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Surface gravity waves are commonly observed to slow down and to stop at a beach
without any noticeable reflection taking place. We assume that as a consequence the
waves are continuously giving up their linear and angular momenta, which they carry
with them, along with energy, as they propagate into gradually decreasing mean depths
of water. It takes a force to cause a time rate of decrease in the linear momentum and
a torque to produce a time rate of decrease in the angular momentum. Both a force
and a torque operate on the shoaling waves, due to the presence of the sloping bot-
tom, to cause the diminution of their linear and angular momenta. By Newton’s third
law, action equals reaction, an equal but opposite force and torque are exerted on the
bottom. No other mechanisms for transferring linear and angular momenta are in-
cluded in the model. Since the force on the waves acts over a horizontal distance
during shoaling, work is done on the waves and energy flux is not conserved. Bottom
friction, wave interaction with a mean flow, scattering from small-scale bottom ir-
regularities and set-up are neglected. Mass flux is conserved, which leads to a shore-
ward monotonic decrease in amplitude consistent with available swell data. The for-
mula for the time-independent force on the bottom agrees qualitatively with observa-
tions in seven different ways: four for swell attenuation and three for sediment trans-
port on beaches. Ardhuin (2006) argues against a mean force on the bottom that is
not hydrostatic, mainly by using conservation of energy flux. He also applies the ac-
tion balance equation to shoaling waves. Action is a difficult concept to grasp for
motion in a continuum; it cannot be easily visualized, and it is not really necessary
for solving the shoaling wave problem. We prefer angular momentum because it is
clearly related to the observed orbital motion of the fluid particles in progressive
surface waves. The physical significance of wave action for surface waves has been
described recently by showing that in deep water action is equivalent to the magni-
tude of the wave’s orbital angular momentum (Kenyon and Sheres, 1996). Finally,
Ardhuin requires that there be a significant exchange of linear momentum between
shoaling waves and an unspecified mean flow, although the magnitude and direction
of the exchange are not predicted. No mention is made of what happens to the orbital
angular momentum during shoaling. Mass flux conservation is not stated.

coast of the US and has made several hindcasts from a
numerical model for comparison with the observations.
Not included in his summary of mechanisms, however, is
one that was more recently isolated for study by Kenyon
(2004a). It is rather remarkable how close this one mecha-
nism comes to explaining several observed features of
shoaling waves as well as transport of beach material.
This unexpected development has provided an opportu-
nity to check the validity of some paradigms, which may
lead to progress in the future.

1.  Introduction
Many different physical processes can affect shoaling

waves, and Ardhuin et al. (2003) has given a good sum-
mary of most of them. In addition, he has presented analy-
ses of a large wave dataset obtained at buoys off the east
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At the start of his commentary (Ardhuin, 2006) on
my shoaling wave paper (Kenyon, 2004a) Ardhuin asks
the interesting question: how can there be a steady state
force on a sloping bottom when waves shoal other than
that due to the hydrostatic pressure related to the still water
level? He says this question has not been asked before
within the field of near-shore dynamics, and he is prob-
ably right. Of course, the hydrostatic pressure force acts
almost perpendicularly to the gently sloping bottom. Who
would suspect that there is a steady force on the bottom
that acts very nearly parallel to the bottom but is not re-
lated in any way to the force of friction? Ardhuin’s intui-
tion tells him that there cannot be such a mean force on
the bottom.

Let us first examine a different context: surface grav-
ity waves reflecting off a vertical wall. Here there is an
embarrassingly rich history of calculations of the wave
force on a wall, and there is also definite laboratory evi-
dence for a wave force on a wall (Kenyon, 2004b). More
than 25 different theoretical formulas exist for the wave
force on a vertical wall, and all of them have an average
value that is not zero. Note that no mean flow is involved
at any stage; the momentum is exchanged directly be-
tween the waves and the wall. The wave momentum un-
dergoes a time rate of change at the wall when the sign of
the linear momentum is reversed by reflection, and by
Newton’s second law the wall has caused a force on the
wave to reverse its momentum. Then, by Newton’s third
law, the wave exerts an equal but opposite force on the
wall. The wave force is directed normal to the wall. This
process is analogous to the force delivered to rigid sur-
faces by the reflection of sound and light waves.

