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ABSTRACT

Linear momentum of surface gravity waves changes with time during refraction by a horizontally variable
current, as is predicted by ray theory; the momentum change per unit time requires a force by the current
on the waves. According to Newton’s third law, the waves apply an equal but opposite force back on the
current. The wave force of linear waves on the current is calculated for a steady horizontal shear current and
it is found to be directly proportional to the wave momentum times the shear in the current. For a current
like the Gulf Stream it is theoretically possible for the wave force on the current to be as large as the Coriolis
force on the current to the depth of wave influence; the effect on equatorial surface currents is likely to be
even more significant. Considering the reasonable conjecture that the orbital angular momentum of the
waves cannot be exchanged with the current, the growth or decay of the wave amplitude in the shear current
is computed as well. An exponential growth or decay of the amplitude is obtained with the e-folding scale
being proportional to the current shear. A comparison between the calculated wave force and the Coriolis
force for reported data describing the reflection of waves by the Gulf Stream is presented. The potential
effects of the wave force on the surface extent of such currents and their observations by remote sensing,
including possible bias in estimation of their transport capacity, are discussed. Instances of potential positive
and negative feedback acting during the interaction between the waves and the current are outlined.

1. Introduction

When a plane surface gravity wave refracts in a
steady but horizontally variable ocean current, the ap-
plication of geometrical optics theory has predicted that
the wave rays are curved and the direction and magni-
tude of the wavenumbers continuously change along
the rays, in general, if there are no abrupt discontinu-
ities in current speed (Kenyon 1971). For example, this
happens conceptually when a sinusoidal wave enters a
following current and ends up being totally reflected by
the current (Fig. 1). An analogous situation (total in-
ternal reflection) can take place when a wave travels
against a horizontal shear current with a single maxi-
mum speed (Fig. 2). What is the rate of exchange of
energy and linear momentum between the waves and
the current during refraction? Does the wave angular

momentum play any role in the wave–current interac-
tion? What rate of growth or decay is experienced by
the wave amplitude? How large is the wave force on the
current, compared to the Coriolis force on the same
current, for example? Some of these questions have not
been asked before, but all of them will be answered
below in a straightforward manner with the help of an
elementary model involving both the ray equations and
the linear and angular momentum balances for the
waves.

Surface gravity waves possess linear momentum, like
light and sound waves do. For surface waves the mo-
mentum is proportional, through the particle (fluid)
density, to the Stokes drift velocity, and it is a vector
quantity that points horizontally in the direction of
wave propagation. Also, exactly like light waves and
qualitatively like sound waves, the magnitude of the
linear momentum of surface waves is equal to the total
energy divided by the phase speed (Kenyon 1969).

The exchange of surface gravity wave momentum
with the environment, with an emphasis on coastal
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work, has been discussed by a relatively small number
of investigators using different methods. Putnam et al.
(1949) employed the concept of momentum flux due to
breaking waves to estimate the velocity of alongshore
flow; the water velocity of both the momentum and its
flux were taken to be the shallow water wave speed
since the group and phase speeds are the same.
Longuet-Higgins and Stewart (1964) obtained a wave
momentum flux into the wave-facing vertical side of a
water parcel by averaging the square of the wave par-
ticle velocity multiplied by the density. They added to
that the pressure difference on the same side of the
water parcel, with and without waves, and called the
combination “radiation stress.” They then postulated
the exchanges between the radiation stress and the cur-
rent shear and calculated these exchanges using a modi-
fied conservation equation for waves. Garrett (1976)
calculated the force applied by a wave train on a shear
flow, in the context of explaining the relatively small
scale Langmuir circulation; he used the momentum
conservation equation for the combined wave and cur-
rent flow, as well as the action conservation equation
and the ray refraction equation for the waves. He also
used wave dissipation for momentum transfer to the

circulation to increase the shear for feedback. Sheres
and Kenyon (1990) discussed momentum exchange be-
tween the Southern California coastal circulation and
incoming swell refracted by it, using radiation stress;
they compared the potential effects of the waves to that
of the wind on the circulation in the area. A recent
paper by Buhler and McIntyre (2003) found that waves
refracted by an inhomogeneous flow apply a force to
the flow within a context aimed at understanding inter-
nal gravity waves propagating in spatially variable
winds in the atmosphere. Their model was based on
pseudomomentum, and the model equations adopted
by them can be interpreted in either of two ways, com-
pressible flow or shallow water wave motion, by a well-
known analogy based on the mathematical similarity in
the respective equations of motion and continuity.

