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Short Contribution

Cyclostrophic Balance in Surface Gravity Waves*

Kern E. Kenyont

Abstract: The cyclostrophic balance (pressure force s. force centrifugal force) is shown
to be satisfied for all fluid particles in surface gravity waves with sinusoidal form and
circular particle orbits. Consequences of the cyclostrophic balance are 1) that the normal
dispersion relation for deep water hold and 2) that the orbital radius decrease with
increasing depth at the usual exponential rate, from which it follows that the wave
pressure and particle speed also decrease with depth exponentially. In addition, the
cyclostrophic and hydrostatic balances together predict wave breaking at the crests
for amplitudes exceeding one divided by the wave number. In contrast to the
traditional perturbation method, based on irrotational flow, the cyclostrophic method
does not demand that the amplitude be much less than a wave length and does not

require an infinite wave train.

1. Introduction

A balance between pressure and centrifugal
forces, or the cyclostrophic balance (e.g. Neumann
and Pierson, 1966, p. 168), is applied here to
individual fluid particles in order to provide a
simple theoretical understanding of the orbital
motion in deep water surface gravity waves. The
force balance method has several advantages over
the traditional perturbation method (e.g. Lamb,
1932, p. 367), which is based on the assumption
of irrotational flow, as will be discussed later.

Experimental characteristics of the particle
motion are as follows. When surface gravity
waves pass by a stationary observer from left
to right, the sense of the orbital motion is
clockwise and the phase is defined by the vertical
velocity of the particles being upward where the
surface slopes downward (maximum vertical veloc-
ity corresponding to maximum slope). The
shape of the orbits is circular (neglecting any
drift) for deep water waves and the orbital radius,
which equals the wave amplitude at the surface,
decreases with increasing depth, becoming vanish-
ingly small at depths comparable to a wave length.

The circular particle motion is a remarkable
feature which distinguishes these fluid waves from
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all the other wellknown waves in physics (e.g.
Feynman et af., 1963, p. 51-4). Visualization
of the particle movement is aided approximately
by the use of small neutrally buoyant particles
(e.g. see the streak photographs in Sommerfeld,
1964, p. 181, and Wiegel, 1964, pp. 19, 52).

2. Surface horizontal balance

Consider sinusoidal surface gravity waves prop-
agating in deep water in the positive x-direction
(5) and a circularly orbiting surface particle moving
vertically upward where the downward surface
slope is a maximum. The horizontal centrifugal
force (€.f )noriz. on this fluid particle has magni-
tude

(C-f-)horiz.zpwga B ( 1 )

where p is the constant fluid density, @ the wave
frequency, and @ is the orbital radius (as well as
the wave amplitude)}.

To compute the horizontal pressure force on
this same fluid particle, which is at height £=0,
look in the negative z-direction a distance 4dx
where the surface elevation is dz>0 (4x and dz
are both infinitesimal displacements}. The change
in pressure dp over the horizontal distance 4z is
due to the hydrostatic pressure over the vertical
distance 4z

dp=pgdz. (2)
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The atmospheric pressure is assumed constant
and therefore does not appear in Eq. (2). Since
dp>0 the pressure force

Ap _ Az 8¢ _
= _pgj;g—pga_pgka (3)

acts in the positive xz-direction, where k is the
wave number and the maximum slope of the
sine wave (5) was used in Eq. (3).

If the two force components (1) and (3) are
to be oppositely directed, then the centrifugal
force (1) must act in the negative z-direction,
implying that the sense of the circular motion
is clockwise (in agreement with ohservations).
Then if the magnitudes of the two oppositely
directed force components (1) and (3) are to be
equal, the requirement is

ot=gk, (4)

which is the well-known dispersion relation con-
necting frequency and wave number for deep
water waves.

The two horizontal forces can be balanced for
all positions of the surface particle around its
circular orbit, assuming (4) holds, because in
general the right sides of (1) and (3) are multi-
plied by cos (kz—wi) for the surface elevation ¢

C=a sin{(kx—ot). (5)

The horizontal balance of forces implied by Eq.
(4) is not restricted to wave amplitudes that are
small compared to a wave length; the amplitude
cancels when Egs. (1) and (3) are equated. Also
despite Eq. (5), the horizontal balance of forces
does not require the wave train to be infinite in
the a-direction, because the horizontal pressure
force on a surface particle only depends on the
local surface slope at the position of that particle,
as Eqs. (2) and (3) show. In the traditional
method of deriving Eq. (4), however, the small
amplitude assumption ak<l must be made, be-
cause of the perturbation analysis involved, and
the wave train is assumed infinite to solve Lap-
lace’s equation, which is a consequence of the
irrotational assumption (and incompressibility).

