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ABSTRACT Images ofafield ofbreaking waves over thé océan obtained usîng a Une-scanner
on an aircraft are analyzedfor a possible fractal geometry. The cumulative probability fonc-
tion of thé intensity is shown to be self-similar for mfficiently large intensifies occupying
about 10% of an imaged area. This structure is invariant to successive averaging over suc-
cessively larger boxes. A box-counting technique was applied to images ofone représentative
flight. The estimated fractal dimension decreases from about 2.25 for a 10% areal coverage
to about 1.7 for 0.1% coverage. It is concluded thaï thé spatial distribution of thé scattered
light from foam and whitecaps is not mono/racial, but is instead multifractal.

RÉSUMÉ On analyse les images d'un champ de vagues marines déferlantes provenant d'un
balayeur linéaire aéroporté afin de trouver une géométrie fractale. On montre que la fonction
de probabilité cumulative de l'intensité est autosemblable pour des intensités assez grandes
occupant près de 10 % d'une image. La structure est invariante pour un moyennage successif
utilisant des boîtes de plus en plus grandes. On a appliqué une technique de comptage de
boîtes aux images provenant d'un vol représentatif. La dimension fractrale estimée diminue
d'environ 2,25 pour une couverture de 10 % à près de 1,7 pour une couverture de 0,1 %.
On peut conclure que la distribution spatiale de la lumière diffusée par l'écume et les
moutons n 'est pas monofractrale, mais plutôt plurifractrale.

1 Introduction

Wave breaking over thé océan in a wind-wave field plays an important rôle in
controlling some physical processes at thé air-sea interface. Dynamically, an equi-
librium is thought to exist between thé input energy from thé wind forcing on thé
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waves and the ultimate dissipation of that energy by the creation of turbulence in
the breaking waves (Phillips, 1985). Accordingly, breaking waves are localized cen-
tres of dissipation whose local turbulence results from the atmosphere's momentum
near the ocean surface, and hence acts as a drag on the atmosphere.

The entrainment associated with the breaker's turbulent turnover produces bub-
bles that are carried below the surface for possible dissolution or gaseous accretion,
depending on the size distribution of the bubble cloud and the saturation level of
gas in the water. This mechanism may provide, therefore, for an exchange process
for the transfer of gases between the atmosphere and ocean (for example, Thorpe,
1982; Kerman, 1984; Kitaigorodskii, 1984; Csanady, 1990).

Upon their return to the surface the bubbles either remain stabilized in a foam
patch or rupture, carrying in their vertical jet a thin skin enriched with the parti-
cles collected by impact scavenging during their rise (Maclntyre, 1968; Blanchard,
1983). The enrichment of aerosols associated with the ejected droplet, resulting
from partial evaporation, is thought to be important (Buat Menard, 1986) in main-
taining a source of salt-laden cloud condensation nuclei, as well as interfacial fluxes
of trace constituents, including bacteria, viruses, heavy metals, radioactivity and in-
ert organic material (Kerman, 1986).

Of interest in ocean acoustics is the generation of sound at the surface associated
with bubbles produced both as single units and as a spongy cloud (Kerman, 1988).
A source of bubbles close to the surface alters the bulk modulus of the upper metres
of the ocean leading to ducting (Farmer and Vagle, 1989), attenuation (Novarini
and Bruno, 1982) and scattering (Crowther, 1980) of propagating sound.

The presence of foam and bubbles at the surface alters the reflectivity properties
of the ocean surface. In the case of light (Austin and Moran, 1974) additional
multiple scattering occurs from a matrix of randomly layered specular surfaces. If
the surface is illuminated by microwaves, wedge scattering may occur in addition
to Bragg scattering.

Breaking waves also play a significant role in effects as diverse as the evaporation
from the oceans and the evaluation of forces on structures in ocean engineering.
The proceedings of several recent workshops (Monahan and MacNiocaill, 1986;
Monahan and Van Patten, 1989) contain numerous other references to the ubiquitous
role of breaking waves at the air-sea interface.

The incorporation of wave breaking effects in these different applications often
utilizes the concept of a statistically steady fractional coverage, i.e. the areal extent
of the process, at the sea surface at a given time. This description is related to a
combination of factors - the number of waves breaking in a given area in an interval
of time, the average size of the breakers as well as the average duration of each
event. The measurement of these several descriptors is difficult for several reasons.
From the operational point of view it is demanding, in a hostile environment, to
gather voluminous data of both wide areal extent, and fine spatial and temporal
resolution. From the analytical point of view, the principal difficulty arises from
trying to represent the highly variable texture of the surface.
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Recently Glazman and Weichman (1989) have proposed a statistical geometric
description of the ocean surface in terms of its wave height and slope spectra.
In such a description it is thought that the spatial geometric description of the
production of instabilities, associated interchangeably with wave slope and vertical
wave acceleration, in some sense should be equivalent to the spatial distribution of
the breaking waves and their local turbulence.