Here we compute the effects of surface gravity wave
momentum changes due to refraction by inhomoge-
neous ocean currents in deep water with the wave mo-
mentum being based on the well-established Stokes
drift. We show that changes in direction of the waves
due to refraction in the shear current imply a force on
the current. A major tool used is the well-known ray
equations describing the wave refraction due to the
horizontal shear in the steady current. We assume
monochromatic low-slope deep water waves that do not
exhibit nonlinear effects.

During wave–current refraction, since the wavenum-
ber changes direction along a ray, then the linear mo-
mentum of the waves must change direction along the
rays also, because it remains parallel to the wavenum-
ber; in general, the magnitude of the linear momentum
continuously alters along a ray too. Thus, there is a time
rate of change of the vector linear momentum during
wave–current interaction. It takes a force to cause a
change with time in the wave linear momentum, wheth-
er that change occurs to the magnitude or to the direc-
tion of the momentum (or to both). Consequently there
is a force on the waves by the current, and, according to
Newton’s third law, there must be an equal but opposite
force by the waves back on the current.

We will set up the balance equation for the linear
momentum of the surface waves and use it, along with
the ray equations, to compute the total wave force on a
current, one component being normal to and the other
parallel to the wavenumber. To the best of our knowl-
edge the computation of the wave force on an ocean
current has never been attempted before for refracting
surface gravity waves.

Only very recently have ocean waves and currents
been put together into the same numerical model (e.g.,
Mellor 2003; Perrie et al. 2003). As normally occurs in
the analytical approach to refraction problems the en-

FIG. 1. A horizontal shear current flows between the dashed
lines from the bottom to the top of the diagram. Two selected
wave rays enter the current on either side near the bottom of the
figure and exit near the top, showing that these particular surface
gravity waves are totally reflected by refraction in the current
shear. Where there is no current the rays are straight lines; inside
the current the rays are curved lines. The force that the waves
exert on the current is indicated by the two short arrows, labeled
�Fd, that point toward each other and toward the center of the
current.
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vironment is given and fixed and then the changes in
the properties of an initial set of waves that move
through the environment are calculated. Therefore, it is
the horizontally variable current that is the given quan-
tity in the present problem, and the current cannot
move in response to the force of the waves. In other
words, we do not have a truly interactive system involv-
ing waves and currents, but that is what the numerical
models will be capable of achieving in the future.

In contrast to most wave types in physics (the Ray-
leigh wave in the solid earth being an exception), sur-
face and possibly internal gravity waves have orbital
angular momentum, which is related to the circular or
elliptical motion of material (fluid) particles. [A recent
interest in light’s orbital angular momentum has arisen
(Padgett et al. 2004).] The angular momentum vectors
of surface gravity waves always point along the crests
and troughs. To change the magnitude of the wave an-
gular momentum (or wave action) we need a torque in
the direction of the angular momentum, which is par-
allel to the crests and troughs along the water surface
(Kenyon and Sheres 1996). However, a horizontal
shear current that is uniform vertically can potentially
supply a torque only in the direction perpendicular to
the mean free surface. Therefore, the horizontal shear
in the current cannot alter the magnitude of the wave
angular momentum. Thus the magnitude of the angular
momentum must be conserved during this type of
wave–current refraction.

Conserving the magnitude of the orbital angular mo-
mentum, which is equivalent to conserving wave action
(Kenyon and Sheres 1996), is a key element of the
present analysis that leads us to predict the time rate of
change of the wave amplitude as well as the exchange
rates of energy and linear momentum between the
waves and the current. To change the direction of the
wave angular momentum in the horizontal plane a

torque is required, and this torque has been calculated
before for a linear horizontal current shear (Kenyon
and Sheres 1996). The shear current causes a torque on
the waves about vertical axes, and there must be an
equal but opposite torque of the waves back on the
current about the same axes (e.g., Ference et al. 1956, p.
98).

