 
ally disappears to be replaced at high frequencies by the 
periodic structure associated with mode behavior. 

It is apparent from Eqs. (23) and (24) that the position of 
the first peak in this structure is a function of both frequency 
and relative wave number: 

(25) f l = 2h 2 x/n }2- u2 ' 1 

The increase in fl with u i predicted in Eq. (25) accounts for 
the curved form of the structure at the high-frequency end of 
the inhomogeneous region. Moreover the maximum value of 
Eq. (5) occurs when U l equals the imaginary part of n t,2, 
approximately 1.3 in this case. Beyond this value the con- 
tours again become flat as is shown in Fig. 8(a). This behav- 
ior can also be seen in Figs. 11 and 12. Figure 11(a) and (b) 
shows the dependence of reflection loss on wave number at 
frequencies of !.0 and 7.94 Hz, while Fig. 12(a)-(e) shows 
the frequency dependence at u-0.1, 0.3, 1.1, 1.3, and 1.5. 
We see that when u increases to 1.1 [Fig. 12(c)] the level of 
RL increases dramatically and is characterized by multiple 
peaks. With a further increase in u to 1.3 only a single peak 
remains [Fig. 12(d)] and this too disappears when u=l.5 
[Fig. 12(e)]. 

Returning now to Figs. 8 and 9 we can assess the rela- 
tive importance of absorption, and the influence of the shear- 
wave speed. From Fig. 8(a) and (c) we observe that a de- 
crease in the attenuation of the layer produces a greater level 
change in reflection than a comparable change in the base- 
ment attenuation--see Fig. 8(b) and (c). 

The critical influence of the shear-wave velocity of the 
middle layer is demonstrated in Figs. 8(c)-9(b). When the 
shear-wave velocity is increased from 1154 to 1800 m s -1, 
which exceeds the sound velocity in water, much of the 
structure in the inhomogeneous region disappears--see Fig. 
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FIG. 11. Wave-number dependence of the reflection 10s• for the selected 
cases of constant frequency (a) f=l.0 Hz, logre f=0 and (b) f=7.94 Hz, 
log m f =0.9. 

9(a). This comes about in the following way. As noted earlier 
the decay of the inhomogeneous wave means that the middle 
layer is effectively opaque to high frequencies. At low fre- 
quencies on the other hand, energy can penetrate the layer to 
excite an interface wave at the lower boundary and this re- 
sults in the second valley and peaky structure evident in Fig. 
8(c). The frequency and wave-number dependence of the 
critical depth for interface wave excitation produces the 
curved transition region between the two extremes of fre- 
quency. 

The precise nature of this frequency dependence is in- 
fluenced by the wave velocity in the layer. An increase in 
wave velocity can render the middle layer transparent over 
much of the frequency range considered here. The valley 
associated with the interface wave at the upper boundary 
showed that, in the inhomogeneous region, this wave be- 
comes relatively less significant and disappears along with 
the structure at high frequencies leaving only the valley as- 
sociated with the interface wave at the lower boundary. The 
development of these effects is demonstrated in Fig. 9(a) and 
(b), in which the shear velocity is 1800 and 2000 m s -1, 
respectively. Figure 9(c) again shows the situation when the 
thickness of the middle layer is increased by ten times. These 
presentations show that if the velocities in a multilayered 
structure increase with depth from layer to layer, so that no 
"low" velocity layer is present in the model, the reflection 
loss in the inhomogeneous region will be relatively flat and 
featureless. 

E. The influence of additional solid layers 

We are now in a position to consider the implications of 
the complete six-layer K model. Figure 13 shows the effect 
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of adding sequentially the second, fourth, and fifth layers of 
the model to the simplified model considered above, which 
consists of only the water column, the third layer, and the 
basement. The reflection-loss structure clearly changes little 
with the addition of each of the deeper layers. This suggests 
that, apart from the water and basement, the unconsolidated 
sedimentary layer and the solid sublayer characterized by the 
relatively slow shear-wave velocity, have the greatest influ- 
ence on the reflection loss. The addition of further layers 
adds more detail but does not influence the basic nature of 

the frequency-wave-number dependence of the reflection 
loss to any marked degree. 

IV. SUMMARY 

In this contribution we have examined the basic proce- 
dures involved in calculating the plane-wave reflection loss 
from a viscoelastic multilayered medium of general proper- 
ties. The reflection-loss behavior of a viscoelastic structure 

as a function of both frequency and wave number has been 
discussed, and both the homogeneous and inhomogeneous 

regions have been explored. The three-dimensional presenta- 
tion used and the inclusion of the inhomogeneous region 
have emphasized the limitations of a simple two-dimensional 
analysis and warned of the danger of drawing conclusions on 
reflection-loss behavior on the basis of a few samples at in- 
dividual frequencies or grazing angles. 

The results have also identified several major character- 
istics of the behavior of the reflection loss in a multilayered 
bottom. It is shown that the reflection loss is controlled 

largely by the properties of the unconsolidated sediment 
layer, the basement and any sublayer with relatively low 
shear-wave speed (if it exists). Periodic structure occurring at 
high grazing angles is shown to result from "hybrid modes" 
formed in the sediment layer, while at low grazing angles 
(u•<l) and in the inhomogeneous region (u>l) such struc- 
ture is found to result from trapped modes excited in a solid 
sublayer characterized by a relatively low shear-wave speed. 
The excitation of an interface wave at the lower interface of 

such a sublayer can lead to a deep valley (R0>> 1) in the 
inhomogenous region at low frequencies. As the frequency 
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FIG. 13. Reflection loss for the K-model multilayered structure incorporating: (a) four layers, (b) five layers, and (c) six layers. 

increases the interface wave is excited at the upper interface, 
and the effects associated with the lower interface disappear. 
At high frequencies (when the wave number is less than the 
thickness of the unconsolidated layer), high levels of reflec- 
tion loss can occur in the inhomogeneous region as the result 
of total transmission between two liquid layers. The addition 

of more sublayers adds some complication but the main fea- 
tures are still controlled by the basic elements described 
above. 

Overall this analysis warns of the dangers of drawing 
conclusions about the angular and frequency dependence of 
the reflection loss on the basis of a limited number of 
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samples, and emphasizes the value of a three-dimensional 
analysis. 
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