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Freely propagating surface gravity waves are observed to slow down and to stop at a
beach when the bottom has a relatively gentle upward slope toward the shore and the
frequency range of the waves covers the most energetic wind waves (sea and swell).
Essentially no wave reflection can be seen and the measured reflected energy is very
small compared to that transmitted shoreward. One consequence of this is that the
flux of the wave’s linear momentum decreases in the direction of wave propagation,
which is equivalent to a time rate of change of the momentum. It takes a force to
cause the time rate of change of the momentum. Therefore, the bottom exerts a force
on the waves in order to decrease the momentum flux. By Newton’s third law (action
equals reaction) the waves then impart an equal but opposite force to the bottom. In
shallow (but finite) water depths the wave force per unit bottom area is calculated,
for normal angle of incidence to the beach, to be directly proportional to the square
of the wave amplitude and to the bottom slope and inversely proportional to the mean
depth; it is independent of the wave frequency. Constants of proportionality are: 1/4,
the fluid density and the acceleration of gravity. Swell attenuation near coasts and
some characteristics of sand movement in the near-shore region are not inconsistent
with the algebraic structure of the wave force formula. Since the force has a depth
variation which is significantly faster than that of the dimensions of the particle or-
bits in the vertical direction, the bottom induces a torque on the fluid particles that
decreases the angular momentum flux of the waves. By an extension of Newton’s third
law, the waves also exert an equal but opposite torque on the bottom. And because the
bottom force on the waves exists over a horizontal distance, it does work on the waves
and decreases their energy flux. Thus, theoretically, the fluxes of energy, angular and
linear momentum are not conserved for shoaling surface gravity waves. Mass flux,
associated with the Stokes drift, is assumed to be conserved, and the wave frequency
is constant for a steady medium.

the constancy of the frequency and the given dispersion
relation of the waves it follows that the wavelength de-
creases as the mean depth decreases, which, together with
the depth decrease itself, leads to the decrease in the phase
speed. Formally, the constancy of the wave frequency is
derived from the ray equations, which are based on the
central assumption that variations in the environment (i.e.
the depth) change slowly in one wavelength. Therefore,
we adopt this fundamental assumption from the start.

Neither can mass flux conservation be questioned per
se, but to place this law above all others, such as the tra-
ditional energy flux conservation law, is to break away
from the classical analytical methods used in nearshore
circulation studies. But by doing so we achieve a consist-
ency with measurements that show a rather dramatic at-

1.  Introduction
A framework is erected in this paper for understand-

ing certain characteristics of surface gravity waves that
travel into regions of continuously decreasing mean
depths of water. The framework is based upon two con-
stants of the motion: wave frequency and mass flux.

There has never been any question that for a steady
medium the wave frequency must be constant, and so this
principle is applied without controversy to shoaling waves
when the initial wave amplitude is constant and there are
no time variable currents, winds, etc. For example, from
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tenuation of swell amplitude near coasts, accumulated
over a thirty-year period, because the wave amplitude is
predicted to decrease monotonically toward the beach, in
qualitative agreement with the data. Theories which in-
clude frictional damping have not so far been able to ad-
equately explain the shoreward decrease of the swell
amplitude.

Arriving at the present starting point was the result
of an intellectual dilemma. First, energy flux conserva-
tion has maintained a firm grip on the minds of physical
oceanographers for a considerable period of time. After
all, it is difficult to imagine any physical process that could
result in the energy flux not being conserved during pure
wave-bottom refraction, assuming that bottom and inter-
nal friction, reflection, diffraction, nonlinear wave-wave
and wave-bottom interactions and wave breaking have
negligible effects on the energy budget. Moreover no ex-
ternal forces (wind stress) and no currents (tides) are pos-
tulated to be present to complicate the issue. These as-
sumptions have always seemed very reasonable until the
past couple of years, when ocean observations of swell
attenuation near beaches have begun to exert their influ-
ence (e.g. Ardhuin et al., 2003). By taking the energy flux
to be a constant, the evolution of the amplitude of shoaling
waves is computed straightforwardly, and this has repeat-
edly been done in the literature, starting perhaps with
Rayleigh (e.g. Ippen, 1966).