For a sloping bottom, where the average depth gradu-
ally decreases in the direction of propagation of the inci-
dent waves, experience has shown that low frequency
waves are reflected but high frequency waves are trans-
mitted (e.g. Elgar et al., 1994). The cross-over frequency
between mostly reflection and mostly transmission ap-
parently depends on the bottom slope, and for a slope of
1/30 it is about 40 cycles per kilosecond according to
Munk et al. (1963). (There appears to be no theory avail-
able that predicts this result, however.) By analogy with
the vertical wall, we expect a mean force on the sloping
bottom when low frequency waves are reflected seaward.
Again, no intermediate momentum exchange between
waves and a mean flow is anticipated, just the straight-
forward transfer of momentum between waves and the
bottom.

High frequency shoaling waves are transmitted
shoreward and they do not return to the sea. These waves
are totally absorbed in the near-shore zone. Since propa-
gating surface gravity waves carry linear and orbital an-
gular momentum with them (Kenyon and Sheres, 1996),
they are constantly importing linear and angular momen-

tum into the near-shore region. By the time the waves
have reached the beach their linear and angular momenta
have vanished. There has been a time rate of decrease of
these quantities. It takes a force to cause a time rate of
decrease in the wave’s linear momentum and a torque to
produce a time rate of decrease in the angular momen-
tum. The sloping bottom has brought about the force and
the torque, and by Newton’s third law, and an extension
of that law to rotary motion, the waves exert both a force
and a torque on the bottom. This is the physical origin of
the steady state force on the sloping bottom when waves
shoal. For a gently sloping beach the wave force is di-
rected nearly tangentially to the bottom and is oriented
shoreward.

Now, it is at this point in the argument that Ardhuin
says that there must be an exchange of linear momentum
between the waves and a mean flow for shoaling waves.
In fact, he postulates that the exchange is so complete
that it is no longer possible for a significant steady-state,
non-hydrostatic force to occur on the sloping bottom. All
the wave’s linear momentum apparently goes into the
mean flow. But where does the orbital angular momen-
tum go, since the mean flow can never have any? Even if
the mean flow contained a vertical shear, that would only
cause vorticity, not orbital angular momentum. Here is
where our two paths part company: at the postulated pre-
requisite momentum transfer between the waves and a
mean flow.

2.  Theory
Surface gravity waves transport linear and orbital

angular momentum, as well as energy, when they propa-
gate. Angular momentum is easily pictured because it is
related to the orbital motion of the fluid particles, whether
those orbits are circular in deep water or elliptical in fi-
nite constant mean depths. This can be seen by watching
small, neutrally buoyant floats as surface waves pass by
a fixed position. Action, favored by Ardhuin (2006), has
been shown to be equivalent to the magnitude of the an-
gular momentum in deep water (Kenyon and Sheres,
1996). However, in general action is a somewhat opaque
concept when applied to waves in a fluid.

The calculation of the wave force on the sloping bot-
tom began for me as a struggle to understand how energy
flux could be conserved during shoaling, as is maintained
traditionally, and at the same time how angular momen-
tum flux could be conserved too, because at first sight
there is no self-evident reason why angular momentum
flux should not be conserved along with energy flux. It
turns out that these two conservation principles are in-
compatible, because they predict different wave ampli-
tude variations in the near-shore area, and therefore both
had to be abandoned together.

Mass flux is conserved in the direction normal to the
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beach. There can be no question about that. Waves trans-
port mass shoreward due to the Stokes drift. What hap-
pens to this mass as the mean depth decreases and the
shoreline is approached? Nearshore oceanographers do
not seem to worry about this, but we have addressed the
issue head-on.

We have adopted the ray equations along with the
fundamental assumption upon which they are based: that
the environment (the mean depth in particular) changes
slowly within one wavelength. Then we must exclude
from consideration interactions between the waves and
small-scale irregularities in the bottom topography (Bragg
scattering).

Since the ray equations do not contain the wave am-
plitude (Kenyon, 1971), additional information must be
supplied in order to be able to compute the wave ampli-
tude along a ray. For example, if there are no forces that
operate on the waves as they propagate, the amplitude
along the rays can be obtained from the linear momen-
tum principle (Kenyon and Sheres, 2006). But there is a
force on the waves, due to the presence of the sloping
bottom, which slows them down and decreases their lin-
ear momentum. The force operates over a horizontal dis-
tance, causing work to be done on the waves so the en-
ergy flux is not conserved, and therefore the wave ampli-
tude cannot be predicted from energy flux conservation
either. Along with linear momentum and energy, shoaling
waves also lose their orbital angular momentum when the
waves slow down and stop at the beach. Consequently,
angular momentum is not conserved and the angular mo-
mentum balance cannot be used to calculate the ampli-
tude of shoaling waves. However, the constancy of the
mass flux normal to the beach will determine the wave
amplitude, and it forecasts that the amplitude should de-
crease monotonically shoreward, as swell attenuation data
have shown.