Monahan (e.g. Monahan and O'Muircheartaigh, 1986) has studied many of these
aspects, particularly the extent and duration, of breaking waves in some detail. Other
studies have been reported by Toba and Chaen, 1973; Ross and Cardone, 1974;
Snyder et al., 1983; Longuet-Higgins and Smith, 1983; Weissman et al., 1984;
and Holthuijsen and Herbers, 1986. One objective of such studies has been to
parametrize the areal extent of the breaking waves in terms of the near-surface wind
speed, air-water temperature difference, salinity and water temperature. Another
major thrust has been to relate the occurrence of whitecaps, hereafter considered
as those areas of active entrainment in the life cycle of breaking waves, to a critical
wave steepness.

Techniques to estimate the whitecap coverage are usually based on ship- or buoy-
based photographic observations, with some aircraft-based measurements (Ross
and Cardone, 1974; Smith, 1981) having been reported. The first, and we believe
still unresolved, problem common to any measurement strategy is how to make
an unambiguous estimate of what constitutes whitecaps, i.e. active aeration, and
what fraction of the image to ascribe to foam, i.e. stabilized bubble rafts. One is
usually presented with what at first seems a simple black and white image. At
closer inspection one begins to ask how to differentiate between weak entrainment
and bright foam, and between specular reflection and weak unresolved foam or
subsurface bubble clouds.

The question can be answered operationally, and with considerable care one is
able to compare data treated similarly. But so far as we are aware, neither have the
techniques been based on some stated reflectivity properties nor have the methods
that have been used been able to estimate their error owing to unresolved bubble-
related elements. In the context of remote sensing the problem is the familiar
one of identification and classification. The typical statistical scatter in estimated
coverage, say as a function of wind speed, originally motivated a search for a
definitive algorithm to classify these various features of a breaking wave field from
digitized images of a wind-swept sea.

The study to be described here evolved from one of making a more precise
estimate of whitecap coverage based on extensive surface interrogation into a con-
tribution of providing an unambiguous statement of the constitutive properties of
whitecaps and foam. In other words, how does one recognize a whitecap within
the imagery? Our analysis is limited primarily to some unique physical and geo-
metric properties of the multi-spectral images. As will be shown, each provides
new insights into the basic optical and hydrodynamical processes occurring on the
surface.
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There is also an aspect of the work that falls broadly under the umbrella of human
consciousness and artificial intelligence. The connection between the geometric
properties of the sea in the presence of breaking waves and the meteorological
characterization, primarily by the wind speed, has been utilized by sailors probably
from before recorded history. When in the nineteenth century Admiral Beaufort
originally codified the wind forcing, it was in terms of the sailing characteristics of
naval frigates to enable better wind reporting and accountability of sailing ships.
Gradually, as a result of the adoption of steam in place of wind for propulsion, the
method of reporting evolved into a characterization of the state of the sea surface.
Today so-called Beaufort scales 5 and larger utilize primarily the presence, extent
and texture of breaking waves to indicate sea state.

The imagery of whitecaps extends beyond the practical to the artistic and perhaps
to the human psyche. Any casual survey of oceanic or shoreline seascapes soon
reveals the interest that the artists, and presumably the viewers, have in capturing
the violence and unexpected diversity of breaking waves. Why the human mind
should be fascinated by such images may lie in the challenge to codify such wildly
fractured, yet somehow ordered, shapes. Other similarly interesting subjects in our
predilection for landscapes include objects such as trees, forests, mountains and
streams, all displaying characteristics that are now classified as examples of natural
fractal geometry (Mandlebrot, 1983).

The fleeting nature of a breaking wave may add yet another challenge to the hu-
man intellect to codify the process. That there exists a look-up table, long accepted
as valid, that relates the decoding of an entire scene to a single number, motivates
us to believe that there exists an underlying fractal description that can ultimately
be related to the wind, or equivalently to the near-surface hydrodynamics.

As is now well known, in recent years the study of the geometry of naturally
occurring fractured objects has been given impetus by the introduction of modern
geometrical concepts to science by Mandelbrot. Viewed in a deterministic frame-
work, fractal geometry provides a description of geometrical identities that are
repeatedly split or reoriented in a cascade fashion. Hence the number of points or
line elements or closed figures present at the current step in an iterated procedure,
such as in a decimation or splitting cascade, is proportional to the number at the
previous step, which itself is proportional to the number at the yet previous step.
Accordingly, a logarithmic relationship is to be expected between the number of
elements of the given size and their size.

