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Abstract. When small-amplitude surface gravity waves progress in deep water, all the
fluid particles are observed to orbit in circles within the depth of wave influence. Each
fluid particle therefore has angular momentum with respect to the center of its orbit, and
the angular momentum vectors are directed parallel to the crests and troughs or
perpendicular to the wave number. The angular momentum per unit volume is calculated
for each fluid particle and then, by vertical integration, the angular momentum per unit
horizontal area is computed. The total energy and the magnitude of the angular
momentum, both per unit area or both per unit volume, are found to be proportional, the
factor of proportionality being the wave frequency; specifically, angular momentum
magnitude equals energy divided by frequency. Wave action, which has become an
increasingly popular quantity for interpreting surface gravity wave problems and is defined
as wave energy divided by frequency, is the same thing as the magnitude of the angular
momentum. A general equation for the conservation of angular momentum along wave
rays is given, and it contains on the right-hand side two torque terms; one changes the
magnitude and the other changes the direction of the angular momentum. In applying this
equation to the wave-current refraction problem there is only one torque, which changes
the direction of the angular momentum, and it is explicitly determined as a function of the
horizontal shear in the current. The magnitude of the angular momentum, and therefore

also the wave action, will be conserved along the rays if there are no torques that could
alter it, as in pure wave-current refraction. Our conservation equation for angular
momentum is easily adapted to describing wave generation and dissipation by including
the appropriate torques on the right side, and this may prove to be helpful for calculations

of wave evolution.

Introduction

Among all the waves in physics the small-amplitude surface
gravity wave progressing in deep water is the only kind of wave
in which material particles perform a circular motion [Feyn-
man et al., 1963]. Consequently, surface gravity waves have
angular momentum, which is not a characteristic of wave mo-
tion that is regularly discussed. Since each fluid particle in a
progressive surface gravity wave moves in a circle, it is obvious
that each particle has angular momentum with respect to the
center of its orbit. Very few journal publications mention the
orbital angular momentum property of surface gravity waves,
and the interest in this topic is relatively recent [e.g., Brinch-
Nielsen and Jonsson, 1985]. In fact, angular momentum is gen-
erally not even mentioned in fluid dynamics texts; an exception
is the work by Kundu [1990].

Taking the particle orbits to be circles could be viewed as a
theoretical assumption, but it is ultimately based on direct
observations of small-amplitude surface waves in deep water;
for example, see the streak photographs of small neutrally
buoyant particles in the laboratory experiments discussed by
Sommerfeld [1964] and Wiegel [1964].
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In shallow water it is observed that the particle orbits are
more nearly elliptical, with the major axes of the ellipses being
parallel to the bottom or to the mean surface. For simplicity we
restrict the discussion below to waves in deep water, meaning
that the average total depth should exceed about one wave
length. Extensions of the present analysis to elliptical particle
orbits are possible and will be presented elsewhere.

If the wave amplitude is finite, the particle orbits are circles
that are not quite closed, and this leads to a net (Stokes) drift
of the particles in the direction of wave propagation or in other
words to a linear momentum of the waves. We will neglect this
finite amplitude effect, because we are primarily interested in
the angular and not the linear momentum. Also, the influence
of the Coriolis force, acting upon the orbiting particles on the
rotating Earth, will not be taken into account here. The neglect
of the Coriolis force is an assumption, normally not stated, that
occurs in most investigations of surface waves, and it is based
probably on the small scales of the motion.

The angular momentum vectors associated with surface
waves lie in horizontal planes, and they are parallel to the
crests and troughs; they always remain perpendicular to the
wave number vectors. As will be shown below, the magnitude
of the angular momentum per unit horizontal area, that is,
integrated over depth, is proportional to the total energy per
unit horizontal area, the factor of proportionality being the
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wave frequency. Also, it will be seen that the angular momen-
tum magnitude is the same thing as a quantity called wave
action, which Bretherton and Garrett [1969] first introduced into
the fluid dynamics literature by means of a Hamiltonian for-
mulation.