Throughout its moderately long history the theoret-
ical description of the evolution of wind waves has been
heavily biased toward the energy balance of these
waves, and more recently the action balance. All con-
ceivable physical processes involved in the generation,
propagation, and decay of surface gravity waves have
been collected together as separate terms in one equa-
tion, the energy equation (or radiative transfer equa-
tion), as a starting point for understanding the waves.
However, as in all physics problems, energy levels can
only be changed by work. But surface gravity waves
also carry both linear and angular momentum. What
can the energy equation say about them? It says very
little. Linear momentum is altered per unit time by a
force and angular momentum by a torque. Linear mo-
mentum and angular momentum balance equations for
the waves are therefore needed in addition to the ex-
isting energy balance equation. The angular momen-
tum balance for surface waves has been written down
and applied to wave–current interaction by Kenyon and
Sheres (1996). Now, we will do the same thing for the
linear momentum balance and apply it also to the
wave–current refraction problem.

When surface gravity waves reflect off a vertical wall,
they exert a force on that wall, just like sound and light
waves do when they reflect off solid surfaces. The
steady force on the wall is related to the time rate of
change of the wave momentum upon reflection from
the wall. There is still some controversy surrounding
the reflection of sound waves from a rigid surface

FIG. 2. The same horizontal shear current as in Fig. 1 but the waves now travel against the flow. One
ray is shown illustrating that these particular waves are totally internally reflected by refraction in the
shear current. The wave force on the current is indicated by two short arrows, labeled �Fd, that point
away from each other and away from the center of the current.
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(Faber 1995), but this controversy pales in comparison
to the rather extreme story behind the calculation of
the force during the reflection of surface gravity waves
from a vertical wall. For example, as of 1951 there were
published more than 25 separate theoretical formulas
for the wave force on a vertical wall that neither agreed
among themselves nor with laboratory data published a
bit later (Rundgren 1958). At present a few more for-
mulas for the wave force on a wall have been put into
the public domain that are still different from the ear-
lier ones (e.g., Kenyon 2004a), but at least the labora-
tory measurements established that reflecting surface
waves do cause a force on a vertical wall. This gives us
some confidence to predict that, if surface waves are
truly reflected from a current by refraction, then they
will definitely exert a force on that current.

2. Linear wave momentum

Stokes discovered in 1847, as a by-product of the
complete solution of the surface gravity wave problem
to second order in a perturbation expansion of the fluid
dynamics equations and boundary conditions, that the
orbiting fluid particles do not return exactly to their
starting positions at the end of a wave period but are
displaced a tiny bit in the direction of propagation of
the wave. The net forward displacement of the particles
in a wave period is equivalent to a steady streaming
velocity that has come to be known as the Stokes drift
velocity, or simply Stokes drift.

Therefore, for more than 150 years it could have
been said that surface gravity waves have linear mo-
mentum, by identifying the momentum with the Stokes
drift multiplied by the particle density, but historically
it has not been talked about in quite this way for the
most part. It is just as conceivable that Stokes himself
could have made such a statement, based on the anal-
ogy with light waves, because Maxwell and he were
good friends (Mahon 2003, p. 63), and it was Maxwell
who predicted the force of light waves on objects that
intercept the light from his famous electromagnetic
equations published in 1873. It is true that the experi-
mental verification of the light pressure came consid-
erably later in 1900, but then Stokes did not die until
1903. Apparently Stokes did not revisit the subject, and
no connection was made between Stokes drift and the
linear momentum of surface gravity waves for well over
100 years (e.g., see the references in Barnett and
Kenyon 1975).

The linear momentum of surface gravity waves is di-
rectly proportional to Stokes drift through the particle
(or fluid) density. What Stokes derived is the following:

U � c�ak�2e2kz, �1�

where U is the Stokes drift, c is the phase speed of a
monochromatic progressive surface wave in still water,
a is the amplitude, k is the wavenumber, and z is the
mean depth measured positively upward from the still
water level (z � 0). Notice that (1) does not depend on
either time or the horizontal coordinates. Under nor-
mal usage, where no currents are involved, the refer-
ence frame selected is fixed to the coast of the ocean or
shore of a lake, and then the speed of the crests and
troughs, the wave phase speed, is measured relative to
that frame. Equation (1) is valid for waves of moder-
ately small amplitude (compared to the wavelength) in
deep water, meaning theoretically that the total depth
of water is infinite. [Stokes (1847) also gave the gener-
alization of (1) for finite constant mean depth.] Recent
derivations of (1) may be easier to find and to follow
than the original (e.g., Kundu 1990).