A mean horizontal flow near the shore is not a nec-
essary ingredient in our model and bottom friction is ne-
glected. Mean sea level is taken to be flat with no set-up
or set-down because sea level variations cannot explain
angular momentum changes. Set-up or set-down can be
added to the model in the future if needed. Wave reflec-
tion from the sloping bottom is disregarded. We focus on
the wave induced force on the bottom to see how much
can be explained by that one mechanism alone.

By contrast, Ardhuin maintains the position that en-
ergy flux is conserved for shoaling waves. He also uses
the action balance equation. Wave action has a history in
physics, going back to the classical simple harmonic os-
cillator, but it is a rather vague concept within the con-
text of surface gravity waves traveling in a continuous
medium.

Absorbing “wave action” into working knowledge
is an arduous task for the oceanographer: he must thread

his way through the details of classical Hamiltonian and
Lagrangian mechanics, and then understand how to carry
over these principles to a fluid continuum. Particularly
hard to swallow, since they cannot be checked by inde-
pendent calculations, are the required linearizations of
nonlinear equations by perturbation series and the neces-
sary averaging procedures, as well as the assumptions
underlying the linearization and averaging techniques.
Wave action was developed from the Hamilton-Jacobi
method (Corben and Stehle, 1977) for periodic motions
of systems that are slightly disturbed by some external
force. However, it turns out that this complicated con-
cept of wave action is not needed to solve the central prob-
lem of shoaling surface gravity waves in the way we have
approached the problem.

Lagrangian and Hamiltonian mechanics provide a
general framework for organizing certain kinds of infor-
mation, but for a specific problem the physics must be
provided from outside that framework. Consider the sur-
face gravity wave. Let the researcher choose whatever
generalized coordinates he pleases, set up the Lagrangian
and Hamiltonian functions, and manipulate and transform
these functions in any possible way. He will never end up
with one feature that observations give him immediately
(or linear wave theory provides, but with a bit more work):
the fluid particles have an orbital motion and therefore
these waves possess angular momentum with respect to
the centers of the orbits.

3.  Observations
More than 30 years ago Hasselmann et al. (1973)

measured swell attenuation in the North Sea. They found
significant swell attenuation but could not clearly iden-
tify the physical mechanism responsible. The normal laws
of frictional dissipation did not explain the decay rates
observed. This is solid evidence that conservation of en-
ergy flux does not work for shoaling swell. Energy flux
conservation predicts an increase in wave amplitude as
the distance to the beach decreases, everywhere shore-
ward of the weak maximum in the group velocity, which
is just the opposite of what the data showed.

Although the observed decay rates of swell in the
North Sea contradict the favored conservation of energy
flux law, they are consistent with the algebraic form of
my equation (14) for the wave force on the sloping bot-
tom, in four different ways. The data showed the decay
rate: 1) increased with increases in initial swell energy;
2) increased with decreases in mean depth; and 3) was
independent of the swell frequency. All three of these
observed features can be understood with the aid of the
formula for the wave force on the sloping bottom. The
first two were explained in my paper; the third was over-
looked at that time. However, it can be seen that equation
(14) is independent of the wave frequency in the shallow
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water limit, whereas the usual bottom friction force for
shoaling waves (drag coefficient multiplied by the square
of the velocity) does depend on frequency (higher fre-
quency waves should be attenuated at a greater rate than
lower frequency ones).

Furthermore, conservation of mass flux predicts a
monotonic shoreward decrease in amplitude, which is
consistent with swell attenuation measurements. This
constitutes the fourth way in which swell attenuation data
agree with my model.

My paper describes three features of sediment trans-
port on beaches that are in qualitative agreement with the
structure of equation (14) for the wave force on the slop-
ing bottom. They are: 1) the concave upward profile, typi-
cal of many beaches; 2) the positive correlation between
sediment size and average beach slope (larger grain sizes
occur on larger slopes), which has strong observational
support; and 3) the seasonal migration of sand in and out
of beaches in southern California (in during summer and
out in winter).

Altogether, seven observational features of swell at-
tenuation during shoaling and sediment transport on
beaches are qualitatively consistent with the algebraic
form of the wave force formula on the sloping bottom,
equation (14), and with mass flux conservation, equation
(6).