When surface gravity waves refract in a variable current, the
wave energy is not conserved, because energy can be ex-
changed between the wave and current motions. It turns out
that the orbital angular momentum of the waves is conserved
in magnitude but not in direction during wave-current refrac-
tion, because a torque must exist in order to change the direc-
tion of the angular momentum vectors as they propagate along
the wave rays. The rays, and the wave number along the rays,
are determined by the ray equations (see equation (6)).

A general (vector) equation for the conservation of angular
momentum is presented in (7) and is discussed in‘relation to
the existing (scalar) equation for conservation of wave action.
Conservation of angular momentum is a concise method of
deriving conservation of wave action, and it has the advantage
of being easily extended to include wave generation and dissi-
pation processes.

The torque term in the angular momentum equation is made
explicit for the wave-current refraction problem by relating it
to the horizontal current shear. Wave-current interaction is an
important area of research in which interest has been growing
over the past 20 years or so [Jonsson, 1990; Holthuijsen and
Tolman, 1991; Sheres and Kenyon, 1990; Sheres et al., 1985;
Kenyon, 1971]. Torque and angular momentum are well-
established physical concepts that are employed here in a new
context, resulting in an increased understanding of the refrac-
tion process when surface gravity waves encounter variable
currents.

Because of the orbital nature of the wave angular momen-
tum, it is convenient in what follows to base the calculations of
angular momentum and energy on the motion of individual
fluid particles. As documented in the appendices, the compu-
tation of the wave potential energy (Appendix B) from the
point of view of the fluid particle appears to be new, and the
calculation of the kinetic energy (Appendix A) is not as lengthy
as it is in the standard (Eulerian) perturbation method.

What follows next is not a new theory of surface gravity
waves per se. We believe that our main contribution is a novel
way to interpret wave action and wave-current refraction in
terms of angular momentum and torque, and we anticipate
that these old tools in a new setting will prove helpful for
understanding other wave propagation problems, particularly
wave generation and dissipation mechanisms. Our approach
supports and reinforces the concept of wave action, which has
turned out to be very beneficial for studying processes affecting
surface gravity waves [Holthuijsen and Tolman, 1991].

Angular Momentum

The magnitude A of the angular momentum vector, per unit
volume, of a surface particle in circular motion with constant
radius a is

A = p|r X v| = pwa® = const (1)
where |v| = wa, |r| = a, and the angular momentum is taken
with respect to the center of the orbit. There is only circular
motion, so the observer is stationary with respect to the rotat-
ing particle or moving with the current if there is one. Thus o
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is called the intrinsic frequency. According to (1), A is inde-
pendent of time.

Comparing (1) with the total energy per unit volume from
(B4) in the second appendix, we have

A=FElw (2)

which shows that for the surface particle the magnitude of the
angular momentum and the total energy, both per unit volume,
are proportional, the factor of proportionality being the wave
frequency.

Now for plane waves the directions of the angular momen-
tum vectors of all the fluid particles are parallel, so it is easy to
sum them up in the vertical direction, for example, in order to
compute the angular momentum per unit horizontal area, with
magnitude 4. Replacing a by r(z) in (1) and integrating over
depth gives

A = pga’/2w (3)

where (A4) has been used for r(z).
Relating (B5) and (3) produces the analogue to (2)
A=Elw (4)
that the angular momentum and energy, both per unit area, are
proportional, with the frequency again being the proportion-
ality factor. It follows also that

A(z) = E(2)/w Q)

at any particular mean depth of a fluid particle z. Following
accepted practice, from now on o will be written as w’.

Wave Action

Bretherton and Garrett [1969] used the Hamiltonian formu-
lation to develop expressions for the conservation of wave
action to be applied along the wave rays when slowly changing
wave trains of small amplitude propagate in various inhomo-
geneous moving media. They defined wave action as the total
wave energy per unit area divided by the intrinsic frequency,
the frequency measured by an observer moving with the local
mean velocity of the medium. Since 1969 the concept of wave
action conservation has become an increasingly popular
method for describing theoretically the complete evolution of
surface gravity waves from generation and propagation to dis-
sipation. (“Action” has an extensive history in physics and
astronomy to which the reader will be led by citations either in
the paper by Bretherton and Garrett or in a standard mechan-
ics text such as those by Joos [1986] or Born [1960].) An inter-
esting alternative derivation of the conservation of wave action
not based on the Hamiltonian approach is given by Christ-
offersen [1982].