One characteristic of the Stokes drift (1) has been
appreciated for a long time. Since (ak) is proportional
to the average slope of the wave surface, which is nor-
mally quite small compared to unity, the Stokes drift is
much smaller than the phase speed because it depends
on the square of a small quantity. But what has prob-
ably never been said before is that the Stokes drift
propagates with the speed of the wave. This feature
gives the tiny Stokes drift a greater significance, espe-
cially with its relation to the linear momentum of the
waves and to the flux of momentum in particular. Thus
the linear and angular momenta and the energy all
travel at the wave speed, and for a wave group it is
obviously the group speed.

From (1) the magnitude of the linear momentum per
unit volume m is defined as

m � �U � �c�ak�2e2kz, �2�

where � is the density of a fluid particle, which is also
the density of the entire fluid for a fluid of constant
density as assumed here. The direction of the linear
momentum is the same as the direction of wave propa-
gation. Moving from (1) to (2) appears, on the face of it,
to be a simple physical step specifically linking the lin-
ear wave momentum with the Stokes drift.

By a vertical integration of (2) over the depth of
wave influence we obtain the linear momentum per
unit horizontal area

M � �
��

0

m dz �
1
2

��a2, �3�

a quantity that characterizes the wave as a whole, where
c � �/k. Also the well-known dispersion relation for
deep water waves is

�2 � gk, �4�
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where � is the frequency of the waves, g is the accel-
eration of gravity, and with (4) the horizontal momen-
tum per unit horizontal area in (3) can be written

M �
1
2

��gka2,

which is determined by measuring wavelength and am-
plitude that are both independent of the reference
frame used for the measurements (i.e., fixed frame or
frame moving with a current).

When we come to calculate the wave force on an
ocean shear current in section 4, the waves have prop-
agated from still water into a spatially variable current
where they are then refracted. The momentum M is an
intrinsic property that the waves carry with them. The
frequency and velocity of the waves, c and �, will now
be with respect to the current; to note that, they will be
from now on written as c� and �� with

��2 � gk. �4a�

Here �� is called the intrinsic frequency.

3. Wave momentum balance

First, we put down the linear momentum balance
equation for the wave motion

dM
dt

� F, �5�

which states that the time rate of change of the wave
momentum per unit horizontal area equals the applied
force per same unit area. (For example, the applied
force can come from a shear current while the waves
are being refracted by the current. Since any current
that we will consider is a steady one, the time rate of
change of the current momentum is zero by definition.)
When the applied force vanishes, the wave momentum
is and remains a constant. In principle, if we know the
applied force along the rays as well as the initial value
of the linear momentum, then the linear momentum
can be found at all points of the rays by a time integra-
tion of (5)–(7). From the initial value of the momentum
and wavenumber, as well as the given frequency func-
tion (4) [dispersion relation], the wave amplitude can
be obtained, in principle, along the rays from (3)–(7),
assuming that we know the force F along the ray. If we
do not know F, we can use the conservation of angular
momentum magnitude (action) along the ray to calcu-
late the wave amplitude, as shown in section 5.

To the momentum equation we add the standard ray
equations for wave propagation in a steady spatially

variable medium (e.g., Kenyon 1971; Landau and Lif-
shitz 1959)

dx
dt

�
��

�k
, �6�

dk
dt

� �
��

�x
, and �7�

� � �� 	 k · U, �8�

where �(k, x) is a known function of the wavenumber
vector k and the horizontal position vector x; it is the
wave frequency measured by a stationary observer not
moving with the current and is conserved for a steady
current. We assume for simplicity that the transmitting
medium is independent of the vertical coordinate z.
The rays and the wavenumber along the rays are de-
termined by the simultaneous integration with respect
to time of (6) and (7). Equation (6) gives the rays,
which are paths traced out by points that move with the
group velocity cg � 
�/
k. Behind the ray equations lies
the central assumption that the inhomogemeous me-
dium varies slowly within the distance of a wavelength.