3. Surface vertical balance

Consider now the clockwise orbiting fluid par-
ticle at the crest of Eq. (5), where it moves
horizontally in the positive a-direction. The

vertical centrifugal force (c.f.)vert. on the surface
particle is directed upward and has the same
magnitude as Eq. (1)

(C-f.)vert.:pwga . ( 6 )

An equal and opposite force has to be found
to balance Eq. (6), and a downward pressure
force, or the corresponding vertical pressure
gradient, is the only possibility. Therefore, the
vertical pressure gradient at the surface must be

0p/iz=pw’a, 7

where the pressure decreases with increasing
vertical distance downward at the crest (the
positive z-direction is up). The vertical accele-
ration of the surface at the crest is downward,
because 6°(/0¢°= —w2a from Eq. (5). By New-
ton’s second law a downward force must exist
to cause the downward acceleration of a particle
at the crest, and Eq. (7) is the required force.

Equation (7), which exists only in the presence
of waves, is to be distinguished from the normally
much larger hydrostatic pressure gradient, 6p/0z
= —pg, which exists with or without waves.
When the two vertical pressure gradients have
equal magnitudes at the surface, ®?a=g, or ka=1
from Eq. (4), and this places an upper limit on
the size of the wave amplitude for a given wave
number, because for amplitudes a larger than 1/k
the tips of the crests would become detached
from the wave. The amplitude restriction ka=1
is very mild.

TFor a general position of the particle in its
circular orbit the vertical force balance at the
surface is still accomplished because the right
sides of Egs. (6) and (7) are each multiplied by
sin (kx—w1).

4. Force balances at depth

Suppose that 7{z) is the radius of the circular
orbits at mean depth z, and at the still water
level (z=0), r(0)=a. The centrifugal force com-
ponents (1) and (6) become then

(C-f-)vert. = (C-f-)horiz. = PCU?T(Z) . ( 8 )

By Newton’s second law the vertical pressure
force required to balance (c.f.)vert. in Eq. (8)
below the crest is

0p/0z=pwr(z) (9
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as adapted from Eq. (7), and for an arbitrary
position (9) becomes

dp/0z=pw*r(z) sinlhz—ws). (10)

Where the orbiting particle moves vertically
upward 8p/0z=0, and so the wave pressure is
constant with depth (or zero neglecting atmos-
pheric pressure). At a distance 4z toward the
negative z-direction (10) gives

0p/ 9z =pw*r()kdx D

and the total pressure at depth z from Egs. (11)
and (2) is

p=pgdz— j “owtr(Dhedade=dp. (12)
0

Therefore p=4p, where dp is the total change
in pressure over dz at z, since the atmospheric
pressure and the hydrostatic pressure hetween 0
and z cancel out of dp.

The pressure force in the positive a-direction
from Eq. (12) is

— j—p-—> —_ ap/axm ow?la -}—kar(z)dz] (13
X 0

using Eqs. (3) and (4). Equating (13) and the
oppositely directed (¢.f")neriz. in Eq. (8) for the
cyclostrophic balance gives

z
a—l—kj r(z)dz=7r(2), (14)
0
the solution to which, incorporating the condi-
tion r{0)=a, is

r(z)=ae*?, (15)

i.e. the traditional exponential depth decay of the
orbital radius.

As before it is easy to show that the cyclo-
strophic balance holds for any position of the
fluid particle around its orbit at mean depth z.
It is obvious from the development leading to
Eq. (15) that the exponential decay of the orbital
radius does not depend on the sinusoidal surface

elevation being horizontally infinite,

5. Discussion

The cyclostrophic balance on individual fluid
particles is fulfilled at all depths for sinusoidal
surface gravity waves with circular particle orbits,
Requirements of the cyclostrophic balance are
that the normal dispersion relation for deep water
waves hold and that the orbital radius decrease
with increasing depth at the usual exponential
rate. The cyclostropic and hydrostatic balances
together predict wave breaking at the crests when
the amplitude times the wave number exceeds
one. No other restrictions are placed on the
amplitude by the cyclostrophic balance, nor is it
necessary that the wave train be infinite horizon-
tally. However, the traditional method, which
begins with a perturbed irrotational flow, demands
infinitesimal amplitudes and assumes an infinite
wave train.

The wave pressure, from Eq. (10), and the
orbital particle speed, which equals wr, are both
proportional to the orbit radius and therefore
decrease exponentially with depth.
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