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The effects of the gravity torques acting on the angular momentum of surface gravity
waves are calculated theoretically. For short crested waves the gravity torque is caused
by the force of gravity on the orbiting fluid particles acting down the slopes of the crests
and troughs and in the direction parallel to the crests and troughs. The gravity torque tries
to rotate the angular momentum vectors, and thus the waves themselves, counterclock-
wise in the horizontal plane, as viewed from above, in both hemispheres. The amount of
rotation per unit time is computed to be significant assuming reasonable values for the
along-crest and trough slopes for waves in a storm area. The gravity torque has a
frequency which is double the frequency of the waves. For long crested waves the gravity
torque acts in the vertical plane of the orbit and tries to decelerate the particles when they
rise and accelerate them when they fall. By disrupting the horizontal cyclostrophic
balance of forces on the fluid particles (centrifugal force versus pressure force) the gravity
torque accounts qualitatively for the three characteristics of breaking waves: that they
break at the surface, that they break at the crest, and that the crest breaks in the direction
of wave propagation.

1.  Introduction
Surface gravity waves have orbital angular momentum.

Each fluid particle has angular momentum with respect to
the mean position of its orbit. For small amplitude progressive
waves in deep water the particle orbits are all circular, so the
magnitude of the angular momentum per unit volume of a
surface particle is, neglecting the constant density, easily
computed to be the angular frequency of the wave times the
square of the radius of the particle, or the square of the wave
amplitude, because for surface particles the orbital radius
equals the amplitude (see Eq. (3)).

Since surface waves have angular momentum, then
changes in the angular momentum must be caused by a
torque. Angular momentum can be changed by a torque
either in direction or in magnitude or in both. Wave refraction
by wave-current interaction is a process in which a shear
torque changes the direction of the angular momentum
without changing its magnitude (Kenyon and Sheres, 1996).
When wave refraction occurs in decreasing mean water
depth, i.e. bottom refraction, there is also a torque, involving
the bottom depth and slope, that changes only the direction
of the angular momentum.

Do any other torques exist that can change the angular
momentum of surface gravity waves, and if so how do these
changes manifest themselves? What is needed is a list of all

possible forces that can act on an orbiting fluid particle as
surface waves pass by. The force of friction, for example,
can change the magnitude of the angular momentum, leaving
its direction constant, in either of two ways. Internal friction
within the medium that transmits the waves produces a
torque which always decreases the angular momentum. A
wind torque at the air-water surface, on the other hand, can
increase the angular momentum of the surface particles,
through a frictional interaction between the air and water,
under the right conditions (the wind must blow faster than
the waves propagate, for example).

If the Coriolis force that acts on the particle velocity
during surface wave propagation is unbalanced by any other
force, it therefore causes a torque on the waves. However, it
is clear that the Coriolis force (and therefore the Coriolis
torque) cannot change the magnitude of the angular mo-
mentum because it acts always at right angles to the velocity
measured relative to the earth’s surface.

That leaves the force of gravity. A gravity torque can
exist, but what are its effects? This is the subject of the
following brief report, and to my knowledge it has never
been discussed before.

2.  Short Crested Waves
Consider a surface gravity wave with an amplitude that
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monotonically increases to the right, facing in the direction
of wave propagation, parallel to the crests and troughs (see
Fig. 1). At the crest there will be a gravitational force 

  

r

F  on
a fluid particle acting to the left, down the sloping surface,
with magnitude F = gsinθ, where g is the acceleration of
gravity and θ is the angle of the wave surface from the
horizontal. The gravity torque 

  

r

tg  on the surface particle has
magnitude

  

tg = 1
2

ag sin 2θ 1( )

where a is the magnitude of the radius 
  

r

r  of the particle, and
it is also the wave amplitude since the particle is at the
surface. For convenience the constant density of the fluid
particle has been omitted from (1). The direction of the
gravity torque is opposite to that of the direction of wave
propagation because of the relation 

  

r

tg  = 
  

r

r  × 
  

r

F  and the fact
that 

  

r

r  points up and 
  

r

F  points mainly to the left and also a
little bit down.

At the trough the magnitude and direction of the torque
are the same as they are at the crest because the signs of both
the gravity force and particle radius are reversed (the gravity

force always acts downhill). The maximum value of the
gravity torque is given by (1). In between crest and trough,
where the wave surface is level, the gravity torque in (1)
vanishes. Therefore, the frequency of the gravity torque is
double the frequency of the wave.

It can be noticed from (1) that the magnitude of the
gravity torque is independent of the angular momentum, and
therefore of the wave frequency, unlike the shear torque for
wave-current interaction (Kenyon and Sheres, 1996), for
example. Below the surface the gravity torque will decrease
until it vanishes at the depth of wave influence. In deep water
the rate at which the gravity torque decreases with increasing
depth will be exponential, but it will decrease like e2kz, where
k is the wave number and 0 ≤ z ≤ –∞. This is due to the fact
that both the particle radius and the crest slope decrease like
ekz.