Viewed in a probabilistic sense, which is the sense of fractal geometry followed
in this study, the cascade process is governed by a birth/death process that prescribes
only the probability of an occurrence of some event or configuration. For example,
the number of school-age children is described by probabilities associated with
marriage, fertility and infant mortality. A logarithmic relationship again arises and
can be formulated basically as the number of occurrences beyond a sampled level
or count, i.e. exceedances, in terms of age. The attractiveness of the application of
fractal geometry to a physical process such as breaking waves is the rather naive
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belief that the process may be essentially described by a single exponent, referred
to very loosely as the fractal dimension. (A more explicit formulation is offered
in Section 3.) Another feature of such analytic descriptors as fractals stems from
the realization that the determination of these geometric characteristics generally
does not specify a unique dynamically predestined generating procedure. At first
exposure the lack of any clear relationship to classically instilled physical intuitions
seems to offer little. The reward comes in applying a totally different set of concepts
to complement both known results and theoretical models, as well as to provide
new insights.

New concepts arise - Why is the sea surface like a classical Brownian process?
What would be the equivalent birth/death description? What iterative physical pro-
cess is involved to produce the statistical geometry of a wind-swept sea?

2 Experiment and imagery
A multi-spectral scanner was flown on board a DC3 aircraft of the Canada Centre
for Remote Sensing over the Atlantic Ocean to the south and east of Halifax,
Nova Scotia, and over the northeast portion of the Bay of Fundy. A total of 12
sorties were flown between 23 and 29 March 1984. An image was built up as a
sequence of cross-flight lines. Each sortie was flown at a height of about 500 m, the
elevation required to achieve contiguous, non-overlapping coverage of neighbouring
lines. Aircraft orientation was selected to minimize glint into the laterally scanning
spectral radiometer. The actual data recording lasted about 10 min, which at a
design wind speed of 10 m s~' and an aircraft ground speed of 50 m s"1, roughly
equates to 1 h of fixed point sampling on the surface. Wind speeds ranged from 6 to
almost 20 m s~\ as estimated both by the pilots and by observers at neighbouring
land sites.

The optical.modulation transfer function of the line-scanner rolls off with de-
creasing scale to a minimum response for a field of view of about 2.5 mrad. From
a height of about 500 m the spatial resolution of the imaged surface is about 1 m.
The swath width was limited to the central 512 pixels in each line, and hence a
width of about 0.5 km, whereas the image length was about 30 km.

The spectral bands of the scanner were centred.at 0.57, 0.67, 0.73, 0.83, 0.95
and 1.64 (xm with an average bandwidth to centre wavelength of about 15%. The
equipment and its calibration is described more fully by Zwick et al. (1980). Several
television cameras, one a low light-level model sensitized to the near infrared, were
also carried on board in an attempt to estimate the age of whitecaps while they
were encountered by the imaging scanner.

An example of a flight (7), over the Bay of Fundy on 25 March at about 1400 LST,
is given in Fig. 1. The aircraft heading was 46° and the wind direction was between
265 and 300°. Winds reported nearby, but somewhat downwind, at Greenwood,
were 10 m s"1 with gusts to 15 m s"1 while upwind at St John they were reported
as 8 m s"1 with gusts to 12 m s~'. The pilots who had flown many sorties over
the ocean and had experience in categorizing the sea state, estimated the overwater
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Fig. 1 Uncorrected image of flight 7 on 25 March 1984 over the Bay of Fundy, displaying two channels
(0.67 and 1.64 (j.m). The direction of the aircraft is along the principal axis. The sun illumination
is from behind the aircraft and the wind is blowing from the lower left.

winds at 15 m s ' with gusts to 18 m s '. The sun was located in the direction of
about 210° for that date and hour. The aircraft height was 430 m and its ground
speed, about 66 m s"1.

Two spectral bands have been chosen to demonstrate the characteristics of the
images. The first at 0.67 |xm is typical of all images seen through filters ranging
from the orange to the invisible far red at about 1 |im, although optimum contrast
occurs near 0.95 |im. The second image at 1.64 urn, is perhaps the first image of
a wind-driven sea to be captured at such a wavelength, to the authors' knowledge.
(The thin wavy vertical continuous lines are electronic noise.)

Several interesting features can be seen in the images. The first is that of local
bright regions associated with the whitecaps. Their size varies over almost an order
of magnitude. Their shapes as captured in the imagery are complex, varying from
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small individual, presumably underresolved, patches to an ensemble of closely
spaced and geometrically arranged patches. Examination of the background of the
0.67-um image reveals a degree of milkiness that corresponds to rather distinct
banding in the 1.64-|0,m image. Further, a comparison of the major whitecap event
in the centre of the image reveals that the event is distinctly less pronounced in the
1.64-u.m image.