For comparison purposes we begin by considering surface
gravity waves traveling in a homogeneous medium that is not
moving. Then the intrinsic frequency equals the wave fre-
quency, and wave action is identical to the magnitude of the
angular momentum per unit area, because they are both equal
to the same quantity: the total energy per unit area divided by
the frequency (and the angular momentum does not change
direction). Actually, Naeser [1979] was the first to point out a
connection between wave action and angular momentum, but
his approach is different and not based on orbiting fluid par-
ticles, as we have done.

In a moving medium which is homogeneous the equality
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between wave action and the magnitude of the angular mo-
mentum still holds, because both quantities are again equal to
the same thing, which in this case is the total energy per unit
area divided by the intrinsic frequency. This can be most easily
understood from the point of view of an observer traveling with
the moving medium. Conservation of wave action would equal
conservation of angular momentum in this situation also.

The analogy between angular momentum and wave action
does not hold in general, however, when the medium is inho-
mogeneous, whether it is moving or not. If the medium is
inhomogeneous, the analogy breaks down as a consequence of
the fact that angular momentum is a vector with changing
direction and wave action is a scalar. When waves refract in an
inhomogeneous medium, the wave number and angular mo-
mentum vectors will usually change direction in the horizontal
plane along the wave rays. Consequently, a scalar equation for
the conservation of wave action along the rays could not also
be a vector equation for the conservation of angular momen-
tum during the refraction process. In fact, angular momentum
cannot be conserved along the rays in an arbitrary refraction
case, because a source term (or torque) must exist in order to
change the direction of the angular momentum.

Angular Momentum Equation

The ray equations for a steady medium are [Kenyon, 1971;
Landau and Lifshitz, 1959]

dx/dt = dw/ok (6a)

dk/dt = —dw/ox (6b)

where w = w(k, x) is a known function of wave number k and
position x, and it is conserved. The rays and the wave number
along the rays are determined by the simultaneous integration
of (6) with respect to time. The ray is the path of the group
velocity of the waves described by x(¢); w is the wave frequency
measured by a stationary observer that is not moving with the
current.

The wave amplitude along the rays is determined by the
equation for orbital angular momentum A

dA/dt = 7 (7)

where 7 is the torque. If we know the torques along the rays
and the initial value of the angular momentum, then the an-
gular momentum can be found all along the rays from a time
integration of (7). Next by obtaining the intrinsic frequency
from the ray equations (via k as w'(k)) we can calculate the
wave energy and therefore the wave amplitude along the rays,
because angular momentum equals energy divided by intrinsic
frequency, and energy is proportional to the square of the wave
amplitude.

It is convenient for what follows to split the torque on the
right side of (7) into two perpendicular components: T = 7, +
T4, where 7, changes only the magnitude and 7, changes only
the direction of the angular momentum vector. When there is
no torque at all (= = 0), (7) shows that total angular momen-
tum is conserved along the rays. If there is no torque that will
alter the magnitude of the angular momentum (7,, = 0), then
the magnitude of the angular momentum is conserved along
the rays even though the direction of the angular momentum
might change.