It is convenient to split the total applied force on the
right-hand side of (5) into two mutually perpendicular
components:

F � Fm 	 Fd, �9�

where Fm changes only the magnitude of the momen-
tum and Fd changes only the direction of the momen-
tum. The linear momentum per unit area of the surface
waves can be represented by

M � Mk̂, �10�

where M is the magnitude of the momentum per unit
area and k̂ is a unit vector pointing in the direction of
the wavenumber, that is, in the direction of wave propa-
gation.

Taking the time rate of change of the momentum per
unit area (10) gives

dM
dt

�
dM

dt
k̂ 	 M

dk̂
dt

� Fm 	 Fd �11�

using (9); therefore from the definitions of the compo-
nents of the force per unit area we have

dM

dt
k̂ � Fm �12�

and

M
dk̂
dt

� Fd. �13�
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Equation (12) will be dealt with below. Equation (13)
can be further developed now by noting that since k̂ is
a unit vector that cannot change its magnitude but only
its direction

dk̂
dt

�
d�

dt
�ẑ � k̂�, �14�

where � is the polar angle of the wavenumber vector,
measured counterclockwise from the x axis, and ẑ is a
unit vector that points vertically up normal to the mean
free surface.

To relate the time rate of change of the angle � on the
right-hand side of (14) to quantities we know, we first
calculate

d

dt
tan� � sec2�

d�

dt
�

1

cos2�

d�

dt
�

k2

k2
x

d�

dt
. �15�

Also,

d

dt
tan� �

d

dt

ky

kx
�

1

kx
2 �kx

dky

dt
� ky

dkx

dt �. �16�

Equating the right-hand sides of (15) and (16) produces
the desired result

d�

dt
�

1

k2 �k �
dk
dt � · ẑ �17�

because now the second ray equation, (7), can be sub-
stituted into the right-hand side of (17) for the time rate
of change of the wavenumber vector.

Combining (7), (14), and (17) we get for the applied
force component that changes the direction of the wave
momentum

Fd � �
M

k ��k̂ �
��

�x� · ẑ��ẑ � k̂�, �18�

and then the right-hand side of (17) can be evaluated
completely once we specify the frequency function �(k,
x). For example, we can put (8) into (18).

4. Wave force on a shear current

For the most general wave–current interaction in-
volving a steady spatially variable current the frequency
function is specified by (8), where on the left-hand side
is the frequency observed in the steady frame, and on
the right-hand side is the frequency observed relative to
the current U(x). On the far right of (8) is the so-called
Doppler frequency shifting term. Usually �� is called
the intrinsic frequency, and for deep-water waves its
functional dependence on the wavenumber is given by
the dispersion relation (4a).

Besides going from the most general situation to the

special case of deep water waves, we now take the spe-
cial case of a horizontal shear current for ease of illus-
tration,

U�x� � V�x�ŷ, �19�

which is a steady current that flows only in the y direc-
tion and varies only in the x direction; ŷ is a unit vector
in the y direction. A further specialization of (19) is to
a linear shear current

V�x� � sx, �20�

where s is the constant shear in units of inverse time.
With (20) and (19), (8) becomes

��k, x� � �gk 	 kysx. �21�

From (21) we compute

���k, x�

�x
� kysx̂, �22�

where x is a unit vector in the x direction. If we put (22)
into (18), we get

Fd � Ms sin2��ẑ � k̂�, �23�

where � is the angle of the wavenumber measured
counterclockwise from the x axis. In (23) the momen-
tum is with respect to the current; that is, M is given by
(3) and the frequency is interpreted to be the intrinsic
frequency. Equation (23) gives the force of the current
on the wave, and by Newton’s third law the force of the
wave on the current is equal but opposite, that is, �Fd.

The properties of the direction changing wave force
on the shear current can be seen quickly from (minus)
(23). Maximum wave force occurs when the wave trav-
els parallel to the current (� � /2), and at that position
the wave tries to push the current in the direction nor-
mal to the flow. When the wave travels perpendicular
to the current (� � 0), the direction changing force
vanishes. For any direction of the wavenumber the
force is always perpendicular to it (and therefore not
perpendicular to the flow in general). Aside from the
dependence on the polar angle � the magnitude of the
force is directly proportional to the linear momentum
of the wave times the shear in the current. Note that the
direction-changing force is independent of the group
velocity.