The 1.64-fim wavelength image also reveals structure that was not evident in
the visible, at least without enhancement. Bands appear that are aligned primarily
across the mean wind direction, here orientated from the lower left to upper right
in the image. A closer inspection of individual bands reveals a tendency for narrow
streaks within these bands that are in turn aligned with the wind direction. This
apparent within-band arrangement is lost, however, if the image is examined at too
small a field of view. In addition, a re-examination of the whitecaps, based on a
larger sample than presented, reveals that the major axis of the whitecaps tends to
be aligned across the wind direction, with fine structure streak lines running with
the wind.

The streaks appear to have characteristics similar to those analyzed by Koepke
(1984). Typically, although the width of the cross wind bands is about 15 m, with
band-to-band separation in the wind direction of about 70 m, there is considerable
variation particularly towards narrower bands composed of individual well defined
streaks extending on the order of only 5 m, with band-to-band distances of the
order of 50 m in the wind direction. Several clearly aligned streaks are separated
by a distance about equal to the width of the band in which they are contained.
Judging from Koepke's photographs, the streaks appearing in our imagery may be
comparable to or thinner than the limit of scanner resolution of about 1 m.

3 Fractal geometry: Properties and techniques
In order to understand the basic concepts associated with fractal geometry, let us
consider the extension of the classical mathematical analysis of continuous func-
tions which, contrary to normal practice, is assumed to be non-differentiable almost
everywhere or equivalently differentiable almost nowhere. Our presentation follows
that of Rothrock and Thorndike (1980) with considerable distillation. We also be-
gin with a consideration of functions in 1 dimension and extend to 2 dimensions
as a natural extension to evaluate our 2-D images.

The definition of a continuous function, f(x), is one for which

l i m [ / ( * + A ) - / ( * ) ] = 0 (1)
A—>0

For the function to be differentiable the limit of the ratio of the differences of both
the function and its argument must exist, i.e.

oo (2)
A—>0 A
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If this limit process does not exist in the location of a given value of x, it is
possible that a more general limit condition does exist, the so-called Lipschitz
condition where

for 0 < a < 1. In essence the parameter a, called the Lipschitz exponent, is a
measure of how much one must warp by expansion the x dimension to achieve a
bounded ratio in the limit. It is intimately related to the "roughness" of the function,
which is related to both the severity and the density of points where a derivative
does not exist. For a = 0, the function/ is discontinuous (Eq. (1) is violated)
whereas for a = 1 , / is both continuous and differentiable.

The equivalent question of the existence of a Lipschitz condition when / is a
realization of a random non-differentiable process can be expressed in terms of the
variance, i.e. for

O2(8/) = E[f(x + A) -f(x)]2 -»A 2 a (4)

where E is the expectation operator and the symbol —v denotes how the right-hand
side varies as a limit (for example, as an average of many points or sampled sub-
functions) is approached. Often Eq. (4), for example, in the study of turbulence, is
referred to as the structure function of the random process. When such functions
exist, they are associated with a spectrum, 3>(K), which at large wavenumber K

asymptotically approaches a form K~P where

P = 2cc + 1 (5)

For example, in Kolmogorov's classical expressions for large Reynolds number
turbulence, a = i/^, and P = 5/3. Although (5) has not been proved rigorously by
mathematicians, no examples exist to contradict its validity. An alternative rela-
tionship in terms of the classical correlation function, R(A) (= E[f(x + A)f(x)]), is
given by

R(0) - R(A) -> A2CI (6)

as A —> 0.
Implicit in the Lipschitz condition for a random function is the concept of self-

similarity - that is, the statistics of the geometrical structure are only a function of
scale. If a subset of a sampled function, / , sampled at an interval, A, was examined
for the expected square differences between successive samples, the result would
be identical to that for another sampled function, at say 2A, to within a factor 22ot.
Alternatively, if the second sampled function is multiplied first by 2~2ot, and the
differences computed at 2A, then the second function would be indistinguishable
from the first - probabilistically. The self-similarity condition can be expressed as
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Pr[5/0A) > 8/*] = Pr[A,a8/(A) > 5/*] (7)

that is, the cumulative probability functions of the variously sampled and amplitude-
modified functions are identical. 8/* is simply the increment in 8/ for which the
cumulative probability function (hereafter cpf) is tested.