Second, surface gravity waves transport other prop-
erties besides energy. They obviously have angular mo-
mentum, for example, that is related to the orbital motion
of the fluid particles, whether those orbits are circles in
deep water or ellipses in intermediate to shallow water.
Unfortunately, angular momentum has not been discussed
very much for surface waves, particularly not for shoaling
waves, and only relatively recently have a few investiga-
tors begun to explore its interesting consequences (e.g.
Kenyon and Sheres, 1996). Equally hard to imagine is
why the flux of the magnitude of the angular momentum
should not be conserved as well as energy flux when sur-
face waves shoal. What are the torques that would cause
the magnitude of the angular momentum to change dur-
ing shoaling? No candidates have so far emerged.

For oblique angles of incidence it is well known that
the crests and troughs swing around to become ever more
parallel to the beach as a consequence of wave-bottom
refraction, in which case the directions of the angular
momentum vectors rotate in the horizontal plane. This
implies that there must be a torque to change the direc-
tion of the angular momentum, presumably supplied by
the bottom, but this topic lies outside the scope of the
present discussion.

However, the dilemma we experienced is: if energy
and angular momentum flux are both conserved simulta-
neously for propagation in intermediate to shallow mean

depths of water, we immediately reach a contradiction.
The wave amplitude function predicted by energy flux
conservation does not agree at all (qualitatively or quan-
titatively) with that predicted by angular momentum flux
conservation during shoaling. Inadvertently we have ap-
parently overspecified the problem. In that case, which
of the two conservation principles do we want to give up,
energy or angular momentum? According to the concep-
tual arguments appearing next, it turns out that we must
abandon both of them.

At any rate, the traditional conservation of energy
flux forecasts that the wave amplitude should initially
decrease to a minimum and then continuously increase
thereafter. It is the shoreward increase in amplitude with
decrease in distance to the beach that is contradicted by
the results of the swell attenuation studies, but this by
itself is probably enough to overthrow the long-cherished
belief in the conservation of energy flux, at least in its
purest form (without friction).

When surface waves shoal, they slow down. We know
this from observations and we know it theoretically from
the functional form of the phase speed, which decreases
monotonically as the mean depth decreases. This decrease
in phase speed can be seen most quickly in the shallow

water limit, where c = gh  (c = phase speed, h = mean
depth), in which the wavelength drops out of the prob-
lem. Thus decreasing depth produces decreasing phase
speed.

Not only do the waves slow down during shoaling,
they also come to a complete stop at the beach. This is
observed to happen whether the waves break first or not.

Also, according to the centuries old formula, c = gh , a
surface gravity wave should simply come to a stop at the
shoreline (h = 0). Why has it taken so long for this idea to
sink in? In addition, measurements have shown that for
the bottom slopes normally found around the rims of the
world’s oceans, the amount of reflected energy in the fre-
quency band of the most energetic wind waves is insig-
nificant compared to that transmitted shoreward; the lower
frequency waves are reflected (Munk et al., 1963; Elgar
et al., 1994). Aditionally, casual observations confirm that
at most beaches forming a ring around a large ocean (e.g.
the North Pacific), most of the time, waves can be seen
coming into shore but none are noticed returning to sea
(excluding special cases of strong offshore winds and
vertical cliffs).

Now, surface gravity waves also carry linear momen-
tum, just as light and sound waves do, and they cause a
force on solid objects upon reflection from them. In the
case of surface waves the linear momentum is directly
proportional to the Stokes drift (velocity) through the
particle (fluid) density (e.g. Barnett and Kenyon, 1975).
Linear momentum travels with the wave speed, which is
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the group speed in deep water and the phase speed in shal-
low water. The slowing down and stopping of the waves
strongly suggests that the rate at which the momentum is
carried shoreward by the waves decreases. In other words,
the momentum flux is not constant but diminishes toward
the shoreline. When the wave comes to a halt at the beach,
the linear momentum of the waves must be entirely ab-
sorbed by the bottom.

A potentially confusing idea can be anticipated and
dispelled at this point. Traditionally, energy—and there-
fore also by analogy linear and angular momentum—is
transmitted with the group speed. And it is known that
the group speed has a weak maximum at one particular
intermediate depth for a given wavelength. From this
analytic feature one might conclude that the transmission
of linear momentum would actually speed up slightly
around this one mean depth. Whether or not observations
will eventually confirm this theoretical fine point is left
for the future. But the conclusion remains valid that the
overall momentum flux must decrease from deep water
to the beach where the waves slow down and eventually
stop.