The orbital angular momentum for surface gravity waves can
be represented by
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A=A(% x k) (8)

where Z is a unit vector always pointing up, perpendicular to
the horizontal (equilibrium) surface, and k is a unit vector in
the direction of the wave number. Then the time rate of change
of the angular momentum is (since 2 is constant in magnitude
and direction)

dA dA

. . dk
dt_ZIT(ZXk)JrAZX" 9

dt
The second term in (9) can be evaluated further by noting that
the unit vector k has constant length and can therefore only
change direction
dk de .
o dr (z X k) (10)
where 0 is the polar angle of the wave number vector. Thus the
rate of change of the angular momentum in (9) is divided into
two perpendicular parts; the first, in the direction of the angu-
lar momentum, is the rate of change of the magnitude of the
angular momentum, and the second, in the direction of the
wave number, describes the rate of change of the direction of
the angular momentum.
Now by taking the time derivative of tan 6 = k,/k, (ie.,

de 1 do k*de

— — 20 — =
drtan 0 =sec 0 G =T d k2 dt

for the left side and

dk, 1

LA dk,
dtk, kK2\™dt

wn
for the right side) we get
de 1 (k dk\ |
ae TR\ )

Finally, combining (10) and (11) with the last term in (9),
which we identify with 7, we get

(1)

1 . .
T(,:A{E[kx (aw/ax)]-i}k (12)
where the second ray equation in (6) has also been used.
Another way to write (12) is

T =AXQ (13)

where

Q= {%[ﬁx (aw/ax)]-i}i (14)
Equation (12) or (13) gives the functional form for the torque
that is necessary to change the direction of the angular mo-
mentum in terms of spatial derivatives of the given function .
It is evident that the torque in (12) can be computed along the
rays by means of the information obtained from the ray equa-
tions (6). In (9) the two terms are perpendicular to each other;
therefore, to change the magnitude of the angular momentum
(or the wave action) along the rays, we need to have a torque
in the direction of the angular momentum, or along the wave
crests, and to change the direction of the angular momentum
we need a torque perpendicular to the angular momentum, or
in the direction of the wave number.



1250
Y
T V(x)
A , .
Figure 1. Illustration of two configurations for the torque,

angular momentum, and wave number vectors during wave-
current refraction in a shear current when the waves travel with
the current (top) and when the waves travel against the current
(bottom). The shear V(x) is shown in the middle.

Wave-Current Refraction
In applying the above analysis to the problem of wave-
current refraction it is only necessary to specify the function

w(k, x)
o= +k-U

(15)

where o is the frequency relative to a fixed coordinate system
and o' is the frequency relative to a coordinate system moving
with the current velocity U = U(x), which is a given function of
position x. Usually, o’ is called the intrinsic frequency, and for
surface gravity waves in deep water it is specified by o' =
(gk)'?, where g is the acceleration of gravity. If the current
velocity is independent of time and the vertical coordinate,
then it is straightforward to integrate (6) to find the rays and
the wave number along the rays [Kenyon, 1971]; the integration
" can easily be done numerically for an arbitrary current distri-
bution, and it can be carried out analytically for certain simple
current shears. Now with (7) the wave amplitude can be cal-
culated along the rays as well. The current shear produces a
torque that changes the direction of the angular momentum
along the rays, and this effect can be evaluated by inserting (15)
into (12). Assuming that there are no other torques acting,
then the magnitude of the angular momentum, or the wave
action, will be conserved along the rays.
As a particular example, we compute the torque for a simple
current shear. Let the current velocity be U = 0, V(x)§ and
V(x) = sx, where s = const. Then (15) becomes
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o= +ksx
and we compute
dw/dx = ks
so that the torque in (12) becomes
T, = —As sin® 6k

where sin 6 = k,/k. The torque is larger for larger given values
of the angular momentum A, current shear s, and angle 6, all
of which are physically reasonable. In addition, it can be seen
(Figure 1) that the torque has the right sign to try to bend the
angular momentum vector, and therefore also the wave num-
ber vector, away from regions of increasing current speed when
the waves travel with the current (6 = 0, top of Figure 1) and
toward regions of increasing current speed when the waves
travel against the current (6 = 0, bottom of Figure 1), as we
already know should happen from the ray equations [Kenyon,
1971]. Therefore the angular momentum and ray equations are
consistent. There is no way the torque could bend the wave
number vector any slower or faster than dictated by the ray
equations. Equations (11) or (12) show that the time rate of
change of the angular momentum is directly proportional to
the time rate of change of the wave number vector when there
are no additional torques that can alter the magnitude of the
angular momentum.