Another method developed by geometers for characterizing continuous but al-
most everywhere non-differentiable functions utilizes the concept of coverings.
Consider a set of points arranged on a line. Consider the number of intervals of
length, A, needed to be placed over (cover) the points. If the points were in some
ordered arrangement, such that the nearest neighbours were separated by more than
A and there was no possibility of clustering for a sufficiently small A, the number
of the intervals needed to cover the points would be the same for all interval lengths
less than A. However, if the points were not ordered and, in particular, if there was
no limit to the clustering, in the sense that no matter how small A became, there
was a measurable probability of finding multiple points in an interval, the number
of intervals required for the covering is then a function of A. If, and only if,

n ( A ) ^ A " D (8)

that is, the number of intervals in a covering is a power law in some exponent, D,
(not necessarily an integer) then the process (here a set of distributed points) is
defined as having a Hausdorff or fractal dimension, D. Generally a process defined
by its geometric realizations is defined to be fractal if its Hausdorff dimension
exceeds its Euclidean dimension. Here the Euclidean dimension of a set of (well
ordered) points or a single point is 0. Such a result can be recovered from (8) noting
the constancy of the counts needed for the covering, whatever the interval size up
to some maximum. It is the ability of the Hausdorff dimension to characterize the
otherwise seemingly indescribable disorder that makes the concepts of a fractal
process so valuable.

Let us now consider what is often called the "shoreline problem" where a closed
perimeter is unwrapped and represented as a one-dimensional function over an
interval [0,1]. When applied to the one-dimensional random function,/, the average
number of intervals needed to cover an increment of the function |8/(A)| (= \f(x +
A) —f(x)\) is its average distance, Aa, from Eq. (4), divided by the length of the
interval, A, i.e. A™"1. For an overall length of unity, there will be A"1 intervals
contributing to the covering so that the number of intervals required is

n(A) —• A"' Aa"' -> Aa"2 (9)

From Eq. (8), it is now possible to relate the fractal dimension to the Lipschitz
exponent, i.e.

D = 2-a (10)
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or to the spectral exponent (Eq. (5))

(11)

These interrelationships are significant in that they provide for a variety of tech-
niques to estimate the fractal dimension or infer the spectral structure. For example,
a covering method provides an estimate for the length, L, of a random function
sampled over a unit interval at increments, A, given by

L(A) = An(A) -> A1""0 (12)

as A —» 0. In terms of Eq. (6) this relationship can be rewritten

(13)

which allows for the direct calculation of the length of a "rough" function in terms
of the function's low-order spatial statistics.

Several other useful properties of random functions have also been examined by
Rothrock and Thorndike (1980). The expression for the probability of crossing a
given level /* of a function / in an interval A is

Pr(f*;A)^H(f*)Al-D (14)

where H(f) is the cpf of/. By extension, if an interval of size A is used to cover
the interval, the number of counts exceeding a threshold will vary according to (14)
as Al~D where 1 < D < 2.

Consider now a 2-dimensional covering of the same shoreline by boxes of side
length A. The number of boxes required is

n2(A
2) & A"2A""1 (15)

by the same arguments that lead to Eq. (9). Hence we are led to a general relation-
ship between fractal dimension and Lipshitz exponent

D = E+l-a (16)

where E is the imbedding dimension (2 for images). The Lipschitz exponent, a,
is in both cases (for the line and surface) a co-dimension, that is, the difference
between the imbedding Euclidean dimension (1 or 2) incremented by 1 and the
appropriate (Hausdorff) fractal dimension of the random set of points (0 < D < 1)
or line (1 < D < 2). It is invariant to our method of covering the function's
support, i.e. whether coverings in 1 or 2 dimensions are involved.

In the next section we apply some of these concepts and techniques to estimate
the fractal properties of the images described in Section 2.
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4 Analysis
A precondition for the existence of a fractal process is a wide separation between
the inner and outer scales. Breaking waves occur with spatial dimensions from
centimetres (microbreakers) to massive foam patches of the order of the energy-
containing wavelength and to the spatial separation between events extending up
to hundreds of metres. From casual observations from a ship or platform it can be
observed that the spatial variability near foam patches and in the vicinity of active
breakers ranges from millimetric sizes associated with bubbles to the outer size of
the event itself. Both of these estimates lead to a scale ratio of outer to inner scale
of the order of 103-104, which gives us confidence that a fractal process can exist
for breaking waves. However, the inner scale of the observations is set here by the
minimum resolvable size determined by the optics of the line scanner, which is
about 0.8 m2. Therefore the accessible range of scales is only lO'-lO2. However,
as shown below there exists evidence of the scale invariant process over this range
of scales.

In this section we will examine the data images in several ways to test for the
presence of a consistent fractal structure. The analysis is not exhaustive. Other
techniques exist, but they are considered here to be redundant. That is not to say
they might not prove to be useful or even superior in some sense if they were
further examined. However, a comparison of various techniques provided valuable
information about the basic structure of the process as represented by the images
- enough to conclude that the real problem lies elsewhere in describing a more
complex situation than outlined in Section 3. A reasonably consistent result emerges
from the existing ensemble of analyses.

a Cumulative Probability Function
The first technique applied to the data was an examination of each flight's cpf for
the potential scaling structure. The results of 6 representative flights are presented
in Fig. 2. It is noted that the cumulative probability is equivalent to the relative
areal coverage, since it is based on counting those pixels whose intensity exceeds
a given thresholded value, and comparing that number to the image's overall size
expressed in pixels. The characteristics of the 6 flights are provided in Table 1.