The spatial rate of change of the momentum flux is
equivalent to the time rate of change of the momentum.
It takes a force to cause a time rate of change in the linear
momentum. Therefore, there must be a force present to
make the momentum flux decrease in the direction of
wave propagation, and this force can only be related to
the sloping bottom, assuming that the mean sea level re-
mains fixed. (Casual observations, at least, do not reveal
any changes in mean sea level.) By Newton’s third law
(action equals reaction) the waves must then exert an equal
but opposite force back on the bottom. Certain geologi-
cal types of ocean bottom could support such a force with-
out deformation over short time-scales (i.e. comparable
to a wave period); others, such as sand, might not always
be able to.

As will be demonstrated later, the force that changes
the linear momentum has a vertical variation, which is
much faster than that of the orbital dimensions in the verti-
cal direction and therefore it causes a torque on the fluid
particles, resulting in a change (decrease) in the orbital
angular momentum flux of the waves. Conversely, the
waves impart an equal but opposite torque to the bottom
(this is an extension of Newton’s third law for linear
motion to rotary motion; e.g. see Ference et al., 1956).
Consequently, neither the linear nor the angular momen-
tum flux can be conserved when surface waves shoal. And
since the force that decreases the linear momentum flux
acts over a horizontal distance as well, work is done on
the waves such that energy flux cannot be considered
constant either.

What tools do we have left to analyze shoaling sur-
face waves? Mass flux conservation. We shall see how

far we can get using that one principle. The constancy of
the frequency is useful but it is not an essential element
in what follows.

2.  Mass Flux Conservation
A more complete heading for this section would be:

conservation of mass flux and non-conservation of the
fluxes of energy, linear and angular momentum. It is sim-
pler for most purposes to use the shallow water limit
throughout because otherwise the group velocity is such
a cumbersome function of the depth and wave number in
the intermediate depth range that the presentation of the
main points would be obscured by the algebraic complex-
ity. Also for convenience we assume that the waves
progress normal to a straight shoreline and that the depth
contours are straight and parallel to the beach. Friction is
neglected throughout. To be definite, the waves travel in
the positive x-direction, which points toward shore, and
the z-axis points vertically up away from the mean free
surface.

We envision a three-dimensional mass circulation in
the near-shore zone. A two-dimensional circulation would
be more appropriate for a narrow wave channel in the
laboratory. Of all the conceivable flow configurations that
the mass could use to return to sea from the shore (com-
pensation flow, undertow, etc.) it appears that much of
the time the ocean chooses the three-dimensional solu-
tion for reasons that are still not completely understood.
The waves bring mass into the beach by means of the
Stokes drift, and we are not considering any other ways
that mass can be transported shoreward. We find it con-
venient to assume that mass returns seaward via narrow,
swift and well-spaced rip currents (Shepard, 1959). Rip
currents are fed by longshore currents, but the generation
and maintenance of both these currents are outside our
present interest. Fortunately, the main results to follow
do not depend on knowing how longshore and rip cur-
rents are caused. In the broad regions between adjacent
rip currents the mass flux must be constant through all
vertical cross-sections.

Mass flux conservation between rip currents is given
by

ρ Udz const M
h−∫ = = ( )0

1

where ρ is the constant fluid density, z = –h is the bottom
depth, z = 0 is the mean free surface, the const means
independent of x, and U is the Stokes drift, which for fi-
nite constant mean depth is

U c ak
k z h

kh
= ( ) +( ) ( )2

2

2

2
2

cosh
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as originally derived by Stokes (1847). In (2) c is the phase
speed, k the wave number, a the wave amplitude, and z is
an arbitrary mean depth of a fluid particle.

Putting (2) into (1) and performing the depth inte-
gration gives

ρga

c

E

c
M const

2

2
3= = = ( )

where

E ga= ( )1

2
42ρ

is the total mean energy per unit horizontal area of a sur-
face wave valid in any arbitrary mean depth. In this sec-
tion Eqs. (6)–(8) and (12) all depend on (3) as the pri-
mary assumption.

In the shallow water limit the phase speed is

c gh2 5= ( )

which is a classical result in fluid dynamics (Lamb, 1932).
Equation (5) shows that the phase speed decreases as the
depth decreases and at a rate proportional to the square
root of the mean depth. We assume that the mean depth h
varies slowly in one wavelength so that in (2) and (5) and
elsewhere the depth can be taken as approximately con-
stant locally.

