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ABSTRACT. Modulations in wave number and in amplitude of short waves
propagating over the surface of longer gravity waves on deep water is
known to be of main importance for various fundamental and applied
problems. They can be studied either by integrating the ray equations
coupled with the action conservation principle established by Bretherton
and Garrett (1969) or by treating the stability of the long waves to
superharmonic perturbations. The aim of this note is to check the vali-
dity of the former approach when the nonlinearity of the longer wave is
taken into account together with the capillarity effect on the short
waves. A system of first order differential equations is derived from
approximate formulation and solved numerically along the characteris—
tics. A numerical investigation of superharmonic normal mode perturba-
tions of finite amplitude Stokes wave has been developed by using the QZ
algorithm. The variations of wave number and amplitude of the short
waves over the profile of the long wave, obtained by the two different
methods are similar, showing that ray equations and action conservation
principle can be applied for strongly nonlinear inhomogeneous moving
media.

1. INTRODUCTION

The energy and the wavelength of short waves are known to be affected by
longer waves. How their amplitude and their wave vector are distributed
along the phase of longer waves is a crucial question in fundamental and
applied hydrodynamic fields. In this study the short waves are consi-
dered as linear waves and the longer wave is assumed to be fully non-
linear. The back reaction of the small waves on the larger wave is
ignored.

Henyey et al. (1988) have studied the dynamics of small waves
riding on longer waves using a canonical formulation. They extended the
calculatfon of Longuet-Higgins (1987) to include gravity-capillary waves
and to allow three dimensional wave field. In this note the results
given by the classical ray equations and the Bretherton and Garrett
principle are compared to those derived from the stability computations.
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Firstly the method of calculation of the surface velocities and orbital
accelerations in the longer wave {is briefly presented. Then, the appro-
ximate formulation and the stablility study are developed. The last

section reports on the results for pure gravity waves and gravity-
capillary waves.

2. FINITE AMPLITUDE GRAVITY WAVES

The long gravity surface wave considered herein i1s a Stokes wave on deep
water. In a frame of reference moving with constant speed C, the unper-
turbed surface defined for a wavenumber K = 1 is given by the usual
parametric representation :
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where x and z are respectively the horizontal and the vertical coordi-
nates and § is the potential velocity. The unknown coeffficients H_ and
the phase velocity C are calculated by an iterative scheme developed by
Longuet-Higgins (1985). Then the wave amplitude writes

A = Hl + H3 + H5 + ...

The orbital velocity and the orbital acceleration are given by :

U? = - 22 (2.2)

a= - (8 (xi{, + i zq,) (xw+ i zw) (2.3)

3. FORMULATION OF THE PROBLEM
3.1. Hamilton equations and action conservation

In this section we consider the dynamics of the small waves in a coordi-
nate system s (sl, s9) tied to the longer wave. Wavelets superimposed
upon and interacting with a much longer wave are considered as slowly
varying wave trains of small amplitude propagating in an inhomogeneous
moving medium as shown in figure 1. The vector wavenumber k (k;, kz) of
the short waves is parallel to the long wave surface. The amplitude a of

the small waves is defined in terms of normal distance from the long
wave surface. We assume :

ak << 1 K
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where ak is the wave steepness of the short waves and K the wavenumber
of the finite amplitude long waves.

Figure 1. Definition sketch

The ray trajectories are given by :
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where 81, 8y and t are the space variables and the time variable,
W(k,s,t) is the local dispersion relation, o is the intrinsic frequency,

U is the local orbital velocity in the long wave as seen by an observer

travelling with the long wave speed C, g' is the effective vector gravi-
ty, a is the orbital acceleration in the long wave and T is the surface

tension coefficient. Since the pressure gradient of the long wave has no
component tengential to the surface, g* is always normal to the free

surface.
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In the frame of reference chosen, the long gravity wave is
steady and the free surface is a streamline. In consequence the velocity
U is always tangent to the free surface. In the case of a Stokes wave
the component Uy is zero. The component U; and the acceleration g' are
determined from equations (2.2), (2.3), (3.4) and (3.5). In order to
integrate equations (3.1) we write Uy and g' as functions of the
variable z by using Fourier transforms. Then the derivatives dUI/dx and
dg'/dx can be easily obtained.

Let z = n(x) be the equation of the long wave surface. Then we
can write

ds; = (L+ n2 )% dx

dSz = dy

and use these expressions to define x and y as independent variablesg
instead of s and S9. Equations (3.1) are integrated numericaly with X,
y and t as variables. The initial conditions are taken at the mean
surface level of the long wave. The solutions give the change in
wavenumber along the rays.

In order to determine the amplitude modulation we use the
Bretherton and Garrett (1969) formulation. These authors established
the action conmservation principle as :

9 (E E
_(_]-5- v. [(U+cg ) —]1 =0 (3.6)
at lg o]

1
where E =_p g'a? (l+

T(k)? + ky?) ]

pg'

is the wave energy density in a frame of reference moving with the local
current velocity and cg 1s the group velocity of the short waves de—
fined as :

C=Bo

™

In the present case the medium is time independant, so that the frequen-
cy 1s conserved along the trajectories and the equation (3.6) may be
written as :

E
V. [(U + C)—1=0 (3.7)
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3.2. Stability

A more extensive calculation relative to the modulation of short wave is
derived using the numerical investigations of Kharif and Ramamon jiarisoa
(1988). The motion of deep water waves on an inviscid irrotational
incompressible fluid obeys a well-known set of a linear equation and
nonlinear boundary conditions. In first place we ignore the effect of
the capillarity.