Since M depends of the frequency according to (3),
then the wave force on the current depends directly on
the frequency for constant amplitude waves. This is in
contrast to the total wave force on a vertical wall during
perfect reflection, which does not depend on the wave
frequency for constant amplitude waves (Kenyon
2004a). It is known now that shoaling waves progress-
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ing shoreward and, ultimately being absorbed (i.e., not
reflected), exert a force on the bottom, and that force is
independent of the wave frequency as well (Kenyon
2004b). However, the frequency dependence of the
wave force on a current is consistent with ray theory for
wave–current refraction by which the high frequencies
are predicted to be more affected than the low frequen-
cies. For a given initial amplitude and angle of inci-
dence there is more bending or curvature to the rays for
the higher frequencies. [In optics it is well known that
reflection of light waves is independent of the fre-
quency, whereas refraction depends on frequency.]

Characteristics of the magnitude changing wave force
on a shear current will be discussed in the following
section and will be compared with those of the direc-
tion-changing wave force in (23).

5. Wave growth or decay in a shear current

As discussed in the introduction, during pure wave–
current interaction the magnitude of the angular mo-
mentum of the waves (i.e., the wave action) must re-
main constant provided the horizontal shear current is
uniform vertically. So we begin with the time rate of
change of the angular momentum magnitude being set
equal to zero:

dA

dt
� 0. �24�

Since the magnitude of the angular momentum A and
the total energy E of the waves are related through the
intrinsic frequency (Kenyon and Sheres 1996), A �
E/��, from (24) comes

dA

dt
�

d

dt �E

��� � 0, �25�

which can be written as

1
E

dE

dt
�

1
��

d��

dt
. �26�

The right-hand side of (26) is worked out shortly in
terms of quantities we know through the ray equations.
Then (26) gives the wave energy loss or gain due to
interchanges with the current.

Wave linear momentum magnitude and total energy,
both per unit area, are related through the wave phase
speed (Barnett and Kenyon 1975)

M �
E

c�
, �27�

where c� is the phase speed relative to the current.
From (27) the time rate of change of the momentum

magnitude per unit area can be calculated for deep wa-
ter waves with dispersion relation (4a) and the angular
momentum magnitude (action) conservation equation
in (26):

dM

dt
�

d

dt �E

c�� �
d

dt � E

g���� �
2E

g

d��

dt
. �28�

Developing the right-hand side of (28) through the ray
equations then gives the time rate of change of the
linear momentum per unit area of the waves or the
wave force on the current in the direction parallel to the
wavenumber (the magnitude-changing force).

We get from (4a)

1
��

d��

dt
�

1
2k

dk

dt
�29�

and, since k2 � k2
x 	 k2

y,

dk

dt
�

1
k �kx

dkx

dt
	 ky

dky

dt �, �30�

where kx and ky are the wavenumber components along
the x and y axes, respectively. The second ray equation,
(7), in component form is

dkx

dt
� �

��

�x
and �31�

dky

dt
� �

��

�y
, �32�

which when inserted into (29) produces

dk

dt
� �

1
k �kx

��

�x
	 ky

��

�y�. �33�

When we combine (33) and (29) with (26) we get

1
E

dE

dt
� �

1
2k �cos�

��

�x
	 sin�

��

�y�, �34�

where kx/k � cos�, ky/k � sin�. Given that the total
energy per unit horizontal area of the waves is

E �
1
2

�ga2, �35�

the amplitude growth rate from (34) is

1
a

da

dt
� �

1
4k �cos�

��

�x
	 sin�

��

�y�. �36�

For the linear shear current (20), (36) reduces through
(22) to

1
a

da

dt
� �

s

8
sin2�, �37�
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which predicts an exponential time rate of growth or
decay for the wave amplitude, depending on the sign of
the shear in the current and the direction of the wave-
number relative to that of the current. A numerical
example may be helpful. Take s � 8 � 10�4 s�1, a
rather large value for the current shear, and � � /4,
then |da| � 0.1a when dt � 16 min, assuming s and �
remain constant over the 16-min interval. To obtain the
amplitude over the whole length of a ray inside a shear
current a numerical integration would need to be car-
ried out, in general, where � is supplied for all positions
along the ray.