From (5) and (3) we see that

a h∝ ( )1 4 6/

which shows that the amplitude decreases as the depth
decreases because it is proportional to the fourth root of
the depth. At first sight a decreasing amplitude accompa-
nying a decreasing mean depth might tend to contradict
experience. However, this result is qualitatively consist-
ent with recent swell attenuation observations (Ardhuin
et al., 2003), as discussed later. Only physical and nu-
merical constants (ρ, g, 1/2, etc.) are not explicitly shown
in (6) and some of the following equations ((7), (8), (12)).

Consider next the standard expression for the energy
flux

Ec Ec hg ≈ ∝ ( )7

where in the shallow water limit the group and phase
speeds are equivalent. Equation (7) has been evaluated
with (4)–(6). The energy flux decreases as the depth de-
creases, according to (7). In other words, the energy flux

is not conserved during shoaling, which is a direct conse-
quence of the fact that mass flux (1) is conserved. Physi-
cal reasoning for why energy flux is not conserved is tied
to the non-conservation of linear momentum as discussed
in the next section. Concluding that energy flux is not
conserved as the waves shoal disagrees with some cur-
rent and most past thinking on the subject.

For the flux of wave linear momentum we have

Mc Mc E hg ≈ = ∝ ( )1 2 8/

where M  is given by (1), and it has been shown before
for surface waves (e.g. Barnett and Kenyon, 1975; see
also (3) above) that

M
E

c
= ( ). 9

Thus the momentum flux is not conserved; it decreases
as the depth decreases. This result is at least not incon-
sistent with earlier work, in the sense that there is not an
established law stating that linear wave momentum flux
should be conserved (or not conserved) during shoaling,
like there is for energy flux.

“Radiation stress” and “excess momentum flux” are
designations for a general concept that, when applied spe-
cifically to shoaling waves, leads to a correlation between
a variation in momentum flux and a variation of the mean
sea level (e.g. Phillips, 1966), but so far this method has
not led to a prediction of a wave force on the bottom.
Furthermore, the mean sea level is forecast to first de-
crease toward shore before eventually rising near the
beach. This is counterintuitive since one would think that
to slow down and to stop the incoming wave momentum,
the mean sea level should only rise monotonically toward
the coast.

From a theoretical point of view, as discussed later,
a variation in mean sea level cannot account for a de-
crease in angular momentum flux during shoaling because
it would produce a barotropic offshore pressure gradient
that is incapable of causing a torque on the orbiting fluid
particles. Of all the properties brought toward the coast
by the waves (mass, energy, linear and angular momen-
tum), the only one that does not return seaward is the
orbital angular momentum. Rip currents carry mass, en-
ergy, and linear momentum, but they do not transport
angular momentum about horizontal axes parallel to the
shore. (Longshore currents have no orbital angular mo-
mentum either.) Therefore, a torque must exist to damp
down the shoreward moving angular momentum, and a
barotropic offshore pressure gradient, related to a shore-
ward increase in mean sea level, cannot possibly do the
job.
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Similarly, it can be shown relatively easily that the
angular momentum flux is not conserved during shoaling.
Start with the angular momentum A of a fluid particle at
an arbitrary mean depth where the total depth is finite

A
a k z h

kh
= +( ) ( )ρω 2

22

2
10

sinh

sinh
.

Equation (10) has probably never been published before
but it originates directly from A = ρ|  

r
r  ×   

r
v | = ρ|(xw –

zu)|, where   
r
r  is the position vector and   

r
v  is the tangen-

tial velocity of the particle, and the Lagrangian coordi-
nates and velocity components of a fluid particle in a pro-
gressive surface gravity wave as given in the textbooks
(e.g. Lamb, 1932). One interesting property is that the
angular momentum of all fluid particles is independent
of time as they move around their elliptical orbits.

When the angular momentum per unit volume in (10)
is integrated over the water column to get the angular
momentum per unit horizontal area, the result is

A Adz
ca

h
= = ( )

−∫
0

2

2
11

ρ
.

Now, for the flux of the angular momentum per unit hori-
zontal area we have

Ac Ac hg ≈ ∝ ( )3 2 12/

in the shallow water limit. Consequently, the angular
momentum flux is not conserved since it decreases as the
depth decreases. This result does not violate any estab-
lished precepts, to the best of my knowledge.

To sum up, if mass flux is conserved, then neither
energy, nor angular or linear momentum are conserved;
they all decrease as the depth decreases.