Discussion

The wave orbital angular momentum is obtained above by
starting with the fluid particle, and this is different from the
existing procedures, although angular momentum is a property
of surface gravity waves that has been discussed very little in
the past. The angular momentum magnitude equals the energy
divided by the frequency, and therefore it also equals the wave
action. A similar equation to ours relating the magnitude of the
angular momentum to the total energy of surface gravity waves
holds also for the angular momentum and energy of a planet
that has a circular orbit around the Sun [Kenyon, 1993], and the
frequency is again a factor of proportionality (generalization to
an elliptical orbit is straightforward for both the gravity wave
and solar system problems).

When surface gravity waves refract in a spatially variable
current, angular momentum is not conserved, because a torque
must be present in order to change the direction of the angular
momentum vectors as they propagate along the rays. The
torque is directly related to the horizontal shear in the current,
as just demonstrated. If no other torques are present, which
could change the magnitude of the angular momentum, such
as those that might be related to the forces of the wind or
friction, then the magnitude of the angular momentum and the
wave action will remain constant along the rays. This is a
simple way to explain how it is that wave action can be con-
served along the rays.

The usefulness of the angular momentum formulation ex-
tends beyond the particular application of wave-current inter-
action that we exhibited here. For example, by constructing the
appropriate torque terms on the right-hand side our angular
momentum equation can also describe wave generation and
dissipation processes. Consider first wave generation, and let a
uniform external wind blow parallel to the direction of travel of
a plane wave. This situation provides the possibility of creating
a torque which can increase the magnitude of the orbital an-



KENYON AND SHERES: ANGULAR MOMENTUM AND ACTION IN WAVES AND CURRENTS

gular momentum of the surface fluid particles through a fric-
tional interaction between air and water without changing the
direction of their angular momentum vectors. The torque is
the local product of the wind force times the orbit radius of the
surface particles, and in general the torque is positive, meaning
that the waves will grow.

Similarly the process of wave dissipation can be handled by
the angular momentum equation. The force of internal friction
within the medium transmitting the waves, whatever its true
formulation is, has the right sense always to decrease the mag-
nitude of the angular momentum of the surface gravity waves,
and it too leaves the direction of the angular momentum un-
altered. The torque in this case, which is always negative, is the
cross product of the friction force and the radius vectors of the
fluid particles.

Appendix A: Kinetic Energy

Consider a surface fluid particle moving clockwise around its
circular orbit, which is observationally consistent with a small-
amplitude surface gravity wave progressing from left to right.
The mean position of the particle is z = 0, x = x,, and the
radius of the orbit is a (which is also the wave amplitude).
Then the horizontal (1) and vertical (w) components of the
particle velocity are

U = wa cos wt w = —wa sin ot (A1)

where w is the angular frequency. In (A1) it is assumed that
there is no net horizontal drift of the particle, that is, that the
orbits are closed circles.

The kinetic energy per unit volume K.E. of the surface
particle in (Al) is

KE. = ;—p(u2 +w?) = %pwza2 = const (A2)
where p is the constant fluid density. Equation (A2) shows that
the particle kinetic energy is constant, independent of time.
Also, the kinetic energy in (A2) is the same for all surface
particles, assuming the surface wave has constant amplitude
(likewise the kinetic energy at any particular mean depth z is
the same for all particles, see (A3)).

At any particular mean depth z below the surface the kinetic
energy per unit volume is

K.E.(z) = 3por’(z) (A3)

where r(z) is the radius of the fluid particle’s circular orbit at
mean depth z given by

r(z) = ae® (A4)

where k is the wave number and z < 0.
Using (A3) and (A4), the kinetic energy per unit horizontal
area K.E. can be computed by a vertical integration of (A3)

0
K.E. :f Lpwri(z) dz = ;p(w’/k)a’ = ;pga’  (AS)

where the dispersion relation w® = gk for linear deep water
surface waves has been used in (AS). Equation (AS) agrees
with the classical result for kinetic energy per unit area of a
small-amplitude surface gravity wave progressing in deep wa-
ter.