Next consider a short crested wave, a wave hump, in
which the wave amplitude starts from zero, increases to the
right of the propagation direction, reaches a maximum, and
then decreases to zero again (see Fig. 2). On the left side of
the hump the gravity torque will be directed anti-parallel to
the direction of wave propagation, as deduced above. To the
right of the hump the gravity torque will point in the
direction of wave propagation, because the sign of the
gravity force is reversed whereas the sign of the particle
radius remains the same. The net effect of all the gravity
torques would be to try to rotate the hump (and the trough)
counterclockwise in the horizontal plane, as viewed from
above. The counterclockwise rotational effect will be true in
either hemisphere.

At first it might be thought that gravity, acting along
and down the crest, would try to make the hump collapse.
This does not happen, however, because the gravity force
acts on the rotating fluid particle thereby producing a torque
that tries to change the direction of the angular momentum
vector in the horizontal plane, since the torque itself acts in
the horizontal plane.

Before making any speculations as to possible appli-
cations of the gravity torque to surface waves in the ocean,
however, the magnitude of the gravity torque should be
estimated and compared with that of other torques that are
already available. For example the magnitude of the shear
torque, ts, for the wave-current interaction problem (Kenyon
and Sheres, 1996), which has been known to be an important
process for at least 25 years (Kenyon, 1971), is for surface
particles

  

ts = As = 2πa2

T







s 2( )

where A is the magnitude of the angular momentum, T is the
wave period and s is the magnitude of the current shear. For
the following numerical values: a = 1m, T = 6 sec, g = 10m/

Fig. 2.  A short crested wave, or a hump, that propagates into the
paper. The gravity torques point in opposite directions on each
side of the hump in such a way as to try to rotate the angular
momentum vectors 

  

r

A , which point to the left, counterclock-
wise as viewed from above.

Fig. 1.  A surface gravity propagates into the paper parallel to the

wave number 
  

r

k  and has a crest sloping up to the right, making
an angle θ with the horizontal. The angular momentum vector
  

r

A  points to the left. There is a gravity force 
  

r

F  = gsinθ acting
along the crest, where g is the acceleration of gravity. The
radius vector of a surface particle is 

  

r

r  which points up and has
magnitude a, i.e. the wave amplitude. The gravity torque 

  

t rg  =
  

r

r  × 
  

r

F  points out of the paper or antiparallel to the direction of
wave propagation.
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sec2, and s = 10–4/sec (Sheres et al., 1985), it can be seen
from (1) and (2) that the gravity torque will have approxi-
mately the same value as the shear torque when the surface
slope is given by sinθ = 10–5, which is quite a small slope,
i.e. about 1 m rise in a horizontal distance of 100 km. It
would seem that most short crested waves have slopes
considerably larger than this, although very few measure-
ments of crest slopes exist, probably. Therefore, the gravity
torque is significant in magnitude compared to the shear
torque and warrants a little more discussion.

Unlike the shear torque of the wave-current interaction
problem, the gravity torque acts in situ and not following a
wave group. If a long wave train passes by a fixed position,
then the gravity torque will have time to rotate the angular
momentum locally in the counterclockwise direction. The
first wave in a wave train will experience very little effect
from the gravity torque, but waves further back in the train
will be affected more.

An estimate can be made of the amount of counter-
clockwise rotation, per unit time, in the horizontal plane of
the angular momentum of short crested waves as follows.
From the angular momentum balance and the definition of
the angular momentum of a surface particle in deep water we
have

  

dA

dt
= ΩA = tg

  

3( )
  

A = ωa2

where Ω = dα/dt is the angular rate of rotation in the hori-
zontal plane and the angle α is measured counterclockwise;
ω = 2π/T.

From (1) and (3) we can estimate the amount of rota-
tion, ∆α, of the angular momentum vector in the time
interval ∆t

  

∆α = g sin 2θT∆t

4πa
4( )

where a is the maximum amplitude of the hump. Using the
same numerical values as before, a = 1m, T = 6 sec, g = 10m/
sec2, sinθ = 10–5, then from (4) ∆α ≈ 6 × 10–4 when ∆t = 6
sec, i.e. one wave period. After a time interval of 10 wave
periods the angular rotation would be 10 times larger, or
∆α ≈ 6 × 10–3, which is about 0.3 degrees. This amount of
rotation is small and probably insignificant. However for
crest slopes 10 to 100 times bigger (0–4 ≤ sinθ ≤ 10–3), which
could easily be imagined within a storm, then the angle of
rotation becomes potentially much more important, even
within a single wave period.

The theoretical features of the gravity torque on short
crested waves, that the waves rotate counterclockwise in

either hemisphere, as viewed from above, is qualitatively
consistent with observations by Munk et al. (1963) and
Snodgrass et al. (1966) on swell propagating from the South
to the North Pacific. When projected back from California
along the direction of propagation, assuming no torques of
any kind including that for wave-current interaction, the
source of the waves was found to be consistently to the left
of where the actual storms were by a few degrees or a few
hundred kilometers, and sometimes the projected source
was on land (Antarctica). The gravity torque has the right
sense and possibly the right magnitude to account for the
calculated displacement of the wave sources.