Although the range of intensities varied between flights depending on a number
of factors, including illumination, surface wind speed, optical acceptance angle
and possibly air-sea temperature differences and dissolved organics, there is a well
defined tendency for a power law structure in the cpf in all flights. The linear extent
of the relationship is limited to subranges for flights 11 and 12. The steep slope
of the cpf, varying approximately as /~3, is dramatic evidence of the difficulty of
providing a threshold scheme to identify whitecaps solely on the basis of reflectivity
because of the sensitivity of the process. To emphasize this point we note that a 20%
error in establishing a threshold intensity leads to over a 50% error in establishing
the areal extent of the process. Further if the threshold light level varies in some
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Fig. 2 Cumulative probability functions for all flights.

TABLE 1. Characteristics of 6 flights in March 1984

Estimated Sun
Location Surface Wind Aircraft Direction

Date Time (Bay of Fundy, Wind Speed Direction Heading re Aircraft
Flight (March 1984) (UTC) Halifax) (m s~') (deg.) (deg.) Heading (deg.)

3

5

6

7

11

12

24

25

25

25

28

29

1856
1906
1651
1700
1741
1747
1752
1759
1531
1540
1522
1535

B

H

B

B

H

B

14

12

17

17

9

19

290

280

275

275

310

55

-145

-90

55

-135

-30

60

184

181

3

165

183

174
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sense approximately linearly with wind speed one immediately obtains a cubic
dependence of areal extent on wind speed.

Flight 6 was made directly into the sun and resulted in both a more intense
image and one of distinctly different probabilistic structure compared with flight
7 taken minutes later while flying away from the sun. Further analysis revealed a
tendency for other flights to have the slope of flight 6 or 7 depending on whether
the aircraft was aligned with a significant projection of its flight vector into or with
the wind. The slopes of the cpf of the different flights with the wind (3, 7) are
somewhat less steep indicating more intense pixels, for a given total illumination
and reflection, on the average than flights into the wind (6, 11, 12). Shadowing
effects are discounted because of the aircraft height (about 400 m). If there was an
effect due to the tilt of the breaking waves on their front faces it would contribute
to the into-wind flights, which is contrary to the observations.

It is hypothesized that the varying sensitivities in Fig. 2 arise from the angular
properties of light scattered by bubbles (Davis, 1955) on or near the surface. Flights
3 and 7 have a significant component of the sun's direction in the wind direction
so that the sensor would be receiving primarily light scattered in a forward direc-
tion. Conversely flights 11 and 12 were collecting backscattered light. Flight 5 is
illuminated across-wind and would be receiving backscattered light.

Flight 6, although definitely receiving forward scattered light, has a cpf slope
that more closely resembles the slopes of backscattered cases. The reason for this
is believed to be the contribution from spectral reflections that first appear as a
broad hump near an areal coverage of about 0.08 and distort the slope overall. The
hump is unique to flight 6, the only flight into the sun.

The conclusion to be drawn from the cpfs of the various flights is that a scaling
structure does exist in intensity. Further the details of the scaling process depend on
whether forward or backward scattered light is observed. It is worth emphasizing
that the scaling structure by itself does not prove the existence of a fractal pro-
cess, which can only be determined by imposing some form of a cascaded spatial
transformation. In the subsequent analysis, flight 7 is examined almost exclusively
because of its overall larger intensity arising from more intense illumination than
experienced in flights 3, 11 and 12, and more breaking waves owing to the higher
wind speed as well as its forward scattered orientation.

Another interesting property of the cpf is the difference between the images
at 0.95 and 1.64 (im as presented in Fig. 3. Clearly the 1.64-|j.m image cpf is
steeper, and the expected range of intensities is reduced. This effect can be related
to the wavelength and depth dependence of the reflectivity of foam and whitecaps
(Whitlock et al., 1982). It is expected that the 1.64-|i.m response is sensitive to
bubble density, so that with increasing thickness of the bubble scattering layer
leading to multiple reflections, there is also noticeably more absorption than at
wavelengths less than about 1 u.m. This tendency to de-emphasize the thick region
scattering (whitecaps) compared with the foam is clearly visible in the imagery. The
further change in sensitivity at a coverage of 0.005 to a yet more uniform brightness
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Fig. 3 Comparison of the cumulative probability functions for two channels of the image from
flight 7.

indicates that almost no more scattered light is available for increasing thickness.
Alternatively at some stage, here assumed to relate to larger breaking waves and
the bubble layer thickness associated with a coverage of 0.005, absorption is almost
equal to scattering.

b Degraded Resolution
From Eq. (14) the probability of encountering a given light level in a given interval
is a function of A and the cumulative probability function. Accordingly an analysis
was devised to investigate whether the average values of a function in a sequence
of subintervals might also be distributed as a power law in A. Figure 4 presents an
analysis of flight 7 in which the data have been successively averaged over squares
of length (number of pixels) 1 to 32 i.e. 2' for i = 0 to 5.