The kinetic energy per unit horizontal area has been com-
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puted for a small-amplitude surface gravity wave progressing in
deep water by starting with the circularly orbiting fluid parti-
cles. The result is the same as that obtained classically, but the
effort involved is much less. Usually a perturbation analysis
must be carried out first, which is the lengthy part.

Appendix B: Potential Energy

The potential energy of an orbiting fluid particle is the work
done against the restoring force encountered in bringing the
particle from its resting position, at the center of the orbit, out
to the circumference of the orbit. The restoring force is a
pressure gradient, which can be related to the variable height
of the wave surface and to the vertical acceleration of the fluid.
The inward pressure gradient balances the outward centrifugal
force on the particle [Kenyon, 1991].

A surface gravity wave progresses from left to right. Con-
sider a surface particle moving vertically upward where the
surface has maximum downward slope from left to right. The
horizontal pressure force per unit volume, positive to the right,
is

—8p/dx = —pg8L/dx = pgka (B1)

where the surface elevation £ has been taken to be a sine wave,
{ = a sin (kx — ot), and x is positive to the right.

When the surface particle is at this position of its orbit, the
potential energy per unit volume P.E. is the work done against
the pressure force (B1) to bring the particle out from the
orbit’s center (x = 0) to the orbit’s circumference (x = a),
that is,

a

P.E.:J — (8p/éx) dx=png' x dx = pgka®

0 0

= const. (B2)

Now it can be shown that (B2) is general, that is, that it holds
for all positions of the particle around its orbit and not just for
the particular position used for illustration in deriving it. First,
the outward centrifugal force for any position of the particle on
the orbit’s circumference is pw?a. Second, there is a balance of
two forces in effect at all times on each fluid particle between
the outward centrifugal force and an equal but opposite (in-
ward) pressure force [Kenyon, 1991], which is called the cy-
clostrophic balance. Therefore the amount of work done to
bring the particle out from the orbit’s center to the circumfer-
ence will not depend on the position along the circumference,
because the opposing pressure force is the same along all radii.

Comparing (B2) with (A2) and using the dispersion relation
* = gk, it can be seen that the kinetic and potential energies
per unit volume of the surface particle are equal. Like the
kinetic energy, the potential energy of a fluid particle in (B2) is
a constant independent of time, and all particles at the same
mean depth have the same potential energy, which can be seen
by substituting 7(z) for a in (B2).

By replacing a with r(z) and then integrating (B2) over
depth the potential energy per unit horizontal area P.E.is

pga’ (B3)

where (A4) is also used. Equation (B3) agrees with the classi-
cal result for the potential energy per unit horizontal area,
which is obtained by an entirely different method.

PE. =

INE.
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The total energy per unit volume E of a surface particle is
the sum of the kinetic and potential energies per unit volume
in (A2) and (B2), which are identical

E=KE.+PE.=2KE.=pwa®=const (B4)

Likewise the total energy per unit horizontal area E is obtained
by adding (AS5) and (B3), which are identical
E =3 pga’ (BS)
Equation (B5) agrees with the classical result for the total wave
energy per unit area of surface gravity waves in deep water.
Our method of computing the potential and kinetic energies
based on the particle orbits appears to be new, and it puts the
potential and kinetic energies on an equal footing, so to speak,
which differs from the usual way of doing things. For example,
a common way of computing the potential energy of a surface
gravity wave is to calculate the work done against gravity to
change a flat surface into a sinusoidal one and then to take a
horizontal average over a wave length. This method is inde-
pendent of the motion beneath the surface; in fact, it can apply
to finite amplitude waves of arbitrary shape in water of arbi-
trary depth. In contrast to this, the kinetic energy is normally
computed by applying a perturbation analysis, thus limiting the
calculation to infinitesimal waves, to the motion beneath the
surface and then taking a vertical integration over the entire
water column. Therefore the generally accepted procedures
for calculating the kinetic and potential energies are quite
different, involving different assumptions and different
amounts of analytic labor.
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