In a frame of reference moving at some constant speed C, the
basic equations are :

VEQ=0, -2 <z <n, limy=- Cx (3.8)
Z -
1 1
l?t+”+;(‘1”xz+tf’y2+4’z2) =;C2 (a)
on z = N(x,y,t) (3.9)
Ne ¥ x ¥ fynyg -4, =0, (b)

where x, y are the horizontal coordinates, z is the vertical coordinate,
t is the time, ¢(x,y,z,t) is the velocity potential, and z = n(x,y,t) is
the free surface. As usual, the gravitational acceleration and the
wavelength are taken, respectively, to be unity and 27 without loss of
generality.

The system above is known to admit two-dimensional steady
solutions (Stokes waves with phase speed C). This study deals with the
stability of these solutions to two and three dimensional perturbations.
Let :

N=T4 N g= G+ (3.10)

where (ﬁ';?) and (', q') correspond, respectively, to the unperturbed
and infinitesimal perturbative motions (r' << T, @' << 9).

The first order pertubation equations can be written as :

v ¢t =0, ~® < z <07

W't =-n - ¢§?'x - ?2 W'z - (?iq%z o Qéq;z) n' (a)
on z = n(z) (3.11)

e = - Pen'x T nxW'x 7 Wiy — Ppp) Nt ¥, (b)
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with solutions of the following form :

+ o
n' = o~iot e3'.(px + qy) 5 ay olix (a)
(3.12)
Foo /————~1
¢ = 710t Gi(px + qy) ¢ b olix MAptD? + g% 2 (b)

An eigenvalue problem for ¢ with efigenvector u = [aj,bj] is derived fronm
(3.11) :

(A-1i0B)a=20 (3.13)

where A and B are complex matrices depending on the unperturbed wave
steepness AK and the arbitrary real numbers p and q. The eigenvalue
satisfies

| icB- A |=0

The unperturbed surface is given by the usual parametric representation
(2.1).

The purpose is to study the modulations of perturbations with
wavelengths smaller than that of the umperturbed wave, so we will only
considered the case of superharmonic stability (p = 0). The deflection
due to the perturbations may be written as :

n' o= e 10t Giqy o ipy o1® (%)

where o(x) is the envelope and $(x) the phase of the short waves.

Then, with simple transformations, it is easy to calculate
the wavenumber and the amplitude of the short wave as defined in section
3.1, along the surface coordinates of the long wave.

If the effect of capillarity is taken into account only for
the short waves, we have to add supplementary terms to the equation
(3.11.a) :

¢’y =-n' - @(W'x - tFz‘f"z - (Wx_'?xz u L?z_‘f;zz)n'
- = — - = 5 .
PRI T o AT -3 R Fn, Je0
» 2z = T(x)

where K =K2T/pg is the non dimensional surface tension coefficient.
Then the procedure is similar to that presented previously.

Let us consider the special case in which the unperturbed wave
has zero amplitude. The dispersion relation may be written as :

i/
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where n 1s the wave number of the perturbation in the x direction. When
n and q become significantly large we cannot neglect the term K (n? +
q?), even if K<<1.

4. RESULTS

Modulations in wave number and in amplitude of superharmonic modes
travelling in the same sense (positive sense) or in opposite sense
(negative sense) with respect to the long basic gravity wave, have been
computed for various values of the steepness AK using two different
methods. The results presented in this paper deal with the two dimensio-
nal mode n = 10 and the three dimensional mode (n,q) = (10,10).

Figures 2 and 3 display respectively the evolution of the
normalized amplitude a/3 (F is the amplitude of the short waves at the
mean level of the long wave) and wave number k of short gravity waves
(two dimensional mode n = 10) propagating in the positive sense, as a
function of the horizontal coordinate x between the crest and the trough
of the long wave.

With the linear dispersion relation (3.2) and the Bretherton
and Garrett equation (3.7) the amplitude and wave number evolutions are
found to be very close to the evolutions obtained from the stability
calculations of the long wave to superharmonic perturbations.

Similarly, figures 4 and 5 show the evolution of the relative
amplitude and wave number of gravity capillary waves (two dimensional
mode n = 10) travelling in the positive sense. In this case small
difference appears at the crest for AK = 0.40. Figures 6 and 7 display
the curves corresponding to gravity capillary waves (two dimensional
mode n =10) travelling in the negative sense. In figures 8 and 9 are
plotced the curves corresponding to the three dimensional mode (p,q) =
(10,10).

As a main conclusion an equivalence exists between the ray
equations based on the linear dispersion relation coupled with the
action conservation principle and the eigenvalue problem derived from
the exact equations.

Generally, instabilities arise when frequencies of two modes
of opposite signatures collide (McKay and Saffman, 1986). According to
the previous conclusion, it seems possible to predict the instability of
wave of permanent form by using the linear dispersion relation with the
signature added, for any value of the wave steepness AK.
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Figure 3. Evolution of the wave number k of two dimensional short
gravity waves propagating in the positive sense as a function of the
horizontal coordinate x between the crest and the trough of the long
wave. K =1 ; x : Stability (n = 10) ; e : Ray equations ;

(a) AK = 0.3 ; (b) AK = 0.4.
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Figure 5. As Fig. 3 but for two dimensional short gravity capillary
waves propagating in the positive sense.

K=1; « =0.0003 ; x: Stability (n = 10) ; @ : Action conservation;
ns ; (a) AK = 0.3 ; (b) AK = 0.4.
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Figure 7. As Fig. 3 but for two dimensional short gravity capillary
waves propagating in the negative sense.
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(a) AK = 0.3 ; (b) AK = 0.4.
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