The most striking result is that the power law structure is maintained for a region
involving the larger intensities. Clearly this range of intensity values is, except for
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Fig. 4 Cumulative probability function of the 0.95-jim channel of flight 7 averaged over successively
larger box sizes.

an amplitude effect, invariant to the scale of the averaging, and therefore potentially
contains a fractal process.

The extent of the power law structure decreases monotonically with increasing
average box size. In addition, the spacing between the decreasing cpfs increases
with increasing box size. If the process was fractal as defined above, and if the
averaging operator had the same properties as level crossing statistics, the separation
between successive box sizes would be constant in Fig. 4. That it is not constant
will be shown below, with hindsight, to be related to the failure of our hypothesis
that the process has only one fractal dimension.

Nevertheless the process of degrading the resolution is useful in estimating the
effect that the finite sample area (1 m2) associated with the optical sensor has had
on conditioning the statistics compared to an even finer resolution. An estimate of
the maximum possible fractal extent was made by estimating the upper limit of
the linear trend extending from the larger to lower intensities in Fig. 4 for flight 7
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AVERAGING MESH SIZE L

Fig. 5 Estimated maximum extent of fractal behaviour for different flights.

and similar graphs for several other flights. The results that are presented in Fig. 5
demonstrate that if 1/2 or '/t the available resolution were to have been available
there would at most be a factor of 2 increase in estimated coverage in the low
wind, large fetch case (flight 11) and considerably less in high wind, small fetch
cases (flights 7 and 12).

It is known that whitecap coverage increases with both wind speed and fetch. For
us to evaluate properly whether the estimates of the maximum extent of potential
fractal structure is in fact whitecap coverage requires primarily a larger variability
in fetch than the present dataset contains. Most data were taken within 75 km of
the shore. In addition, several other factors may have an effect. As Thorpe (1986)
has shown, the depth of the bubbling and the texture of the bubble clouds is gov-
erned by among other factors the presence of Langmuir cells and the atmospheric
stability. In addition, the production of foam is a function of both the salinity,
which affects interfacial forces on bubbles, and organic productivity, which affects
the coating around the bubbles. The flights have a limited range of conditions of
air-sea temperature contrast of no more than several degrees. The two locations
for flights, southeast of Halifax and in the Bay of Fundy near Greenwood, may
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Fig.

10 160

Length of Box
6 Number of boxes (2') needed to cover image (flight 7, channel 0.95 |xm) with a given box of

size L.

conceivably differ modestly in organic composition and salinity associated with
ocean currents.

c Coverings
The classical method of determining fractal properties, the covering technique, is
applied here by counting the number of boxes of a given size, L, required to cover
a set of subimages (points) produced by thresholding the image intensity at a value
associated with a given areal extent (see Fig. 2). The results of this analysis for the
0.95-jJ.m image of flight 7 are plotted in Fig. 6 for a range of coverage from 65 to
1.6%.

The main feature of Fig. 6 is its well denned linear relationship near the minimum
resolution for as much as a decade of scale variation. The linear extent increases for
coverages less than 10% and is apparently limited by the mean distance between
isolated thresholded "islands". For box sizes comparable with and larger than the
average distance to nearest neighbours, accepting the first occurrence of an above-
threshold pixel also accepts not only all pixels in that box from the same island, but
also any pixels from any overlapping island. This saturation effect is manifested
in the —2 slope in the larger coverages in Fig. 6 for sufficiently large box size.
Alternatively expressed, at a given threshold with a given spatial density of islands,
when the box size becomes too large the box-covering analysis acts as if the image
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10.0

Fig. 7 Fractal dimension of flight 7 image thresholded for different coverages.

was full, and the dimension of the support was indistinguishable from the imbedding
dimension.

The slope of the best fit line for the first decade distinctly decreases with de-
creasing coverage. Below 1.6% the curves are no longer linear probably owing
to an insufficient number of events. The fractal dimension of the support of the
image deduced from Fig. 6 varies from about 1.25 at 10% coverage to about 0.78
at 1.6%. Below 1.6% coverage the average slopes in Fig. 6 continue to decrease
but the corresponding fractal dimension of the support is not less than 0.7.