Similarly (28) can be evaluated using (29) and (33) to
yield

dM

dt
� �

E��

gk �cos�
��

�x
	 sin�

��

�y�
� �

M

ck�cos�
��

�x
	 sin�

��

�y�, �38�

which reduces to

dM

dt
� �

Ms

2
sin2� �39�

for the linear shear current (20). Therefore, the magni-
tude changing force of the current on the wave (the
force component in the direction of the wavenumber) is

Fm � �
Ms

2
sin2�k̂. �40�

For the force of the wave on the current we apply a
minus sign to (40) according to Newton’s third law.

Comparing (40) with (23) we see first of all that both
components of the wave force on a shear current have
the same order of magnitude in general; that is, each
component is proportional to the momentum times the
current shear. Also, both components are zero when �
� 0. However, the direction changing force has its
maximum value at � � /2, whereas the magnitude
changing force is maximum value at � � /4.

Both Fd and Fm are proportional to M, which is pro-
portional to the frequency multiplied by the amplitude
squared [(3)], M � 0.5���a2. Thus for constant ampli-
tude waves the force applied by the waves on the cur-
rent is proportional to the frequency. As the frequency
increases, the wavelength decreases [(4)], and the wave
slope, ak, increases. Beyond a limiting high value of the
slope the waves will break. When we consider waves
with constant slope, Fd and Fm are proportional to the
inverse cube of the frequency. This is because for ak �
const and, using (4), M � ��a2 � (��)�3. Thus, an in-
crease in frequency will reduce the force of the waves
on the current significantly provided the slope remains

constant. The wave force on the current is concentrated
from the surface down to the depth of wave influence,
which decreases with increasing frequency.

6. Application

We would like now to attempt an application of the
wave force formula to a real ocean current, such as the
Gulf Stream. However, such an effort cannot be com-
pleted, mainly because all the necessary observations
are not available at this time. So we begin by making
qualitative estimates and comparisons.

First, contrast the maximum value of the wave force
per unit volume, when the wave direction is parallel to
the shear flow, by adapting (23)

fd � ms � �Us, �41�

where U is given by (2), to the magnitude of the Co-
riolis force, fc, on the same current

fc � �fu, �42�

where f is the Coriolis parameter and u is the speed of
the current. Both force components in (41) and (42) act
normal to the flow and are either parallel or antiparallel
depending on the hemisphere and the wave direction
relative to the current. Although for major ocean cur-
rents u is considerably larger than U, there are envi-
ronmental situations for which s is an order of magni-
tude or more larger than f, even at midlatitudes (Sheres
et al. 1985). Therefore, it is within the realm of possi-
bility that the sideways wave force on the upper part of
a current could be as large, and in some cases larger, as
the Coriolis force on that current. This can be signifi-
cant since it is generally believed that ocean currents
are in geostrophic balance on the whole, meaning that
the Coriolis force is balanced by an equal but opposite
horizontal pressure gradient related to the density field.
It would be very difficult to confirm the action of the
wave force; however, in situ measurements and satellite
imagery by Grodsky et al. (2000) support such a possi-
bility, and their measurements on 28 August 1991 show
150-m waves reflected by the Gulf Stream that had a
maximum speed of 2 m s�1. Amplitude data for the
150-m-long waves was not available; however, the syn-
thetic aperture radar (SAR) images for that date in
Grodsky et al. (2000) clearly showed a narrow band (in
frequency), for these waves.

The Coriolis force at 38°N on the Gulf Stream flow-
ing with an average speed of 1 m s�1 is from (42):
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fC � 0.89 � 10�4� N m�3.

The maximum wave force would equal the Coriolis
force for this case of wave reflection on 28 August, with
150-m wavelength and shear of 1.5 � 10�4 s –1 [mea-
sured on 29 August; adapted from Fig. 6d of Grodsky et
al. (2000)], if the wave amplitude would be 4.7 m, cal-
culated using (41). In the equatorial regions where the
Coriolis force is much smaller, 150-m-long waves with
amplitude of 1.5 m will exert a force equal to the Co-
riolis force at 3.56° latitude, as they are reflected from
the same shear as above. The maximum wave force
occurs at the surface and diminishes exponentially with
depth; clearly the longer the waves the deeper the wave
force will affect the current.