However the discrepancy in projected source direction
was found by Munk et al. (1963) to be larger for higher
frequency waves, which is inconsistent with the gravity
torque mechanism, as applied to swell, because the amount
of angular rotation of the angular momentum vectors in (4)
increases as the wave period increases. But both the bending
of the rays and its frequency dependence have already been
shown to be consistent with the wave-current interaction
process (Kenyon, 1971).

On the other hand, if wind waves in or near a storm are
considered, then it is generally accepted that there is a
relationship between the significant wave height and the
significant wave period. For example, Toba (1972) proposed
that the significant wave height is proportional to the three
halves power of the significant wave period. Accepting this
proportionality, and inserting it into (4), the result emerges
that the amount of rotation per unit time of the short crested
waves decreases with increasing wave period. Now some
consistency between the gravity torque mechanism and the
observations of Munk et al. (1963) has been obtained, at
least for those recording stations that were sufficiently close
to the storm that the wind wave model is more valid than the
swell model.

3.  Long Crested Waves
For long crested surface gravity waves, or waves whose

amplitude is constant in the direction parallel to the crests
and troughs, there still exists a gravity torque, which is due
to the acceleration of gravity acting in the vertical plane of
the particle orbits. This torque is directed parallel to the
angular momentum and so has the capability of accelerating
or decelerating the orbital velocity of the fluid particles, i.e.
changing the magnitude of the angular momentum.

Look in the direction of the angular momentum and see
the clockwise motion of the particles as a surface gravity
wave propagates from left to right. For the moment consider
only particles at the surface. At the position where the
vertical velocity of a surface particle is up, gravity acts down
and causes a torque that tries to decelerate the particle. The
opposite happens where the particle moves down, the gravity
torque tries to accelerate the particle.

Over a complete wave cycle it is presumed that the net
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effect of this gravity torque is zero, because the amount of
deceleration on the rising particle is made up when the
particle accelerates on the way down. However, the gravity
torque causes an asymmetry with respect to the center of the
orbit, which may turn out to be important. The asymmetry is
expected to increase as the wave amplitude increases, for a
given wave period, and also to increase as the period
increases, for a given amplitude. The reason is that the
accelerating and decelerating effect of gravity on the fluid
particle has a longer time to operate under these conditions.

Now surface gravity waves break in an asymmetric
way. They break at the surface and not below the surface.
The crest breaks but not the trough. The crest breaks forward,
in the direction of wave propagation, but not backward,
assuming contrary winds are not blowing. What does the
gravity torque have to say about the way surface waves
might break?

First of all, for small amplitude waves progressing in
deep water, for which the particle orbits are circular, there is
a balance of forces on each fluid particle at all positions
around the orbit. It is called the cyclostrophic balance
(Kenyon, 1991), and it involves the outward centrifugal
force and the inward pressure gradient.

At the front face of the wave the fluid particles are
rising and also decelerating because of gravity. For small
amplitudes and high frequencies this deceleration will be
negligible and not enough to destroy the cyclostrophic
balance of forces. However, for large amplitudes the de-
celeration will decrease the vertical velocity to the point that
the outward centrifugal force becomes less than the inward
pressure force. In other words the inward pressure force
overbalances the centrifugal force and causes the fluid
particles to accelerate in the direction of wave propagation
at the wave crest. By analogous reasoning, on the back side
of the crest the fluid particle has accelerated to the point that
the outward centrifugal force overbalances the pressure
force, and the net result is again to accelerate the fluid
particles at the crest forward in the direction of wave
propagation.

In summary, the gravity torque can account qualitatively
for all three observed characteristics of breaking surface
gravity waves, that they break at the surface, that they break
at the crest, and that the crest breaks forward in the direction
of wave propagation. The fact that waves break at the
surface and not below the surface is due to the the radius of
the particles orbits being largest at the surface, no matter
what the depth of water is, and to the vertical accelerating
and decelerating effect of gravity on the particles in the

plane of the orbit. That the crests break and break forward is
due to the horizontal inbalance in the cyclostrophic pair of
forces, which is caused in turn by the changes in the vertical
velocity of the particles by gravity.

When surface waves shoal, that is enter water of
gradually decreasing mean depth, it is theoretically pre-
dicted and also observed that the wave amplitude increases
while the wave period remains constant. Therefore the
shoaling process is a mechanism for increasing the wave
amplitude to the point that the breaking mechanism men-
tioned above can take over.

It must be noted that the cyclostrophic balance of forces
still takes place in shallow water even when the particle
orbits are ellipses (Kenyon, 1995). So the transformation
from circular to elliptical shape orbits during shoaling is not
enough by itself to cause the waves to break. However, the
same reasoning discussed above applies equally well to the
elliptical orbit. That is when the amplitude becomes suffi-
ciently large, the gravity torque, acting in the vertical plane
of the elliptical orbit, makes the wave break by disrupting
the horizontal cyclostrophic balance which causes the crest
to accelerate forward.
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