3.  Wave Force and Torque on the Bottom
Wave force equals time rate of change of linear mo-

mentum, which equals the spatial rate of change of the
momentum flux. Thus

∂
∂

= ∂
∂ ( ) =

∂
∂

= ( )M

t x
Mc M

c

x
Fg

g 13

since M  = const (independent of x) by assumption from
(1), and F  is the force per unit “horizontal” area. We
have assumed a small bottom slope, so the force per unit
horizontal area can be thought of as applying to the bot-
tom even though it is not exactly horizontal. To obtain
the total force on a section of the bottom, the force (13)
needs to be multiplied by the area of the section. If the

wave amplitude is independent of time, then the force on
the bottom in (13) is in a steady state. In (13) the force is
represented as a scalar, but we know it points parallel to
the x-axis: the wave force on the bottom is in the positive
x-direction (toward the shore), the equal but opposite
bottom force on the waves is in the negative x-direction
(toward the sea).

It is well known (e.g. from the earlier usage of the
energy flux conservation principle) that the group speed
has a maximum, although a very weak one, at intermedi-
ate depths. For a given wave number there is one mean
depth for which the derivative of the group speed van-
ishes. So at this particular depth the force per unit area
will be zero by (13). Both seaward and shoreward of this
“critical” depth the force will exist, though. But the more
important region for the wave force is between the criti-
cal depth and the shoreline because of the depth depend-
ence of the force, which increases as the depth decreases
in shallow water, as shown in (14).

In the shallow water limit (13) reduces to

F
g

h
Ms

ga s

h

Es

h
= 



 = = ( )1

2

1

4

1

2
14

1 2 2/ ρ

where s = dh/dx is the bottom slope. By (14) the force
decreases as the slope decreases and it vanishes when the
bottom is flat, a physically reasonable result in the ab-
sence of friction. In any case, the analysis is restricted to
small slopes in order to meet the requirement that the
depth change slowly in one wavelength. The force in (14)
also increases as the mean depth decreases. Since the
depth decreases in the positive x-direction, the bottom
slope is negative and the momentum decreases with time,
as it should. Notice that the force in (14) is independent
of the frequency of the waves, so long as the waves are
within the frequency band for which complete absorp-
tion takes place (i.e. no reflection). Thus the total force
for a superposition of different frequencies is proportional
to the sum of the squares of the amplitudes of the indi-
vidual wave components.

As a relatively minor point, seaward of the critical
depth the force changes sign according to (13) because
of the maximum in the group speed. This may be coun-
ter-intuitive, but in any case the wave force is very weak
in this depth range and it goes to zero in the deep-water
limit.

Another minor point is the apparent mathematical
singularity in the force (14) in the shallow water limit at
the shoreline (h = 0). Physically, the force would not blow
up there. Taking the mass flux M  constant right up to
the shoreline is unrealistic. Before the shoreline is reached
mass will begin to move sideways in longshore currents
parallel to the beach, which then supply the rip currents.
Therefore, M  goes to zero as h goes to zero and this will
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erase the singularity in the denominator of (14). There is
probably still a certain depth interval in which the trend
is realistic that the force increases as the depth decreases
and right near the shoreline the force may reach a maxi-
mum.

Wave torque equals the time rate of change of the
angular momentum, which is equal to the spatial rate of
change of the angular momentum flux. Therefore

∂
∂

= ∂
∂ ( ) = ( )A

t x
Ac Tg 15

since A  is not constant (it depends on x), and T  is the
torque per unit horizontal area. Again we interpret the
torque as being applied to the gently sloping bottom. With
the constraint (3) the shallow water limit reduces (15) to

T h s∝ ( )1 2 16/

showing that the torque, like the force, decreases as the
slope decreases, but unlike the force the torque also de-
creases as the depth decreases. In addition, the angular
momentum decreases with time because the slope is nega-
tive.

To better appreciate how a torque can arise in the
first place, consider the linear momentum per unit vol-
ume m

m U c ak
k z h

kh
= = ( ) +( )





( )ρ ρ 1 2
2

2

2
17/ cosh

sinh

from (2). The time rate of change of the momentum per
unit volume gives the force per unit volume. From the
structure of (17), in particular the quantity in the square
brackets, it can be seen that, for a given wave number,
the depth variation of the force per unit volume will be
much more rapid in intermediate to shallow mean depths
than the depth variation of orbital dimension in the verti-
cal direction, which is proportional to sinhk(z + h)/sinhkh
according to the textbooks (Lamb, 1932). In other words,
the seaward force at the top of the orbit will be signifi-
cantly larger than that at the bottom of the orbit, which
produces a net torque on the particle that will reduce its
orbital rotation.