In his commentary Ardhuin does not single out any
particular comparisons between theory and observations,
but his 2003 paper presents several comparisons of wave
model hindcasts with swell data. Let us see how far our
equation (3) can explain the swell attenuation in the data
presented by Ardhuin et al. (2003) in his figure 7. Be-
tween the deep water station X6 and station X1, closest
to shore, equation (3) predicts an amplitude ratio (X1 to
X6) of 0.81 for the low amplitude 12.5 second swell out
of the east on November 18, 19, 1999. During November
21–25, 1999 equation (3) predicts an amplitude ratio of
0.85 for the 11.1 sec swell with a moderately larger am-
plitude. In both cases equation (3) can account for about
80% of the observed decrease in the significant height of
the swell at X1 compared to that at X6.

Ardhuin’s numerical model obtains a much better
agreement between theory and experiment. This really
good agreement can be questioned, however. Nothing is
mentioned about the tidal currents on the continental shelf,
which could refract the shoaling waves and cause varia-
tions in the swell amplitude that are not included in the
numerical model. Hasselmann et al. (1973) encountered
tidal currents of up to 40 cm/sec in the North Sea, for
example, and there is no reason to suspect that signifi-
cant tidal currents do not occur off North Carolina and
Virginia. Moreover, in order to reach the measurement
buoys on the continental shelf, the swell must have crossed
the Gulf Stream within which wave-current refraction is

anticipated to be larger than almost anywhere else in the
oceans. The position, speed and curvature of the stream-
lines of the Gulf Stream, or eddies shed by the Gulf
Stream, do not appear to have been monitored in the
DUCK Experiment upon which Ardhuin’s paper is based.

4.  Discussion
Ardhuin’s review of existing analyses does not lead

him to a single formula for a steady-state, non-hydrostatic
force on the bottom due to shoaling waves that could be
compared directly with my equation (14). This is unfor-
tunate because if it had, then we could eventually let the
observations decide between the two independent equa-
tions, when they become available (if such observations
do not already exist). If both theories explain the data
equally well, the simpler of the two methods is the one
usually preferred in the physical sciences.

On the other hand, in my opinion, Ardhuin does not
demonstrate that such a mean force cannot exist. Evidently
he believes that for shoaling waves there must be an ex-
change of linear momentum between the waves and some
sort of a mean flow. He gives no guidelines about the
exact amount of momentum exchange to be expected,
however, nor any discussion of the direction that this
momentum flow should take (i.e. from waves to mean
flow or the reverse). But then he allows that a steady force
on the bottom can occur for reflecting waves without any
intermediate transfer of momentum between waves and a
mean flow. This seems odd because light and sound waves
deliver constant forces to rigid surfaces without involve-
ment of any mean flows, whether reflection or absorp-
tion takes place.

In near-shore regions environmental mean flows (e.g.
due to tides) automatically move parallel to the beach, or
approximately so, because of the impermeability of the
bottom and beach material (no flow into the boundary).
Due to wave-bottom refraction, shoaling waves normally
propagate normal to the beach, or nearly so. How can a
meaningful momentum exchange take place between the
waves and the mean flow when their initial momenta are
mutually perpendicular?

Just before his equation (5), Ardhuin introduces the
concept of “pseudo-momentum” of waves. What I can-
not ascertain is the extent to which this concept affects
the conclusions that follow later. If pseudo-momentum is
crucial to the main arguments, then some readers will be
confused because it is not a well established idea as ap-
plied to surface gravity waves. Furthermore, “radiation
stress” is listed as one of his Key Words, but I do not see
how that idea fits in with his main line of thought.

My equation (14) for the steady, non-hydrostatic
force of shoaling waves on the bottom is based on sev-
eral assumptions. One of these assumptions is that there
is negligible mean flow, which was not explicitly indi-
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cated in the paper. This was done by analogy with the
case of reflected waves, where it has never occurred to
authors to include an interaction in which waves and a
mean flow exchange momentum.

Another assumption I made, as pointed out by
Ardhuin, is that the sea surface is flat; there is no set-up,
and this one is clearly stated in the paper. This assump-
tion, adopted for simplicity as a first approximation, can
be changed in the future to allow sea level variations near
the shore. The theoretical reason for adopting a flat sur-
face is that no type of sea level variation can possibly
account for the disappearance of the wave’s orbital angu-
lar momentum during shoaling, which is explained in my
paper, because a baroptropic pressure force that would
result from a sea level variation cannot cause a torque on
the orbiting fluid particles.

Finally, I have neglected bottom friction based, on
the experience of others. In particular, Hasselmann et al.
(1973) were unable to relate their observations of swell
attenuation to the well-known law of frictional dissipa-
tion. A quantitative comparison can be made between my
shoaling wave force on the bottom and the bottom fric-
tion force, but this is left for the future. There are already
sufficient qualitative disagreements between wave data
and the normal bottom friction equation so that a quanti-
tative relation does not seem worth pursuing at the present
time.
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