The change in fractal dimension of the support across unity as the coverage varies
from 10 to 1.6% is a most interesting result. It indicates that the distribution of
the elements constituting the thresholded image has varied from one of corrugated
lines to elaborated points. Presumably as the threshold was lowered the islands
would gradually fill the 2-D space and the fractal dimension would approach 2.
And as the threshold was continually raised the sparse remaining islands would
resemble isolated points in space, and hence their fractal dimension would approach
0. Clearly the fractal dimension will be monotonically and inversely correlated with
the nearest-neighbour distance.

The corresponding fractal dimension for the random surface is given by the
extension of Eq. (14), and is arrived at by adding 1 to the fractal dimension of the
thresholded sets. The fractal dimension of the surfaces varies from 2.25 to 1.7 as the
threshold is raised and the areal coverage decreases from 10 to 0.1%. The results
are presented in Fig. 7 for the 0.95-|J.m image of flight 7 for two decades of areal
extent. The estimate of 2.25 indicates a fractal Brownian topography (a = 0.75)
whose texture is rather smoother than say Mandlebrot's mountains, in fact more
like aged hills. Such a description ultimately fails, however. As the coverage is
lowered and the fractal dimension falls to near 2 the implication is that the islands
constituting the image become smoother, whereas in fact one might expect more
internal variability in the light field. However, the mean distance between the islands
also increases and the internal intensity variability is compromised by the greater
inter-island variability. Eventually the description reduces to one dominated by the
spacing between the islands. The fractal dimension approaches that of the support,
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that is, the locations of the contorted shapes, being less influenced by any internal
structure within the whitecaps.

It might be argued that it would be preferable to characterize the process by its
Lipschitz exponent because it is a fractal property not dependent on the imbedding
dimension. Its value is the same whether the entire 2-dimensional image or a 1-
dimensional cut is analyzed. In this analysis the value of the exponent ranges from
0.75 to 1.3. However, it is more conventional to report the fractal dimension to
conform with previously published estimates. In particular we note the general
similarity of our result for the weakly fractal image with the estimate by Lovejoy
(1982) of 2.35 for the fractal dimension of the surface of atmospheric clouds. We
also re-emphasize that the estimate of fractal dimension decreases with the intensity
of the scattered light from the whitecaps.

The decreasing fractal dimension with increasing intensity threshold violates the
basic premise of the original analysis - that the fractal dimension is invariant to the
range of intensity values. If Eq. (4) is applied conditionally in a range of intensity,
say dl, near the minimum of / for apparent fractal behaviour, (in our case for
intensities near 10% coverage) it should provide the same similarity exponent, a,
as if the function was sampled over the same range, dl, near the maximal extreme,
say near 0.1%, allowing that considerably longer original data series are required
to achieve adequate statistical reliability. The implication of Figs 5 and 7 is that
the process leading to the image distributes larger intensity events more erratically
than lower intensity events. But all the events of differing intensities are fractal, if
only weakly.

5 Discussion
A variation in fractal dimension within a sampled realization is consistent with
recent developments in our understanding of non-linear dynamical processes (sys-
tems) such as turbulence. In this extended formulation of the concept of fractals it
is postulated that there can exist within the overall process, here image, a subset of
fractal identities, of differing fractal dimension, Lipschitz exponent and probability
of occurrence.

Elsewhere (Kerman and Bernier, 1994) it is shown that the whitecap images
are multifractal, with some subsets having implied fractal dimensions for their
support as low as 0.3. Further the Lipschitz exponent of identifiable connected
subsets ("islands") forms a natural discriminator for the process to distinguish active
entrainment in whitecaps (a < ac) from the passive dissipation of foam patches
(a > ac) where ac is a critical exponent. In addition, Schertzer and Lovejoy (1990)
have likewise applied the technique to an analysis of the multifractal properties of
clouds.

That the fractal dimension estimated by box counting, referred to in the literature
as the covering dimension, varies with intensity threshold can be related to the im-
age's multifractal structure. Because the fractal dimension of a subset must be less
than or equal to the fractal dimension of the imbedding set, it is only possible to
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have a truly monofractal process if all the subsets are statistically identical. There-
fore the fractal dimension that is estimated here for a given thresholded situation
differs from that in a multifractal analysis. This arises because the probability of
occurrence of various subsets of different a changes with the thresholding opera-
tion so that the fractal dimensions as estimated in this paper are weighted towards
the fractal dimension of the more prevalent subsets.

What is clear on the basis of the analysis presented above, is that the images of
a wind-swept sea, including the presence of foam and breaking waves, do reveal
evidence of a fractal-like behaviour. Two methods, resolution reduction and box
counting have shown the log-log ranges indicative of a self-similar fractal structure
reasonably well. Indeed the nature of the fractal structure of the thresholded sets
changes to point-like at a coverage of about 5% consistent with the maximum
extent of fractal-like structure deduced from the degraded resolution analysis.
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