For a horizontal variation in mean sea level, for ex-
ample a rise in sea level at the coast, the offshore pres-
sure gradient will be independent of depth for a homoge-
neous fluid. In shallow water with breaking waves, mix-
ing the water column from top to bottom, we do not ex-
pect any significant vertical stratification of the density.
Thus the horizontal pressure gradient due to mean sea
level changes, if there is any, must be barotropic, and a

depth independent pressure gradient is incapable of caus-
ing a torque on the orbiting particles (the force is the same
at the top and bottom of the orbits of the particles). In
other words, a variation in mean sea level cannot decrease
the incoming angular momentum flux, which we know
must happen during shoaling.

4.  Discussion
As mentioned above, swell attenuation studies have

been carried out recently near the East Coast of the US
(Ardhuin et al., 2003). Furthermore, 30 years before that
similar experiments were done in the North Sea
(Hasselmann et al., 1973). The algebraic form of the wave
force on the bottom in (14) is qualitatively consistent with
a few characteristics of these observations. For example,
in the North Sea, no completely satisfactory explanation
for the shoreward decay of the swell amplitude, in terms
of generally accepted friction laws, was found. However,
two characteristics of the decay rate were discovered: an
increase of the decay rate with an increase in initial swell
energy and with a decrease in mean depth. Both of these
features can be understood in terms of the far righthand
side of (14) because the bottom force on the waves in-
creases with increases in the energy and with decreases
in the depth.

One further point with respect to amplitude that needs
mentioning is the common observation that shoaling
waves normally “peak up” before they break. In other
words, although the amplitude might initially decrease
shoreward, as is usually believed, the amplitude would
then appear to increase until the breaking point is reached.
However, the peaking up phenomenon may actually in-
volve more of a change in wave shape than an increase in
wave height. An explanation of the peaking up process
already exists, as related next.

Kenyon and Sheres (1991) used a shallow water
model to show theoretically that at finite height the wave
profile takes on an asymmetric shape if the stability of
the wave is to be maintained. The asymmetry is charac-
terized by higher narrower crests and shallower broader
troughs. This is consistent with the “peaking up” observed
by beach goers in general and by surfers in particular.
Overall wave height increases are not so dramatic if the
troughs rise up at the same time as the crests become
higher. At the heart of the model is Einstein’s (1916)
method of balancing static and dynamic pressure differ-
ences between crest and trough along the surface stream-
line in the reference frame that makes the waves appear
steady. In a straightforward way the method is adapted to
finite constant mean depth and finite wave heights can be
investigated under certain assumptions. For gradually
decreasing mean depth the model predicts increasing
asymmetry in the wave profile, which agrees with the
observed peaking up of the waves.
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Nearshore sediment transport is a very complicated
subject, involving several empirical attempts to relate sand
movement to wave energetics, etc. It was not our original
intention to try to step in here from the sidelines and of-
fer any suggestions. But there are a few observations that
are not inconsistent with the functional form of the wave
force on the bottom in Eq. (14), and we are prompted to
at least point them out. One observed fact is the charac-
teristic concave shape to the bottom profile and another
one is the positive correlation between sediment size and
bottom slope (e.g. Komar, 1998).

A concave bottom profile agrees qualitatively with
(14) because for a given sediment size and a given initial
constant slope the wave force on the bottom increases as
the depth decreases, which would tend to produce some
initial scouring followed by a piling up of sand near the
mean waterline. The net result would be to turn a linear
profile into a concave one. Typically, beach profiles are
measured a considerable distance beyond the breaker
point, whereas (14) is not expected to apply shoreward
of this point.

There is strong evidence to support a positive corre-
lation between particle size and beach slope. Large sedi-
ment sizes go with large bottom slopes, and vice versa.
This is qualitatively consistent with (14) too. For exam-
ple, pebbles or cobblestones would be harder to move than
sand because of their greater weight (in water), and it
would therefore take a larger force to move them. Ac-
cording to (14) for a given mean depth the wave force is
larger for a larger slope. It is interesting that the positive
correlation between bottom slope and sediment grain size
often extends into very shallow regions in which (14) is
not strictly applicable due to wave breaking. At the
beaches of lakes and smaller bodies of water, however,
one can on occasion observe waves coming right up to
the shore without breaking and without reflecting. In these
cases there is no breaker point and (14) would be useful
throughout the whole shoaling zone.