Could the wave force play a role in the initiation of
Gulf Stream meanders? This is an intriguing, seemingly
unlikely, possibility and confirming it would be very
difficult; here is what we do know, however. The wave
ray radius of curvature was estimated at R � Cg s�1 (Cg

the wave group velocity magnitude) by Kenyon (1971);
a Gulf Stream shear of 1.5 � 10�4 s�1 and a swell
wavelength 150 m give a ray radius of curvature of 51
km, comparable to the radius of curvature of the Gulf
Stream meanders. The maximum force applied by
waves at and near the surface can be comparable to the
Coriolis force, as shown above. Grodsky et al. (2000)
showed a total reflection of swell by a Gulf Stream
meander with the parameters similar to those above,
using SAR and infrared imagery as well as a numerical
ray model. A lot more information will be required in
order to support or negate this application.

Another example can be imagined involving a broad
source of waves. Let a wind blow opposite to the direc-
tion of the current generating waves all along the axis of
the current that move counter to the stream. Then re-
fraction can cause total internal reflection of most of
the waves and, due to the momentum exchange be-
tween the waves and the current in which the waves
push outward normal to the flow (Fig. 2, the wave and
momentum direction vary along the ray and are not
shown), the net tendency will be to broaden the current
region normal to the axis. An event of wave trapping in
the Gulf Stream was described by Kudryavtsev et al.
(1995). Changes of current width (such as that of the
Gulf Stream) during such an event could conceivably
be observed by remote sensing.

More hypothetical (for the Gulf Stream perhaps)
would be the case of two broad sources of following
waves that approach the current from both sides simul-
taneously and are then reflected due to refraction in the
current (Fig. 1, the wave and momentum direction vary
along the ray and are not shown). Alternatively one

could think of a single band of wind that blows in the
direction of the stream and generates waves inside the
current that refract out both sides of the current. From
the wave–current momentum exchange we anticipate a
thinning of the current under these conditions.

A thinning of a current by two broad sources of fol-
lowing waves might have a more likely application in
the equatorial ocean areas, where the Coriolis force is
small because of the low latitude. For example, in the
North Pacific, and in the yearly mean, there is a west-
ward equatorial surface current with northeast trade
winds on its north side and southeast trades on its south
side. Both winds and currents exist over most of the
length of the ocean. Therefore, the winds create two
broad sources of following waves that propagate into
the current from both sides simultaneously. The mo-
mentum exchange between waves and currents may
help hold this current together, confined to a relatively
narrow latitude band, to a depth of wave influence, in
view of the fact that the Coriolis force is weak.

One further conceptual step leads to a feedback
mechanism between the waves and the current. A thin-
ning current produces increasing horizontal shear,
which in turn increases the force of the waves on the
current by (19). Further thinning follows, and the feed-
back is a positive one. Of course, a negative feedback
would take place for waves propagating against the
Gulf Stream because the wave force tends to broaden
the current, reducing the current shear and weakening
the wave force on the current. This feedback mecha-
nism (positive or negative), with the wave force chang-
ing the shear that determines its magnitude [see (41)], is
likely to operate in all the interactions described above.

Since the wave force on the current only exists over
the depth of wave influence, which is comparable to a
wavelength, whereas the depth scale of the current may
be greater than that, then the force might push the top
of the current sideways and leave the bottom part
where it was. One consequence would be to change the
slope of the isotherms in a vertical section when the
water density is controlled mainly by temperature. For
example, for waves propagating into the Gulf Stream
from the southeast (e.g., from a hurricane) and then
reflecting away, the warm surface water would be
pushed to the west, resulting in isotherms that have a
different slope in vertical sections in which the flow is
directed into the paper; this will affect Gulf Stream
velocity estimates based on density measurements.

The potential changes in the Gulf Stream, or other
current, surface extent described above would have an
effect on remote sensing imagery of these currents; it
will bias the estimates of their width, and therefore the
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amounts of water, heat, and so on transported by them.
Estimates of such bias can be important for ocean dy-
namics and climate models.
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