At the beaches in southern California, for example,
there is a prominent seasonal migration of the sand. In
the summer the sand is in and in the winter it is out. When
the sand is out, it is not very far out but sits in deeper
water on the continental shelf (some of the sand may be
permanently lost to the near-shore system by falling into
submarine canyons, but rivers normally bring in new
sand). This seasonal signal in sand movement is not in-
consistent with the wave force formula. For constant bot-
tom slope and beach material, the bigger the amplitude
of the waves (i.e. the bigger a and M are), as in winter on
the average, the larger the force is by Eqs. (13) and (14).
A sufficiently large force could suspend enough sand that
the longshore currents and rip currents working together
would then cause a net transport of sand to deeper depths.
In summer a weaker force due to smaller waves might

only produce a net shoreward movement of sand.
An additional feature of the wave force on the bot-

tom has already been noted, and we have classified it as a
minor feature: the force is proportional to the derivative
of the group speed in (13) and therefore it vanishes at a
particular intermediate mean depth for a given initial wave
number. However, if we take this feature seriously for a
moment, then we arrive at an elementary cause for the
formation of a trough or dip in the sand. Suppose the wave
force is sufficiently strong to make sand move along the
bottom but not so strong as to cause a lot of sand to be
suspended in the water column, where it could be advected
away from the scene by longshore currents. Shoreward
of the critical depth the force will scour the bottom and
move sand toward the beach. Seaward of the critical depth
the force has the opposite sign and will tend to move sand
further away from the beach. The net result will be a lo-
cal depression in the sand bottom approximately centered
at the location of the critical depth. It is not too uncom-
mon to find sand depressions while walking out into the
surf in summer, and perhaps we have just found a tenta-
tive explanation for their formation. However, such an
explanation is strongly dependent on the assumption that
the mass flux is conserved.

In the general case in which the wind waves do not
initially travel normal to the shore or to the bottom con-
tours, the wave rays are curved and the wave number vec-
tors change direction along the rays. Therefore, the bot-
tom must cause an additional force on the waves, which
we know will point perpendicular to the wave number.
Conversely, the wave exerts an extra force on the bot-
tom. The calculation of the magnitude of this sideways
force is left for another time, but we understand that it
will be zero for normal incidence and very small for near
normal incidence.

Omitted from consideration above is any treatment
of the thin viscous boundary layer near the seabed. What
qualitative changes in the present conclusions that might
result from including a bottom boundary layer are un-
known at this point.

The ocean tide does not break at the coast, but then
the tide is not absorbed there either (ignoring friction).
Due to its low frequency the tide is at least partially re-
flected at a continental slopes and shelves, depending on
how much of the tide propagates parallel to the coastline.
Of course, upon reflection the tide must exert a force on
the coast, but we cannot use Eq. (13) or (14) to estimate
it. Another feature to consider is that the tide is a forced
wave, not a freely propagating one, as assumed above.
Unlike the wave force on the sloping bottom calculated
here, which vanishes for depths exceeding a wavelength,
the horizontal tide force on a continental boundary would
exist from sea level all the way to the deep sea without
appreciable diminution.
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Although the force on a sloping bottom, due to
shoaling surface waves that are completely absorbed at
the beach, may not have been calculated before Eq. (13)
was put forward above, which is curious, it is even more
curious that the wave force on a rigid vertical wall, where
complete reflection takes place, has been computed an
embarrassingly large number of times. For example, as
of about 50 years ago there were over 25 separate alge-
braic equations published for the wave force on a verti-
cal wall. Not only did these early formulas disagree among
themselves but none of them compared satisfactorily with
the laboratory measurements reported by Rundgren
(1958). Since that time a few more distinctly different
attempts to quantify the wave force on a vertical wall have
been entered into the public domain (e.g. Kenyon, 2004),
and wave force data on a vertical wall have been obtained
under environmental conditions (Boccotti, 2000).

As for the torque on the bottom given by (15) and
(16), we are unable to relate it to any other body of knowl-
edge because evidently no previous discussion of it has
been available.
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